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ABSTRACT

In this paper, we identify the client polling as a cache coherence
mechanism that best satisfies the requirements and improves the
performance of web services over wireless networks. However,
this mechanism suffers from degradation of client satisfaction by
potentially sending stale information. Therefore, we propose a
conceptual framework, Multilevel Pre-fetching (MLP), to alleviate
the stale information forwarded by the web cache to clients. MLP
is responsible for improving the level of freshness among the cached
objects by pre-fetching the most frequently accessed objects.

Keywords: Cache Coherence, Pre-fetching, Client Polling, Wireless Networks,
World Wide Web.

1.0 INTRODUCTION

eb caching is deployed to store web objects that are recently fetched
from the remote server and make them close to the clients. It provides
an opportunity to refine the HyperText Transfer Protocol (HTTP) limitations
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over wireless networks (Cao, 2003; Wang, Das, Che, & Kumar, 2004). The
HTTP causes web services to suffer from performance degradation (Tian, Xu,
& Ansari, 2005), i.e. it needs an excessive number of round trip propagation
times between the client and web server for transferring a document over a low
bandwidth. Thus, it significantly increases the file transfer latency. Another
factor that limits the capability of HTTP over wireless network is the radio
signal dropout, caused by handoff, i.e. the HTTP is a stateless protocol that is
unable to resume the file transfer when a connection is broken and re-established.

There are several incentives for having a caching system in a network (Wang,
1999). Web caching reduces bandwidth consumption, thereby decreases network
traffic and lessens network congestion. It also minimizes access latency by
storing frequently accessed documents at nearby caches. Furthermore, it
potentially decreases the workload of a web server. However, there is a side
effect whereby the client may receive stale data due to the lack of proper web
cache updating. Therefore, cache consistency mechanisms are implemented to
ensure that cached copies are frequently updated to keep consistency with the
original data.

Basically, there are two cache coherence techniques (Wang, 1999; Cao & Ozsu,
2002; Cao & Liu, 1998): weak cache coherence and strong cache coherence.
Weak cache coherence is the model in which the access time is significantly
reduced, but a stale document might be returned to the client (Cao & Liu, 1998).
However, with the fact bandwidth is limited and expensive in wireless networks,
it is too costly for the clients to keep refreshing the web browser every time
they receive stale documents. Therefore, if the clients have strict requirements
on the freshness of documents or a stale copy is not tolerable, then a strong
cache coherence mechanism is necessary (Doswell, Abrams, & Varadarajan,
2001). Strong cache coherence enforces the freshness of document all the time
at the expense of more control messages over the network. However, the flooding
of control messages substantially consumes bandwidth and adds to the server

loads, not to mention that the client might experience longer response time
(Cao & Ozsu, 2002).

Many caching systems apply weak cache coherence, believing that methods
such as Time-to-Live (TTL) and client polling are sufficient and most appropriate
for web caching (Cao & Liu; 1998; Gwertzman & Seltzer, 1996). In either
case, modification to the web object before its TTL expires or between two
successive polls causes the web cache to return stale objects. On top of that,
weak cache coherence mechanisms are easily deployed and supported by HTTP
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(Doswell et al., 2001; Gwertzman & Seltzer, 1996; Cohen & Kaplan, 2001).
Based on these facts, we decided to investigate the possibility of deploying
weak cache coherence mechanism particularly client polling in the web cache
for wireless web services. Our motivation is to find the solution on how the
mechanism could be improved to alleviate stale web objects forwarded to clients
by the web cache. In particular, this paper proposes the conceptual framework
of improving web weak cache coherence by introducing Multilevel Pre-fetching.

The rest of this paper is organised as follows. In Section 2, we briefly review
the principle of weak cache coherence mechanisms and pre-fetching. In Section
3, the performance of weak cache coherence particularly client polling is
evaluated and discussed. Section 4 introduces the framework of our proposed
Multilevel Pre-fetching (MLP) to alleviate the stale information in web cache.
Finally, this paper is rounded off with a conclusion.

2.0 LITERATURE REVIEW

A considerable amount of work has been done in web caching in order to improve
its effectiveness. For instance, web cache location, cache routing, dynamic data
caching, cache architecture, cache replacement, cache coherence, and pre-
fetching (Wang, 1999). This section focuses on the previous work with primary
emphasis on weak cache coherence and pre-fetching.

