Journal of ICT, 6, pp: 1-17

—

DESIGN AND IMPLEMENTATION OF A SYSTEM FOR
TRANSFORMING FUNCTIONAL MODEL INTO OO MODEL

Yong Yang and Hee Beng Kuan Tan

School of Electrical and Electronic Engineering
Block 52, Nanyang Technological Univeristy
Singapore 639798

Email: yangyong @pmail.ntu.edu.sg

ABSTRACT

This paper describes the design and implementation of a prototype
system, F200 for the enhanced data flow diagram, called data
flow net (DF net) (Tan, Yang, & Bian, 2006). The prototype system
transforms the software systems designed in DF net to OO design
and implementation systematically, precisely and automatically.
This has greatly enhanced the OO methodology by synthesizing
functional decomposition, which is a well-developed concept in
traditional structured methodology. The prototype system facilitates
the software designer to construct the functional analysis models for
some of the use-cases in their own systems in DF net. Thereafter,
together with remaining use-cases using any existing OO software
development methods, the whole systems can be implemented
following current QOO design and implementation. This is very
useful in realizing use-cases, especially those with more complex
functions.

Keywords: DF net, Functional Decomposition, OO design, F200

INTRODUCTION

tructured methodology (T.DeMarco, 1978), firstly proposed by T.DeMarco
in 1970, is a mature methodology after years of development. It

provides a rich set of techniques and tools which facilitate the construction
of data models, functional models and dynamic models of large systems.

1

Journal of ICT, 6, pp: 1-17

The data flow diagram (DFD) was first introduced in structured analysis and
design (T.DeMarco, 1978). It has been widely used for the development of
information systems through providing a visual view on functional refinement.
Object-Oriented methodology, emerging in early 1980s, is claimed as very
natural system development approach. Based on its strengths on abstraction,
encapsulation and inheritance, Object-Oriented (OO) approaches have
advantages over structured methods in modeling, maintenance and reuse.
However, despite of its strength, OO methodology suffers from the lack of
emphasizing on functional decomposition and the benefits of applying it
have been discussed in (Wolber, 1997). The need of incorporating functional
refinement in OO software development, especially for problems with more
complex functions, has also been brought up in (Jalote, 1989). Many OO
approaches have attempted to incorporate DFDs into OO paradigm to model
the functional aspects of systems (Alabiso, 1988; Gray, 1988; Rumbaugh,
Blaha, Premerlani, Eddy & Lorensen, 1991).

However, except the recent approach proposed in Wang (2002) that distributes
functions directly into objects in the OO approach, no systematic and well-
defined approach or method has been defined so far due to the fundamental
difference in the decomposition strategies between DFD and OO approaches.
DFD approaches decompose systems according to functionality while OO
approaches decompose them according to the static object structure. Tan,
Yang, and Bian (2006) on the other hand, motivated by the inconclusive and
often conflicting results on comparing the use of OO approach against the
structured approach, a study was conducted to compare the two approaches
(Pressman, 2005). One main result obtained from this study indicates that
the OO approach is not “more natural” than the structured approach. This
prototype system applies the DF net theory to enhance the OO methodology
by incorporating functional decomposition, taking the advantages of existing
techniques and tools in structured methodology.

The rest of the paper is organized as follows: Section 2 briefs through the
DF net theory, including some terms which will be used in later sections
and workflow of DF net analysis and design process; Section 3 describes
the architecture of the F200 systems and technical specifications are also
provided. Finally, the conclusion and future work are in last section.

Journal of ICT, 6, pp. 1-17

2.0 DF NET

DF Net theory provides the following analysis artifacts. They are, process,
pdfd-sub-process, process attribute, data buffer, output data flow, data flow
referenced, output data flow attribute and data flow attribute referenced, in
a DF net. Likewise, the term design artifact refers to any class or procedure
constituent element as which a DF net artifact is realized. The overall processes
have three stages, which are analysis stage, design stage and implementation
stage, shown in Fig. 1.

prRCE—Y
DI et Panene THI R

Ianern
i

B Propramoer
[{ 1

| !
; S _(p—““*—"
¥/I-ﬂ\\ ,}\ Design 1 \md /
/ S N f2 ﬁ‘ ; Clans an.d Procedise
i o Transtorinp DF

