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The paper studied a linear regulator quadratic control problem for degenerate Hamilton-
Jacobi-Bellman (HJB) equation. We showed the existence of viscosity properties and es-
tablished a unique viscosity solution of the degenerate HJB equation associated with this
problem by the technique of viscosity solutions.
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1. Introduction

We are concerned with the linear regulator quadratic control problem to minimize the
expected cost with discount factor α > 0:

J(c)= E
[∫∞

0
e−βt

{
h
(
xt
)

+
∣∣ct∣∣2

}
dt
]

, (1.1)

over c ∈� subject to the degenerate stochastic differential equation

dxt =
[
Axt + ct

]
dt+ σxtdwt, x0 = x ∈R, t ≥ 0, (1.2)

for nonzero constants A, σ �= 0, and a continuous function h on R, where wt is a one-
dimensinal standard Brownian motion on a complete probability space (Ω,�,P) en-
dowed with the natural filtration �t generated by σ(ws, s≤ t), and � denotes the class of
all �t−progressively measurable processes c = (ct) with J(c) <∞.

This kind of stochastic control problem has been studied by many authors [3, 7] for
nondegenerate diffusions to (1.1) and (1.2). We also assume that h satisfies the following
properties:

h(x)≥ 0 : convex; (1.3)

There exists C > 0 such that h(x)≤ C(1 + |x|n), x ∈R, (1.4)
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2 Viscosity solution for degenerate diffusions

for some constant C > 0, n≥ 0. We refer to [5] for the quadratic case of degenerate diffu-
sions related to Riccati equations in case of h(x)= Cx2 and n= 2 with infinite horizon.

The purpose of this paper is to show the existence of a viscosity solution of u of the
associated Hamilton-Jacobi-Bellman (in short, HJB) equation of the form:

−βu+
1
2
σ2x2u′′ +Axu′ + min

r∈R
(
r2 + ru′

)
+h(x)= 0 in R. (1.5)

Our method consists in finding a unique viscosity solution for u of (1.5) following Bardi
and Capuzzo-Dolcetta [2], Crandall et al. [4], Fleming and Soner [7] through the limit
of the solution v = vL, L > 0, to the HJB equation

−βv+
1
2
σ2x2v′′ +Axv′ + min

|r|≤L
(
r2 + rv′

)
+h(x)= 0 in R, (1.6)

as L→∞. To show the existence of the viscosity solution vL, we assume that h has the
following property: there exists Cρ > 0, for any ρ > 0, such that

∣∣h(x)−h(y)
∣∣≤ Cρ|x− y|n + ρ

(
1 + |x|n + |y|n), ∀x, y ∈R, (1.7)

for a fixed integer n≥ 2.
This condition acts as the uniform continuity of hwith order n, and plays an important

role for the existence of viscosity solutions [10, 11]. We notice that (1.7) is fulfilled for
h(x)= |x|n, n∈ [2,n].

In Section 2 we show that the value function vL(x)= inf c∈�L J(c) is a unique viscosity
solution of (1.6), where �L = {c = (ct) ∈� : |ct| ≤ L for all t ≥ 0}. Section 3 is devoted
to the study of u that u(x) := limL→∞ vL(x) is a viscosity solution of (1.5).

2. Viscosity solutions

We here study the properties of the value function vL(x) and show that vL(x) is a viscosity
solution of the Bellman equation (1.6) for any fixed L > 0, and then vL converges to a
viscosity solution u of the Bellman equation (1.5).

Given a continuous and degenerate elliptic map H : R×R×R×R→ R, we recall by
[4] the definition of viscosity solutions of

H(x,w,w′,w′′)= 0 in R. (2.1)

Definition 2.1. w ∈ C(R) is called a viscosity subsolution (resp., supersolution) of (2.1)
if, whenever for ϕ∈ C2(R), w−ϕ attains its local maximum (resp., minimum) at x ∈R,
then

H
(
x,w(x),ϕ′(x),ϕ′′(x)

)≤ 0, (2.2)

resp., H
(
x,w(x),ϕ′(x),ϕ′′(x)

)≥ 0. (2.3)
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Also w ∈ C(R) is called a viscosity solution of (2.1) if it is both viscosity sub- and super-
solution of (2.1).