2.1 Weak Cache Coherence

Caches provide documents at lower access latency with a side effect: every
cache sometimes provides clients with stale pages (Cao & Liu, 1998). To prevent
stale information from being transferred to clients, a web cache must ensure
that locally cached data is consistent with that stored on the server. The exact
cache coherence mechanism must be employed by the web cache.

Under Time-To-Live (TTL) approach, the origin server assigns a TTL value for
each object, which could be any value that is reasonable to the object itself, or
to the content provider. This value is an estimated lifetime of the cached object,
after which the object is regarded as invalid. Whenever TTL expires, the next
request for the object will be forwarded to the origin server. Gwertzman and
Seltzer (1996) initially used a flat distribution for their simulation, which means
they assigned all objects with equal TTL values. This resulted in poor
experimental performance.
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On the other hand, an adaptive TTL takes the advantage of the fact that file
lifetime distribution is not flat. If a file has not been modified for a long time, it
tends to stay unchanged. Gwertzman and Seltzer (1996) have concluded that
globally popular files are the least likely to change. By using adaptive TTL, the
probability of stale documents has been kept within reasonable bounds (<5%)
(Gwertzman & Seltzer, 1996).

A client polling (CP) (Gwertzman & Seltzer, 1996) is a typical example of
weak cache coherence. This means the client (web cache for this context)
periodically checks back with the server to determine if the cached objects are
still fresh. The cache issues an if-modified-since (IMS) request with the LAST-
MODIFIED response header value (indicating last modification time of the
object). The server then checks to see if the object has changed since the
timestamp. If so, a 200 HTTP response code is sent along the fresh object.
Otherwise, the server returns a code of 304 (document not modified). Alex File
Transfer Protocol (FTP) cache (Cate, 1992), a form of CP, uses an update
threshold, 6, to determine how frequent the cache would poll the server. The 6
is expressed as a percentage of the object’s age. The age is the time since the
last modified time of the object. An object is invalidated when the time since
the last validation exceeds the 6 times the object’s age (Gwertzman & Seltzer,
1996). An invalidated object causes the cache to send an IMS to the server to
check whether a file transfer is necessary. Otherwise, the cache sends the valid
object to the client.

2.2 Pre-fetching Techniques

Previous research has shown that the maximum cache HIT rate can be achieved
by any caching algorithm is usually no more than 40% to 50% (Wang, 1999).
The reason is that most people browse and explore the web, trying to surf new
information. One way to further raise the caching HIT ratio is to anticipate
future document requests and pre-fetch these documents in a web cache.

Kroeger, Long, & Mogul (1997) investigated the performance limits of pre-
fetching between web servers and web caches. They have shown that the
combining of proper caching and prefect pre-fetching at the web caches can at
least reduce the client latency by 60% for high bandwidth clients. Markatos
and Chronaki (1998) claimed that the web servers regularly push their most
popular documents to web caches, which in turn push those documents to clients.
They evaluated the performance of the strategy using several web server traces,
and found that this technique can anticipate more than 40% of the client request.
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The technique requires cooperation from the web servers, although the study
did not evaluate the client latency reduction. Gwertzman and Seltzer (1994)
discussed a technique called Geographical Push-Caching where a web server
selectively sends its documents to the caches that are closest to its clients. The
focus of the study was on deriving reasonably accurate network topology
information to select caches.

Padmanabhan and Mogul (1996) analysed the latency reduction and network
traffic of pre-fetching using web server traces and trace driven simulation. The
prediction algorithm they used is based on the Prediction-by-Partial-Matching
(PPM) data compressor with prefix depth of one. The study showed that pre-
fetching from web servers to individual clients can reduce client latency by
45% at the expense of doubling the network traffic. Crovella and Batford (1998)
analysed the network effects of pre-fetching. They have shown that pre-fetching
can reduce access latency at the cost of increasing network traffic and burst,
which may increase the overall network delays. Thus, they proposed a rate-
controlled pre-fetching scheme to minimise the negative effect on the network
by minimising the transmission rate of the pre-fetched documents.

Most of the previous studies have shown that cache effectiveness can be
significantly improved by deploying cache coherence or a pre-fetching
mechanism in the web cache. This is due to the fact that, a cache coherence
mechanism successfully minimises the number of stale documents that could
be returned to the clients and increases the effectiveness of pre-fetching
mechanism to reduce the document retrieval latency. With these significant
improvements, we then motivate this work to merge both mechanisms as a new
cache refreshment mechanism, Multilevel Pre-fetching (MLP).