Uvertase

; Net s 00 | (
s estinn ;}, 5 Y M \\9\“ unl e > //
£ 7

e s u:
M -
// i vl

’a | & " (m Desegn
Alualyst i desiar 1 \ O L
Desiyies \ / decision / \ 8 N /
T A T ——

Moot PO S [—
- [’v.l\lmmflx
DF Net Smalvst SR
Pewepnet
D el e

opeitbon syaluia ophionaly

() - sempautowaned

Fig. 1: Workflow of DF net methodology
2.1 Analysis Stage

DF net approach is to be applied from requirements analysis stage onwards.
In requirements analysis stage, it realizes a use-case through functional
decomposition and specifies it in multi-levels DF nets hierarchically as at DFD
until each lowest-level process specifies a meaningful external interaction
(including interaction with external entity, data store or data buffer) or
externally meaningful computation of data (Tan, Yang, & Bian, 2006).

2.2 Design Stage

In the design stage, for all the use-cases specified in DF nets, designers
synthesize and realize each process in the DF nets. Once, this is done, for each
use-case, a realization of the use-case as an operation is automatically derived.
Designers only need to decide a class to house the operation. For detailed
information, please refer to Tan, Yang, and Bian (2006).

3

Journal of ICT, 6, pp: 1-17

2.3 Implementation Stage

In the implementation stage, design model gained in previous step will be
transformed to OO code. There are two sub-stages in the implementation
of use-cases that are realized using the proposed approach: (1) coding of
supporting classes and procedures; (2) automated generation of operations
(Tan, Yang, & Bian, 2006).

3.0 F200

After brief through some basic knowledge of DF net, in this section, F200, a
tool for Seamless Transformation of Functional Model into Object-Oriented
Design & Implementation, applies Data Flow Net (DF Net) is introduced. The
whole prototype system follows Model-View-Control (MVC) architecture,
which is widely used in current industrial practice.

Analysis Stage

Design Stage
e | IO B e
e el TG T B
el \\ /7 d o ; ; 5
{ Drawing DFNet arlifacts | | { Validalion /'; { Grouping Processes]
N " R e L
\A\‘w ‘‘‘‘‘ e ~\\ ______ - . e e
N N
¢ Specify DFNet arlifacts’ & Specify Design arlifacts
| allributes \ { Inlerachve Helper b | Vi BeNeraritacts.
A ~ S N P g
£ N i e I e’
T i
T T
p s
User 7/ Transformation to \
Y Jmplementation Artifacts /
\\“‘-__‘_‘__,..ﬂz/-‘/
T —
7 ‘\
f Result Display i
N 7
Sy & i
----- '»-»_W,‘._a--'/ i
Implementation
F200 Stage

Fig. 2: System’s high-level functional feature

Journal of ICT, 6, pp: 1-17

3.1 System Overview

F200 employs a process-based architecture to facilitate the designers to build
their functional models and transform them into OO design and implementation
through three stages, namely, analysis stage, design stage and implementation
stage. F200 is primarily written in Java.

3.1.1 Component Overview

The prototype system design follows Model-View-Control (MVC) standard.
The F200 system architecture is shown in Fig. 3. It comprises four main
components:

* System UT: works as graphical user interfaces of the system.

e System Model: most of the DF net logics are implemented herein. Based
on the functionalities, it comprises four sub-components, which are DF net
Core Elements, Stage Control, DF net File Management and Algorithm.

* System Control: bridges the System UI with the System Model. It
responds to events, typically user actions, and invokes changes on the
System Model accordingly.

* Helper: provides helping and guiding the analysis, design and
implementation tasks.

3.1.2 Functions Overview

The F200 system provides users with functions to construct the functional
models and transform them into OO design and implementation. The whole
process is divided into three stages, namely, analysis stage, design stage
and implementation stage. The functional features of the F200 system are
depicted in Fig. 2.

Based on these different stages, functional features provided by the system are
summarized as follows:

* Analysis stage functions — In analysis stage, functions are provided to
construct the DF net diagram of DF net artifacts for a given use-case.
These functions involve drawing DF net diagram and specifying DF net
artifacts.