According to Crandall et al. [4] and Fleming and Soner [7] this definition is equivalent
to the following: for any x ∈R,

H
(
x,w(x), p,q

)≤ 0 for (p,q)∈ J2,+w(x),

H
(
x,w(x), p,q

)≥ 0 for (p,q)∈ J2,−w(x),
(2.4)

where J2,+ and J2,− are the second-order superjets and subjets defined by

J2,+w(x)=
{

(p,q)∈R2 : limsup
y→x

w(y)−w(x)− p(y− x)− (1/2)q|y− x|2
|y− x|2 ≤ 0

}
,

J2,−w(x)=
{

(p,q)∈R2 : liminf
y→x

w(y)−w(x)− p(y− x)− (1/2)q|y− x|2
|y− x|2 ≥ 0

}
.

(2.5)

In order to obtain the viscosity property of vL, we assume that there exists β0 ∈ (0,β)
satisfying

−β0 + σ2n(2n− 1) + 2n|A| < 0, (2.6)

and we set fk(x)= γ+ |x|k for any 2≤ k ≤ 2n and a constant γ ≥ 1 chosen later.

2.1. Properties of viscosity solutions

Lemma 2.2. Assume (2.6). Then there exist γ ≥ 1 and η > 0, depending on L, k, such that

−β0 fk +
1
2
σ2x2 f ′′k +Ax f ′k + max

|r|≤L
(
r2 + r f ′k

)
+η fk ≤ 0. (2.7)

Further

E
[∫ τ

0
e−β0sη fk

(
xs
)
ds+ e−β0τ fk

(
xτ
)]≤ fk(x) for 2≤ k ≤ 2n, (2.8)

E
[

sup
t
e−β0t fk

(
xt
)]
<∞ for 2≤ k ≤ n, (2.9)

where τ is any stopping time and xt is the response to (ct)∈�L.

Proof. By (2.6), we choose η ∈ (0,β0) such that

−β0 +
1
2
σ2k(k− 1) + k|A|+η < 0, (2.10)
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and then γ ≥ 1 such that

(
−β0 +

1
2
σ2k(k− 1) + k|A|+η

)
|x|k +Lk|x|k−1 +

(
L2 +ηγ−β0γ

)≤ 0. (2.11)

Then (2.7) is immediate. By (2.7) and Ito’s formula, we deduce (2.8). Moreover, by mo-
ment inequalities for martingales we get

E
[

sup
t
e−β0t fk

(
xt
)]≤ fk(x) +E

[
sup
t

∣∣∣∣
∫ t

0
e−β0s f ′k

(
xs
)
σxsdws

∣∣∣∣
]

≤ fk(x) +KE

[(∫∞
0
e−2β0sσ2|xs|2kds

)1/2
]

,

(2.12)

for some constant K > 0. Therefore (2.9) follows from this relation together with (2.8).
�

Theorem 2.3. Assume (1.3), (1.4), (1.7), and (2.6). Then

vL fulfills (1.3),(1.4),(1.7), (2.13)

and the dynamic programming principle holds, that is,

vL(x)= inf
c∈�L

E
[∫ τ

0
e−βt

{
h
(
xt
)

+ |ct|2
}
dt+ e−βτvL

(
xτ
)]

, (2.14)

for any stopping time τ.

Proof. We supress L of vL for simplicity. The convexity of v follows from the same line as
[5, Chapter 4, Lemma 10.6]. Let x0

t be the unique solution of

dx0
t =Ax0

t dt+ σx0
t dwt, x0

0 = x. (2.15)

Then, by (1.4) and (2.8)

v(x)≤ E
[∫∞

0
e−βth

(
x0
t

)
dt
]
≤ CE

[∫∞
0
e−β0t fn

(
x0
t

)
dt
]
≤ C fn(x)

η
. (2.16)

For the solution yt of (1.2) with y0 = y, it is clear that xt − yt fulfills (2.15) with initial
condition x− y. We note by (2.10) with k = n and Ito’s formula that

E
[
e−β0t

∣∣x0
t

∣∣n]≤ |x|n. (2.17)
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Thus by (1.7) and (2.8)

|v(x)− v(y)| ≤ sup
c∈�L

E
[∫∞

0
e−βt

∣∣h(xt)−h(yt)∣∣dt
]

≤ sup
c∈�L

E
[∫∞

0
e−βt

{
Cρ
∣∣xt − yt

∣∣n + ρ
(
1 + |xt|n + |yt|n

)}
dt
]

≤ sup
c∈�L

∫∞
0
e−βt

{
Cρ|x− y|neβ0t + ρ

(
hn(x) +hn(y)

)
eβ0t

}
dt

≤ 1
β−β0

[
Cρ|x− y|n + 2ργ

(
1 + |x|n + |y|n)].