3.0 PERFORMANCE OF WEAK CACHE COHERENCE

Using an event-driven simulator NS2 (Virtual InterNetwork Testbed, 1997),
we replayed the server trace from EPA (ACM SIGCOMM, 2000) in the wireless
LAN 2 Mbps. It consisted of 20 wireless nodes connected to a web cache at the
edge of a wireless network. Then, the web cache is attached to the server. The
web cache deploys a cache coherence mechanism to ensure the consistency of
cached objects with those stored on the server. Specifically, we used CP that is
based on the Alex protocol. We ran CP by varying 6 in order to evaluate the
impact of object’s age on the effectiveness of CP.
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3.1 Limitations of Weak Cache Coherence

Table 1: Simulation results based on EPA WWW Web Server Trace, NC
[18,19]

Parameter Weak Cache Consistency
Update Threshold, 8
0.1 02 03 04 05 06 0.7 08 09

GET Requests 33285 33285 33285 33285 33285 33285 33285 33285 33285

Hits 14540 18061 20372 22350 24031 25118 26096 26940 27801
Stale Hits 876 2395 4157 7290 13482 14216 18763 19825 22520
IMS 14956 11452 9147 7172 5490 4410 3435 2600 1738

Table 1 presents the negative impact for deploying web cache that provides a
weak cache coherence mechanism for wireless WWW. The results have shown
that the mechanism could produce a stale rate (Stale Hits [T GET Requests) of
less than 3% but at the expense of higher IMSs. That means, the web cache
more often needs to check the validity of the requested objects. Thus, it
significantly increases the response time due to extra processing in the web
cache for invalidation process.

In general, this mechanism certainly satisfies the behaviour of static web pages,
which change infrequently. But in order to meet the demand of exponential
growth of the dynamic web pages, the mechanism needs to generate a lot of
IMS control messages for invalidation purposes. Also the mechanism must
ensure the return of fresh documents to the client. Thus, a trade-off has to be
made between gaining the advantages of having web cache if most of the cached
objects are static, and its negative impact on network traffic if the nature of the
cached data is dynamic, where the client is satisfied by getting fresh documents.

3.2 Proposed Work

The primary interest of this paper is to develop a cache coherence mechanism
for the wireless network, Fortunately, client polling offers the best foundation
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for this purpose, where the lifetime of the cached object is not flat. However,
this algorithm has two major drawbacks: firstly, the cache may return a stale
copy if the object is changed in the original server while the cached copy is still
considered valid. Secondly, the cache can invalidate a data copy, which is still
valid in the original server. Therefore, we propose a framework of Multilevel
Pre-fetching (MLP) algorithm to improve the level of freshness among the
cached objects to refine these drawbacks.

40 MULTILEVEL PRE-FETCHING (MLP)

The numbers of stale HITs produced by the client polling drastically increase
as the web cache increments its update threshold. This means, the client tends
to receive a lot of stale information if the web cache minimizes the frequency
of polling the server. Thus, some modifications to the algorithm have to be
done to reduce the number of stale objects by improving the level of freshness

among the cached objects. The following subsections elaborate the proposal in
detail.

4.1 Adoption of Pre-fetching Algorithm

Pre-fetching is a technique to increase the chances of getting documents from
the web cache. This work tends to exploit the pre-fetching concept to enhance
the coherence mechanism, particularly client polling. Pre-fetching could be used
to reduce the number of stale documents forwarded to clients. This is initiated
by the web cache on the cache-server channel.

Multilevel Pre-fetching (MLP) is proposed in conjunction with the client polling
mechanism to refine its drawbacks. The primary objective of MLP is to pre-
fetch cached objects with their lifetimes still valid. This is due to the fact that
cached objects whose lifetimes do not expire, but they might be modified in
their origin server. Thus, there is a possibility for the client to retrieve stale
documents mainly because of wrong decision by the client polling. The MLP is
an extension to the client polling mechanism and responsible for validating the
cached objects without waiting for requests from the clients.