Journal of ICT, 6, pp: 1-17

e Design stage functions — In design stage, users are required to map their
DF net artifacts with OO design artifacts (classes, methods, attributes
etc). Major functions provided in this stage include grouping processes
and specifying design artifacts for DF net artifacts.

* Implementation stage functions — functions are provided to implement
all the design artifacts in the implementation stage. These include
transformation and displaying result. The design model constructed
in previous stages will be transformed to OO implementation
automatically.

* Other functions —validation function and helper function are provided in
all stages. Validation function can be categorized into three types, namely,
analysis validation, design validation and implementation validation.
Helper function is used for helping and guiding the analysis, design and
implementation tasks,

In the rest of this chapter, the design and implementation of each individual
component which carries out these functions will be discussed.

3.2 Implementation Details

In this section, the detailed design and implementation of the four major
components of the F200 system, namely, System Ul, System Model, System
Control and Helper, are discussed.

3.2.1 SystemUl

SystemUI module provides the designers system level interactions with the
prototype system.

3.2.2 System Model -

System Model Module covers the entire DF net logics. It acts as Model (M)
partin MVC structure of the prototype system. The internal structure of System
Model Module also follows MVC structure, like the Rational Rose.

3.2.2.1 DF net Core Elements

DF net core elements API works as the skeleton of the prototype system.
It covers all the DF net artifacts including DCFProcess, DCFDataflow,

6

Journal of ICT, 6, pp: I-17

DCFDataStore, DCFEntity, DCFSubProcess and DCFDataBuffer etc. shown
in Fig. 4.

3.2.2.2 Stage Control
32221 Analysis Stage

Analysis Stage Control provides the users with all the functionalities needed in
Analysis stage. These include, drawing DF net diagram for given use-cases and
specifying related attributes of these DF net artifacts. The following sections
introduce the detailed design and implementation of these two functions.

3.2.2.2.1.1 DF net Diagram Constructing

Classes in DF net Diagram Constructing inherit from JGraph packages
to provide users with drawing function to construct their DF net graphs in
requirement analysis stage.

3.22.21.2 DF net Artifacts Specification

After drawing the corresponding DF net diagrams of the use-cases, users also
need to specify the DF net artifacts in the analysis stage. These attributes, such
as the name of every process, every dataflow and every dataflow attribute etc,
are referred to as the elementary attributes of the DF net core elements. Some
of the analysis stage validations are carried out based on these attributes. It
contains three functions, namely process editing, data flow editing and others
editing.

3.22.2.2 Design Stage Control

Design stage is rightly after analysis stage. With its input of the DF net artifacts
gained in previous stage, users need to map these inputs with their corresponding
design artifacts, before proceeding to the next stage. Design artifacts refer to
any class’s or procedure’s constituent elements as which DF net artifacts are
realized. Design Stage Control includes two major functions, namely Process
Grouping and Design Artifact Specification. The work flow of this stage is
shown in Fig. 5.

1-17

Journal of ICT, 6, pp

e Jdy BRI v ey IV L 5100
o m___mw“.ﬁ LR RS <Bisen Bulintisy yuesr
el] Aypeig 500009
" - 1
I uoneprE, (v obig oy obg avanes |
v et ufhsag soneshnaKhg WA swhpny |
i
f
{ IdV
Idvw - "
E.ﬁ . Jarues) pistuabear ey
Uy insAg sbrig
SASRE))
SRR I bamis
..,_1 B | #

System’s architecture

.
.

Fig. 3

Journal of ICT, 6, pp: 1-17

3.2.2.2.2.1 Process Grouping

Process grouping provides the functions to realize the first step of Design
stage, which is to group the processes. In DF net theory, there are three
transform types of processes, namely, pdfd-sub-process based transform type,
process-based transform type and procedure-based transform type. The first
two methods require the designer to group the processes into different classes
before moving to their corresponding sub processes design.

322222 Design Artifacts Specification

Designing Artifact Specification provides functions to specify the detailed
design artifacts for all the DF net artifacts based on the outputs of the grouping
process. For processes which have been grouped, users need to match each
of them with its design artifact in OO methodology. For processes which are
specified to be realized as procedures. users can provide java source code
here. All DF net artifacts need to be mapped with their specific design artifacts
correspondingly.