(2.18)

Therefore we get (2.13).
To prove (2.14), we denote by vr(x) the right-hand side of (2.14). By the formal Markov

property

E
[∫∞

τ
e−βt

{
h(xt) + |ct|2

}
dt |�τ

]
=E

[∫∞
0
e−β(t+τ){h(xτ+t

)
+ |cτ+t|2

}
dt |�τ

]
=e−βτJc̃(xτ),

(2.19)

with c̃ equal to c shifted by τ. Thus

Jc(x)= E
[∫ τ

0
+
∫∞
τ
e−βt

{
h
(
xt
)

+ |ct|2
}
dt
]

= E
[∫ τ

0
e−βt

{
h
(
xt
)

+ |ct|2
}
dt
]

+E

[∫∞
τ

e−βt
{
h
(
xt
)

+ |ct|2
}
dt

�τ

]

≥ E
[∫ τ

0
e−βt

{
h
(
xt
)

+ |ct|2
}
dt+ e−βτvL

(
xτ
)]
.

(2.20)

It is known in [7, 12] that this formal argument can be verified, and we deduce vL(x)≥
vr(x).

To prove the reverse inequality, let ρ > 0 be arbitrary. We set

Vc(x)= E
[∫∞

0
e−βt

{
h
(
xt
)

+ |ct|2
}
dt
]
. (2.21)

By the same calculation as (2.18), there exists Cρ > 0 such that

∣∣Vc(x)−Vc(y)
∣∣≤ Cρ|x− y|n + ρ

(
1 + |x|n + |y|n). (2.22)
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Take 0 < δ < 1 with Cρδn < ρ. Then, we have for |x− y| < δ,

|v(x)− v(y)| ≤ sup
c∈�L

∣∣Vc(x)−Vc(y)
∣∣

≤ ρ(2 + |x|n + |y|n)

≤ ρ[2 + |x|n + 2n
(
1 + |x|n)]

= ρ[(2 + 2n
)

+
(
1 + 2n

)|x|n]

≤ Ξρ(x) := ρ(2n + 2
)(

1 + |x|n).

(2.23)

Let {Si} be a sequence of disjoint subsets of R such that

diam
(
Si
)
< δ, ∪iSi =R. (2.24)

For any i, we take x(i) ∈ Si and c(i) ∈�L such that

Vc(i)

(
x(i))≤ inf

c∈�L

Vc
(
x(i))+ ρ. (2.25)

Define cτ ∈�L by

cτt = ct1{t<τ} + c(i)
t−τ1{xτ∈Si}1{t≥τ}, for xτ ∈ Si. (2.26)

Hence,

Vc(i)

(
xτ
)=Vc(i)

(
xτ
)−Vc(i)

(
x(i))+Vc(i)

(
x(i))

≤ Ξρ
(
xτ
)

+Vc(i)

(
x(i))

≤ Ξρ
(
xτ
)

+ inf
c∈�L

Vc
(
x(i))+ ρ

= Ξρ
(
xτ
)

+ v
(
x(i))+ ρ

≤ 2Ξρ
(
xτ
)

+ v
(
xτ
)

+ ρ.

(2.27)

Now, by the definition of vr(x), we can find c ∈�L such that

vr(x) + ρ≥ E
[∫ τ

0
e−βt

{
h
(
xt
)

+ |ct|2
}
dt+ e−βτv

(
xτ
)]
. (2.28)
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Thus, using the formal Markov property [7], we have

vr(x) + ρ≥
∑
i

E
[∫ τ

0
e−βt

{
h
(
xt
)

+
∣∣ct∣∣2

}
dt+ e−βτ

(
Vc(i)

(
xτ
)− 2Ξρ

(
xτ
)− ρ) : xτ ∈ Si

]

= E
[∫ τ

0
e−βt

{
h
(
xτt
)

+
∣∣cτt

∣∣2
}
dt+

∫∞
τ
e−βt

{
h
(
xτt
)

+
∣∣cτt

∣∣2
}
dt |�τ

]

− 2E
[
e−βτΞρ

(
xτ
)]− ρ≥ v(x)− 2Ξρ(x)− ρ,

(2.29)

where xτt is the response to cτt with xτ0 = xτ . Letting ρ→ 0, we deduce vr(x)≥ v(x), which
completes the proof. �

Lemma 2.4. Let h > 0, then

sup
c∈�L

sup
0≤t≤h

E
∣∣xt∣∣2

<∞, (2.30)

lim
h→0

sup
c∈�L

E

[
sup

0≤t≤h

∣∣xt − x∣∣2
]
= 0. (2.31)

Proof. By Ito’s formula, we have

∣∣xt∣∣2 = |x|2 +
∫ t

0

{
2Axt

∣∣xt∣∣sgn
(
xt
)

+ 2
∣∣xt∣∣sgn

(
xt
)
ct + σ2x2

t

}
dt

+
∫ t

0
2
∣∣xt∣∣sgn

(
xt
)
dwt.

(2.32)

Let

τn =
⎧⎪⎨
⎪⎩

inf
{
t :
∣∣xt∣∣ > n}, if

{
t :
∣∣xt∣∣ > n} �= ∅,

∞, if
{
t :
∣∣xt∣∣ > n}=∅.

(2.33)

Then

E
[∣∣xt∧τn

∣∣2
]
= |x|2 +E

[∫ t∧τn
0

{
2A+ σ2}∣∣xt∣∣2

dt
]

+E
[∫ t∧τn

0
2
∣∣xt∣∣sgn

(
xt
)
ctdt

]

+E
[∫ t∧τn

0
σxt2

∣∣xt∣∣sgn
(
xt
)
dwt

]

≤ |x|2 +
(
2A+ σ2)E

[∫ t∧τn
0

∣∣xt∣∣2
dt
]

+ 2LE
[∫ t∧τn

0

(
1 +

∣∣xt|2)dt
]

≤ (|x|2 + 2Lh
)

+
(
2A+ σ2 + 2L

)
E
[∫ t∧τn

0

∣∣xt∣∣2
dt
]

≤ C2 +C1

∫ t
0
E
[∣∣xs∧τn

∣∣2
]
ds,

(2.34)
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forC1=(2A+σ2 +2L),C2=(|x|2 +2Lh) > 0. Set E[|xt∧τn|2]=ξ(t), then ξ(t)≤C1
∫ t

0 ξ(s)ds+
C2. By Gronwall’s lemma, we have ξ(t) ≤ C2(1 +C1teC1t) = C3eC4t, for C3,C4 > 0. Hence
E[|xt∧τn|2]≤ C3eC4t.

By Fatou’s lemma, we obtain

E
[∣∣xt∣∣2

]
≤ C3e

C4t . (2.35)

Therefore, we obtain (2.30).
To prove (2.31), we have by (2.30)

E
[∫ h

0

∣∣xt∣∣2
dt
]
=
∫ h

0
E
∣∣xt∣∣2

dt ≤ hC3e
C4h, (2.36)

and by the moment inequalities for local martingales [9] and Hölder’s inequality

E

[{(
sup

0≤t≤h

∣∣∣∣
∫ t

0
σxtdwt

∣∣∣∣
)2
}]

≤ CE
[(∫ h

0

∣∣xt∣∣2
dt
)]
≤ C

[∫ h
0
E
∣∣xt∣∣2

dt
]

, (2.37)

for some constant C > 0. Then

E

[
sup

0≤t≤h

∣∣xt − x∣∣2
]
≤ 32

(
E

[(∫ h
0

∣∣Axt∣∣dt
)2

+
(∫ h

0

∣∣ct∣∣dt
)2

+
(

sup
0≤s≤h

∣∣∣∣
∫ s

0
σxtdwt

∣∣∣∣
)2
])

≤ 32

(
|A|2E

[(∫ h
0

∣∣xt∣∣2
dt
)(∫ h

0
12/(2−1)dt

)2−1
]

+h2L2

+E

⎡
⎣
{(

sup
0≤t≤h

∣∣∣∣
∫ t

0
σxtdwt

∣∣∣∣
)2
}2/2

⎤
⎦
⎞
⎠

≤ 32
(
|A|2h2−1E

[∫ h
0

∣∣xt∣∣2
dt
]

+h2L2 +C
∫ h

0
E
∣∣xt∣∣2

dt
)
.

(2.38)

Hence, we have (2.31). �

Theorem 2.5. Assume (1.3), (1.4), (1.7), and (2.6). Then vL is a viscosity solution of (1.6).