Introduction of pre-fetching without a proper control mechanism may add new
traffic and processing overhead to the cache and server. More aggressive pre-
fetching not only keeps cache and servers synchronized for longer periods of
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Fig. 1: Enhanced Client Polling with MLP Algorithm

time and improving the cache HIT rate while reducing the stale HIT rate, but it
also increases network costs, server loads, and cache loads. Therefore, to avoid
the cache-server being overloaded, MLP is only to be executed whenever the
cache-server is idle or under utilized. Fig. 1 shows the enhanced client polling
with MLP algorithm architecture. Basically, there are two major components
added to the conventional client polling mechanism, Bandwidth Manager
(BWM) and Cache Manager (CM).
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4.2 Bandwidth Manager and Cache Manager

Bandwidth Manager (BWM) operates as a front-end of the web cache and it is
assigned to take care of traffic monitoring especially on file transfer activities
at the cache-server channel. In general, BWM monitors, computes link
utilization, and estimates available bandwidth. Then, BWM is responsible for
triggering the Cache Manager (CM) whenever traffic condition is good enough
to perform pre-fetching operations. BWM keeps the records of all cache entries
and prepares a list of entries that have been recently fetched from the server. It
uses a heap as the data structure to store the cached object’s header information.
For performance reasons, BWM does not store the real object in it; only the
object’s header is stored. Meanwhile, CM is responsible for pre-fetching and
validating cached objects before they are likely to be requested again by the
client, i.e. it maintains freshness of web pages in the cache.

4.2.1 Maintaining Pre-Fetching List of Entries

A

Object’s age
—

r
v

Access Frequency, n

Fig. 2: Cached Object Lifetime

Every cached object is to be assigned with the page lifetime by BWM. Fig. 2
illustrates the relationship between the cached object’s age and the access
frequency. Cached object’s age is defined as:

Cached Object Age =1, x f xexp (X)
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where #, is the initial age assigned to the cached object, n is the access frequency
and

X = [( current_time — entry_time) / current_time]

BWM saves the following information of the cached objects: object id (page_id),
object’s size, access frequency (f), and the time when a web cache stores the
object at the first entry (entry_time). If the object is accessed more frequently
by the client, the age of the object will be allocated with a longer period of
expiry. Each time the object is being accessed, a new object lifetime will be
imposed.

Fig. 3 shows the expiration checking by BWM in order to prepare the list of
entries. Every mt second or validated_time, the BWM will prepare a list of
entries based on the existing cached objects. Validate_time is the time when
BWM confirms the validity of the cached object. If the object’s age is still
valid, BWM assigns a page_id of the cached object into the list of entries.
However, if the object’s age has expired the object will be dropped from the list
and re-considered again in the next cycle. After validating all the cached objects,
BWM forwards the list of entries to CM for pre-fetching.

Indes ;
P A | Object's age'_ | . Huwmber Page ud
age_ | =7
Accass Time Validated Time time 1 |Page B
2
Oject’s age 3
Page B ‘ : i | g
Access Time Validated Time fime

Fig. 3: Cached Object Validity Checking by BWM

For Example, consider two cached objects, Page_A and Page_B, whose
entry_time is day 1 and day 15 respectively. The initial age assigned to those
objects is assumed to be 2 days. At day 20, both cached objects are accessed
again by the clients. Therefore, BWM will immediately impose new ages to
those objects. This means, Page_A will be marked as valid for the next 10 days
and Page_B for the next 5 days. Now let us assume that after the six days have
elapsed, BWM is ready to prepare the list of entries for CM. If the object’s age
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is still valid (e.g. Page_B), BWM assigns the particular object to the list of
entries as shown in Fig. 3.

4.3 Implementation of MLP

MLP invokes a timer to schedule the events as follows. After every ¢ second,
BWM initiates the computation on the bandwidth utilization of the web cache.
BWM estimates network traffic generated by the web cache and message bytes
sent by the web server to the web cache over a specific period of time. It is used
to determine whether the bandwidth is sufficient enough to perform pre-fetching
operations. Whenever the link utilization exceeds 20% of the available
bandwidth, all pre-fetching activities will be suspended. Whenever the bandwidth
is considered available, BWM forwards the list of entries to CM for pre-fetching
at aregular interval, validated_time, 1.e., mt second. However, if the bandwidth
is unavailable, BWM will delay the forwarding until it computes the link
utilization in the next r second.