DefaultGraphCell

! DCFDataBufier
7]
DCFEntity {_Ix S, e
——{=| DCFGraphCell ‘-% DCFDatastore
t
DCFPAttnbute g
DCFPracess Brmodifier : Sliing
& % &name : String DCFDatafllow
5 I\é&m&ﬂ. Slr(n\% &type : String B & ontainet Type © il
inbiatahowes:; Veclon 7 EcontainerType - int [~ _|Ed Atribute © Vector
EymamninputDatafiow DCFDataflow
&, P g . : groupRepresentationiama Stnng
operationDaclaration © DCFOperalionDeclaration = Type © St
EooutDatafiows : Vector s oy QOURTypE Sting
oname Strng
&;Wi: butes | Veclor
&, K %lranfmmType. nt
proceduteCode © Vector &source - Object
&subPmcesses Veclor Q:ar A
&transfom Method * boolean g !
i I
/ " 4 i
'rf’ \\\ / (E_
DCFOperationDectarabion ™S 7 -
omadier - Stng DCFSubProcess edge
%@operaisoﬁ{\lame. Stnng & cName - Stung
\SpparameterList Vector & operalionDeclaration : String
;'?bretum\/alue DCFCAtlabute DCFCAUrbuUle & pType . it
modier - S referencedDalafows - Vector
e & remisteredDat sfiow - DCFDataflow
name . Stnng :
Etype . Slang

Fig. 4: Class diagram for DF net core elements

9

Journal of ICT, 6, pp: 1-17

Group A
Process Al
Frocess Aj
DF net artifacts+
DF net artifacts : Specify Design Artifacts
: Grouping AP! Design : :
bl Astifact API
Process M1
Process Mn
| v =SS il T { Process Pi

Fig. 4: Class diagram for DF net core elements

In design stage, attributes of the processes which need to be specified are
shown as follows:

* Implementation environment: currently the only option is Java.

* Operation signature: if pdfd-sub-process-based method is selected, user
needs to input the names of the operations which the sub processes are
transformed to. If process-based method is chosen, user needs to input
the name of the operation to which this process is transformed.

* Procedure code: if procedure-based method is selected, user needs to
input the java code for the procedure to which the current process is
transformed.

* Procedure symbols: if procedure-based method is selected, users need
to specify the name and type of the variables used in the procedure code
segment.

For each individual output data flow of the process, the following attributes
need to be specified:

* Design method: output data flows of a process can be transformed to
either Class Attribute (CA) or Return Value (RV). In some cases, users
do not need to specify them, because there are algorithms for automate
deducing. Otherwise, users need to specify.

* Multiplicity: user needs to specify the multiplicity of the output data
flow. These include multiplicities: 0...1, 1 or many.

* Variable type and name: in the prototype system, they are referred to as
groupType and groupRepresentationName. For the output data flow with

10

Journal of ICT, 6, pp: 1-17

multiple dataflow attributes and its design method is specified as RV,
users need to group its data flow attributes into a class and give the class
type, name of an instance accordingly.

For each individual referenced data flow of a process, it can be realized as
either Class Attribute (CA) or Pass-in Parameter (PI). Prototype system has
provided some algorithms for automate deduction.

3.2.2.2.3 Implementation Stage Control

Implementation Stage Control lets the designer to give the implementation
artifacts to the design artifacts in the previous stage. The final transformation
of the use-case is also carried out here.

3.2.2.2.3.1 Implementation Artifact Specification
Implementation artifacts include two major aspects:

1) Java source code implementation of the operations gained from Design
stage.

2) Names of the instances declared for the classes and PI, RV whose
multiplicity is many.

3.2.2.2.3.2 Transformation

Transformation function automatically generates the java source code for
the use-case specified and its corresponding OO structures are also shown in
XML format. Based on different functionalities, transformation function can
be divided into three parts, namely, Pre-processing, Transforming and Result
Displaying. The following gives the details:

1) Pre-processing
This part focuses on the pre-processing work for the transformation. This
includes two major tasks. One is to get all DCFProcess instances; the
other is to sort them according to the traversing requirements.