Proof. Let ϕ∈ C2(R) and let z be the maximizer of vL−ϕ with vL(z)= ϕ(z). Then (2.14)
with the constant control ct = c ∈�L gives

ϕ(z)≤ E
[∫ s

0
e−βt

{
h
(
xt
)

+ |c|2}dt+ e−βsv
(
xs
)]

≤ E
[∫ s

0
e−βt

{
h
(
xt
)

+ |c|2}dt+ e−βsϕ
(
xs
)]

,

(2.39)
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where

dxt =
[
Axt + c

]
dt+ σxtdwt, x0 = z. (2.40)

We substract ϕ(z) from both sides and apply Ito’s formula to obtain

0≤ E
[∫ s

0
e−βt

{
h
(
xt
)

+ |c|2}dt+ e−βsϕ
(
xs
)−ϕ(z)

]

= E
[∫ s

0
e−βt

{
h
(
xt
)

+ |c|2}dt+
∫ s

0
e−βt

{
−βϕ+Axϕ′ +ϕ′c+

1
2
σ2x2ϕ′′

}
|x=xt dt

]
.

(2.41)

Divide by s and let s→ 0 and by dominated convergence theorem,

0≤ h(z)−βϕ(z) +Azϕ′(z) +ϕ′(z)c+ |c|2 +
1
2
σ2z2ϕ′′(z). (2.42)

Thus (2.3) is verified.
Let �= �x be a bounded neighborhood of x and let θ = θx be the exit time of xt from

�x. Then, by (2.31)

P(θ ≤ h)≤ P
(

sup
0≤s≤h

∣∣xs− x∣∣≥ d(x,∂�
))≤

(
E

[
sup

0≤s≤h

∣∣xs− x∣∣2
])(

d
(
x,∂�

))−2
,

(2.43)

from which

1
h
E[h−h∧ θ]≤ 1

h
E[h− θ : θ ≤ h]≤ P(θ ≤ h)−→ 0 as h−→ 0. (2.44)

Let ϕ∈ C2(R) and let z be the minimizer of vL−ϕ with vL(z)= ϕ(z). Take τ = h∧ θz
in (2.14). Then by (2.14), there exists cht with |cht | ≤ L such that

vL(z) +h2 ≥ E
[∫ τ

0
e−βt

{
h
(
xht
)

+
∣∣cht

∣∣2
}
dt+ e−βτvL

(
xhτ
)]

, (2.45)

where

dxht =
[
Axht + cht

]
dt+ σxht dwt, xh0 = z. (2.46)

Hence

ϕ(z)≥ E
[∫ τ

0
e−βt

{
h
(
xht
)

+
∣∣cht

∣∣2
}
dt+ e−βτϕ

(
xhτ
)]−h2. (2.47)

We substract ϕ(z) from both sides and apply Ito’s formula to obtain

0≥ 1
h
E
[∫ τ

0
e−βt

{
h
(
xht
)

+
∣∣cht

∣∣2
}
dt

+
∫ τ

0
e−βt

{
−βϕ(x) +Axϕ′(x) +ϕ′(x)cht +

1
2
σ2x2ϕ′′(x)

}
|x=xht dt

]
−h.

(2.48)
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For any ρ > 0, by (1.7), (2.30), and (2.31), we have

sup
0≤t≤h

E
[∣∣h(xht )−h(z)

∣∣]≤ sup
0≤t≤h

E
[
ρ
(

1 +
∣∣xht

∣∣n + |z|n
)

+Cρ
∣∣xht − z

∣∣n]

−→ 0 as h−→ 0, ρ −→ 0.
(2.49)

Hence limh→0(1/h)E[
∫ h

0 e
−βth(xht )dt]= h(z). Set

{
h
(
xht
)

+
∣∣cht

∣∣2
}

+
{
−βϕ(x) +Axϕ′(x) +ϕ′(x)cht +

1
2
σ2x2ϕ′′(x)

}∣∣∣∣
x=xht

= h(xt).
(2.50)

By (1.4), (2.30), (2.44), and Schwarz’s inequality, we obtain

1
h

∣∣∣∣E
[∫ h

0
h
(
xt
)
dt
]
−E

[∫ h∧θ
0

h
(
xt
)
dt
]∣∣∣∣

= 1
h
E
[∫ h

h∧θ

∣∣h(xt)∣∣dt
]

≤ 1
h
E
[∫ h

h∧θ
K
(
1 +

∣∣xt∣∣n)dt
]

≤ K

h
E

[(∫ h
h∧θ

1dt
)1/2(∫ h

0

(
1 +

∣∣xt∣∣n)2
dt
)1/2

]

≤ K

h

(
E
[∫ h

h∧θ
1dt

])1/2(
E
[∫ h

0

(
1+
∣∣xt∣∣n)2

dt
])1/2

= K
(

1
h
E[h−h∧ θ]

)1/2(1
h
E
[∫ h

0

(
1 +

∣∣xt∣∣n)2
dt
])1/2

−→ 0 as h−→ 0.