Upon receipt of a list of entries from BWM, CM starts to create a pre-fetch tree
which consists of an aggregate of multilevel sub-nodes. CM assigns each sub-
node in the pre-fetch tree with one page_id in the list of entries. In the next
step, CM traverses the pre-fetch tree by visiting sub-node by sub-node to validate
the object’s freshness based on the information obtained in the list of entries. At
each prefetch_interval, i.e. nt where nt << mt, CM invokes the Alex protocol to
determine whether object’s freshness is valid. If the object is valid, CM pre-
fetches the respective page_id in the web server by sending IMS. Otherwise,
the sub-node is terminated and CM proceeds to the next sub-node in the
upcoming prefetch_interval. CM repeats the same procedure until it reaches
the last sub-node in the pre-fetch tree.

The CM expects the arrival of the next list of entries after validated_time or
more, and accordingly it creates a new pre-fetch tree, even though the existing
tree still performs the pre-fetching process. Thus, there is possibility of several
trees to be run concurrently. The idea behind having this configuration is to
cope with the fact that dynamic objects are frequently modified in the web
server. Hence, web cache needs to validate the consistency of the cached objects
regularly to make sure those objects are far from expiring. By lowering the
validated_time, CM more aggressively performs the pre-fetching operations in
order to keep both the web cache and web server synchronized, i.e. CM regularly
updates all the cached objects listed in the list of entries. However, frequent
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pre-fetching comes with the expense of overloading more traffic on the channel.
Therefore, BWM is assigned to monitor these activities and once the channel is
congested, BWM signals CM to terminate all existing pre-fetch trees. By
eliminating the trees, bandwidth is completely reserved for normal operation.
Once, the bandwidth is available again, the pre-fetching process will resume.

4.4  Construction of Multilevel Sub-Nodes

This section discusses the construction of pre-fetch tree for MLP, which is
constructed as follows. Once CM receives a list of entries from BWM, the first
sub-node is generated as a root and it is assigned with a random index number
from the list of entries. For instance, as shown in Fig. 4, the sub-node A is
created at level L, of the first pre-fetch tree 7', and it is assigned a random index
number Z which lies between 0 and y, where y is the last index number in the
list of entries. This index number, Z, corresponds to the page_id of the cached
object, which is in this case referred to page_09. Similarly, the second sub-
node B is generated at level L, and assigned with any index number within the
range from 0 to Z. This process is repeated until it covers the entire cached
object’s header information stored in the list of entries. After the pre-fetch tree
is completely built, CM waits until the next prefetch_interval to perform pre-
fetching operations. At prefetch_interval, starting with the root, CM picks
page_id of the sub-node and it searches the corresponding object’s header
information in the list of entries. Then, CM checks the object’s freshness by
invoking the Alex protocol. If the object is valid, CM pre-fetches the respective
page_id from the web server. Otherwise, the sub-node will be terminated. In
the upcoming prefetch_interval, CM traverses to the next sub-node in the pre-
fetch tree. CM repeats the same procedure until it visits the last sub-node of the
tree.

Meanwhile, CM can start creating another pre-fetch tree whenever it receives a
new list of entries from BWM. Fig. 5 illustrates the construction of the second
pre-fetch tree T, at the next validated_time. For the second tree, CM expects
the total number of cached objects in the list of entries equal or more than the
first list. List of entries contains more cached objects if there are new GET
requests from clients that constituted cache MISS within the first and second
validated_time, and so forth. In brief, CM validates one sub-node on every
prefetch_interval. With a short prefetch_interval, CM visits sub-node by sub-
node in the pre-fetch tree at a faster rate.
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5.0 CONCLUSION

This paper addresses the problems of implementing weak cache coherence
mechanisms over a wireless network. Then it proposes an alternative by
highlighting the key design objectives and outlining the novel framework of
weak cache coherence with Multilevel Pre-fetching (MLP). MLP is responsible
for validating cached objects without waiting for requests from clients. It is
executed whenever the cache-server link is under utilised. By doing this, the
cached object is always consistent with the data in the original server. Thus,
introduction of MLP will considerably increase the level of freshness among
the cached objects, which in turn results in less number of stale objects that
could be forwarded to clients.

The simulation tool has been enhanced with MLP in conjunction with weak
cache coherence. The primary test of the proposed architecture has been
successfully carried out, while an intensive performance evaluation is still in
progress.
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