2) Processing
This part focuses on the transformation algorithm design and
implementation. It is constituted of Transformation.java. Fig. 6 is the
pseudo-code for the algorithm for automated generation of operations.
List of the conditions used in Fig. 6 comes after the algorithm.

11

Journal of ICT, 6, pp: 1-17

1. Declaration section
1.1 declare and instantiate an instance for the classes thal realize process.
1.2 declare a variable for each output dataflow that are realized as RV
1.3 declare a variable for each output dataflow attribute and referenced dataflow attribute of
process p realized as procedure,
1.4 declare a variable for each partition which satisfies condition 1).
1.5 Insert port of initialization.
2. Generating code for each process (P) section.
2.1 Initialization of code segment.

2.1.1 P is process-based, code segment = empty.

2.1.2 P is pdfd-sub-process based, its individual sub process’ code segment = empty.

2.1.3 P is procedure-based, code segment = P’s procedure code.

2.2 Invocation of class operation.

2.2.1 P is pdfd-sub-process based. Append each individual class operation statement 10 the
corresponding sub process’s code segment.

2.2.2 P is process-based. Append P’s class operation statement to its code segment.

2.3 Output dataflow realization. For each output data flow e of P,

2.3.1 Establishing protocol. If P is pdfd-sub-process based, append following statements to
its main sub process’s code segment; if P is process-based, append following
statements to its process’s code segment.

2.3.2 Making single output instance accessible, if satisfying condition 2).
2.3.2.1 if e’s multiplicity =1, append *// port of "+ ¢’s name
2.3.2.2 if e’s multiplicity = 0..1, append selection construct and “// porl of "+ €’s name
2.3.2.3 if e’s multiplicity = *, append a loop and *//port of+ e's name within the loop.

2.3.3 Instantiating Container Argument Element. If e satisfies condition 3) and e is container
type, instantiate an instance of container argument element’s type. Insert it before
“f/port of "+e’s name.

2.3.4 Assigning Value. If e satisfies condition 3), generate an assigning statement, insert
before “//port of "+ e’s name.

2.3.5 Inserting container Element: if e is referenced by another process as container type,
and satisfies condition 3), generate insertion statement and insert it before “//port of"+
e’'s name

3. Sequencing code segments of all process. Traversing follows condition 4), for each P,
3.1 if P’main input dataflow ! =null, insert following code segment before port of its main input
dataflow, else insert the code segment before port of initialization,

3.1.1 P is process-based, insert its process’s code segment

3.1.2 otherwise, insert its main sub process's code segment.

3.2 For each output data flow e of P, if there is Initialization code segment registered to it,
insert it before ““//port of" + e’s name.

3.3 For each output data flow e of P, if there is ancestor or input sub process registered to i,
insert it before *“//port of” + e’s name.

Fig. 6: Transformation algorithm descriptions

Conditions used in the pseudo-code are,

* Condition 1) ---- Partition Criteria: let Q be the set of container operation
arguments each of which realizes a data flow d referenced in a process
such that excluding d there are data flows in the path from the main input
dataflow of the process to d with output multiplicity =*. We partition Q
in such a way that container arguments that realize the same dataflow
referenced in processes such that the same attribute if the dataflow are
referenced in these processes and the paths between the main input data

12

Journal of ICT, 6, pp: 1-17

— e ———

flows of these processes do not include data flows with out put multiplicity
= * are put together in the same partition. (as a result, operation arguments
in the same partition have identical value).

* Condition 2) : the output dataflow e of process P is registered with some
pdfd-sub-process in processes that are not realized using class by applying
process-based method or e is referenced by another process R such that
f2d(e.Q) is a container operation argument and (f2d(e.P) is not defined or
f2dod2i(e.Q)!= f2d od2i(e.P)).

* Condition 3): ¢ is referenced by another process R such that
f2dod2i(e.Q)!= 2d od2i(e.P))

¢ Condition 4) ---- Traversing Criteria: processes will be traversed in such a
way that a process will only be traversed if all the processes, which produce
its input data flows, have been traversed.

3.2.2.3 Validation

This part provides the validation functions to the users throughout the whole
process. Based on the stage in which the validations are performed, it can be
divided into three categories, namely, Analysis Validation, Design Validation
and Implementation Validation.

3.2.2.4 DF net File Management

In order to support hierarchical decomposition, DF net File Management
function is provided to manage different levels of DF net files for a use-case. In
DF net, a process in higher level DF net can be decomposed and modeled by a
set of lower level DF nets. Managing the relations among different levels of DF
net files is needed. In the prototype system, different levels of DF net files are
identified by their file names.

3.2.2.5 Algorithm

In summary, Algorithm function provides the algorithms used in the
implementation of the prototype system. It comprises two classes, namely
Algorithm.java and UserGuid.java from com.dcfnet.core. Some of the
algorithms defined inside Transformation.java are also included. Algorithm
function comprises the main algorithm like Combination of Process, Get path,
Check Synchronization, Referenced data flow’s design artifact deduction (pdfd-
based) and Output data flow’s design artifacts deduction, etc.

13

Journal of ICT, 6, pp: 1-17

3.2.3 System Control

System Control Module API bridges the view with its corresponding model in
the prototype system. DCFMain.java is the main class of the software and also
the start point of this prototype system. Inside of the main method of DCFMain.
java, an instance of DCFBuilder.java is instantiated, which acts as the host for
the prototype system.

3.24 Helper

Helper functions cover the assistance providing functions to the designer, not
only for DF net theory part, but also to show how to use the system.

4.0 CONCLUSION

F200 provides software designers with a tool to construct their functional models
and transform them into OO design and implementation, F200’s architecture
contains four main components, namely, System UI, System Model, System
Control and Helper. The following functions are delivered by the system:

e In analysis stage, the F200 system helps the users to construct their own
DF net analysis models and specify the DF net artifacts.

* In design stage, the F200 system facilitates users to map their DF net
artifacts to design artifacts and specify the attributes of these design
artifacts. '

* In implementation stage, the F200 system provides the users with the
functions to specify the implementation artifacts of those design artifacts
gained from previous stage and transform the design model into OO
implementation.

* Validation functions and helper functions are provided throughout the
whole process. Analysis validation, design validation and implementation
validation validate the user input in different stages, based on DF net
semantics and rules. Helper functions provide helping and guiding the
analysis, design and implementation tasks.

F200 has also validated the effectiveness of the DF net approach. As for any
use-case realized using the proposed approach, once the classes and procedures
to realize its processes have been designed and coded, the design and code of an
operation to implement the use-case is fully automatically generated by using
F200. The time and efforts spent for transforming the DF net analysis models

14

Journal of ICT, 6, pp: 1-17

to OO implementation have been greatly reduced. The design and coding of an
operation to implement a complex use-case will not pose any problem to the use
of the proposed approach.

50 FUTURE WORK

In DF net, as the control flow between processes is fully implied, a process is
no longer required to include information on other processes for the purpose
of process interaction. Thus, analysis models for commonly used functions
represented by DF nets could be more reusable. The extension of the proposed
approach to component-based software development is a natural extension.
Reusability receives more and more attention in current practice and many
component-based web technologies have been developed to support this,
such as Enterprise Java Bean (EJB). EJB has been widely used to promote
the components’ reusability in various ways. Firstly, it separates business logic
from presentation logic, which makes the modeling of the business functions
independent from presentation logic. Secondly, the business logic of enterprise
beans can be reused through java subclassing. In the analysis stage of these
component-based web applications, the proposed approach can be used to
construct more reusable EJB analysis models based on the decomposition of
the business functions.

Currently, because the implementation of presentation logic involves a lot
of non-java technologies, such as the use of xml configuration files in struts
application, it makes the analysis of control flows difficult. However, because
of the separation of business logic and presentation logic by EJB, the proposed
approach can be used in business function modeling without being affected
by those non-java technologies in presentation logic modeling. During the
design stage of the proposed approach, instead of mapping the DF net analysis
models to ordinary classes and operations, they can be mapped to entity beans,
session beans and interfaces. This allows the EIB applications to incorporate
the advantages of the proposed approach in functional decomposition during
the analysis stage. In addition to this, the methods discussed in the proposed
approach to deal with the overlapping among use-cases can also be applied in
EIB business function modeling to improve the reusability of the business logic
of enterprise beans. Therefore, we believe that the proposed approach might
help in the development of more reusable analysis models and patterns that can
be associated with required design and implementation alternatives and reused
on an integrated basis from requirements analysis via design to implementation
in component-based web applications. This is a direction for further research.

15

Journal of ICT, 6, pp: 1-17

Another interesting direction would be to use the proposed approach to model
distributed database transaction systems. As for such data-intensive systems,
the realization of some of the use-cases can be modeled based on process
interacting through data flows in DF net. However, because the control flows
are fully derived from DF net structure, future research can be carried out to
enhance the DF net structure to make it capable of modeling the distributed
control flows among the servers and clients.

In the proposed approach, the realization of use-cases is modeled based
on processes interacting through data flows in DF nets. The control flows
associated with the interaction are derived fully from the structure of the DF
nets. This is suitable and natural for a large class of data-intensive systems
that are data driven. For systems that are time dependent and processing
a lot of signals and events, such as concurrent systems etc, the current DF
net might not be sufficient for the analysis modeling of their use-cases. To
extend the DF net to represent the control flow and timing of such systems
could be a future direction. Software architecture has received much attention
recently (Morris, Speier, & Hoffer, 1996) (Shaw, 1996). The bridging between
software requirements and architectures is one important issue (Grunbacher &
Medvidovic, 2001; Nuseibeh, 2001; Rumpe, Schoenmakers & Radermacher,
1999). Exploring on the possible use of DF net to address this issue could also
be a further research direction. F200 will provide corresponding functions
for component-based DF net design and implementation in the future.

REFERENCES

Alabiso, B. (1988). Transformation of data flow analysis models to
object oriented design. Conference Proceedings on Object-Oriented
Programming Systems, Languages and Application. San Diego,
California, United States ACM Press, p. 335.

Gray, L. (1988). Transitioning from structured analysis to object-oriented
design. Proceedings of the fifth Washington Ada symposium on Ada.
Tyson’s Corner, Virginia, United States ACM Press. pp. 151-162.

Grunbacher, P. & Medvidovic N. (2001). Reconciling software requirements

and architecture: The CBSP approach. Presented at Proc. 5th Int.
Symposium on Requirements Eng.

16

Journal of ICT, 6, pp: 1-17

Jalote, P. (1989, March). Functional Refinement and Nested Objects for
Object-Oriented Design. IEEE Transactions on Software Enineering.
(Vol. SE-15, pp. 264-270).

Morris, M. G., Speier, C. & Hoffer, J. A. (1996). The impact of experience on
individual performance and workload differences using object-oriented
and process-oriented systems analysis techniques. Proceedings of the
29th Hawaii International Conference on System Sciences (HICSS)
Volume 2: Decision Support and Knowledge-Based Systems. IEEE
Computer Society, pp. 232.

Nuseibeh, B. (2001). Weaving together requirements and architectures.
Computer (Vol. 34, pp. 115-117).

Rumbaugh, I., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. (1991).
Object-Oriented Modeling and Design. Englewood Cliffs, NI: Prince-
Hall.

Rumpe, B., Schoenmakers, M. & Radermacher, A. (1999). UML + ROOM
as a standard ADL? Proceedings of the 5th International Conference on
Engineering of Complex Computer Systems IEEE Computer Society, p.
43,

Shaw, M. (1996). Software Architecture: Perspective on an Emerging
Discipline. Prentice Hall.

Tan, H. B., Yang, Y. & Bian, L. (2006). Systematic transformation of functional
analysis model into OO design and implementation. IEEE Trans. Softw.
Eng. (Vol. 32, pp. 111-135).

Wang, E. Y. (2002). Formalizing and integrating the dynamic model for object-
oriented modeling”, TEEE Transactions on Software Enineering (Vol. 28
pp. 747-762).

Wolber, D. (1997). Reviving functional decomposition in object-oriented
design. Journal of Object Oriented Programming (Vol. 10, pp. 31-38).

17