(2.51)

Thus we have

0≥ liminf
h→∞

1
h
E
[∫ h

0
e−βt

{
h
(
xht
)

+
∣∣cht

∣∣2
}
dt

+
∫ h

0
e−βt

{
−βϕ(x) +Axϕ′(x) +ϕ′(x)cht +

1
2
σ2x2ϕ′′(x)

}∣∣∣∣
x=xht

dt
]

≥ liminf
h→∞

1
h
E
[∫ h

0
e−βt

{
h(z) +

∣∣cht
∣∣2
}
dt

+
∫ h

0
e−βt

{
−βϕ(x) +Axϕ′(x) +ϕ′(x)cht +

1
2
σ2x2ϕ′′(x)

}∣∣∣∣
x=z

dt
]

≥ h(z)−βϕ(z) +Azϕ′(z) + min
|c|≤L

(|c|2 +ϕ′(z)c
)

+
1
2
σ2z2ϕ′′(z),

(2.52)

which implies (2.2) and completes the proof. �
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Theorem 2.6 (Apostol [1] (Dini)). Suppose that X is a compact metric space and {vL(x)}
is a sequence of continuous functions that converges pointwise to a continuous function u on
X . Suppose also that the sequence is pointwise nonincreasing, that is, for each x ∈ X , there
exists vL(x)≥ vL+1(x), for all L∈N. Then {vL(x)} converges uniformly to u on X .

2.2. Uniqueness of HJB. The most important feature of the theory of viscosity solution
is the powerful uniqueness theorem. In the context of optimal control problems, value
function is the unique viscosity solutions.

In this section we give a detailed proof of uniqueness result for the quadratic control
problem that v is a unique viscosity solution of (1.6). The references for these uniqueness
results are Bardi and Capuzzo-Dolcetta [2] and Flacone and Makridakis [6].

Theorem 2.7. Assume (1.3), (1.4), (1.7), and (2.6). Let vi (i = 1,2) be two viscosity solu-
tions of (1.6) satisfying (2.13). Then v1 = v2.

Proof. We first note (2.6) and there exists n < k < n+ 1 such that

−βψk +
1
2
σ2x2ψ′′k +Axψ′k + min

r∈R
(|r|2 + rψ′k

)≤ 0, (2.53)

where ψk(x)= (1 + |x|k). Indeed, by (2.6) we choose ϑ∈ (0,β) such that

−β+
1
2
k(k− 1)σ2 + k|A|+ ϑ < 0. (2.54)

By (2.54), we have

(
−β+

1
2
k(k− 1)σ2 + k|A|+ ϑ

)
|x|k − k2

4

(|x|k−1)2−β− ϑ|x|k < 0. (2.55)

Then (2.53) is immediate.
Suppose that v1(x0)− v2(x0) > 0 for some x0 ∈R. Then we find η > 0 such that

sup
x∈R

[
v1(x)− v2(x)− 2ηψk(x)

]
> 0. (2.56)

Since

v1(x)− v2(x)− 2ηψk(x)≤ K(1 + |x|n)− 2η
(
1 + |x|k)−→−∞ as x −→∞, (2.57)

there exists x ∈R such that

sup
x∈R

[
v1(x)− v2(x)− 2ηψk(x)

]= v1
(
x
)− v2

(
x
)− 2ηψk

(
x
)
> 0. (2.58)

Define

Φ(x, y)= v1(x)− v2(y)− m

2
|x− y|2−η(ψk(x) +ψk(y)

)
, (2.59)
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for any m> 0. It is clear that

Φ(x, y)≤ C(1 + |x|n + |y|n)−η(2 + |x|k + |y|k
)
−→−∞ as x, y −→∞, (2.60)

where C >max{K ,ρ}. Hence we find (xm, ym)∈R2 such that

Φ(xm, ym)= sup
x,y

Φ(x, y)

= v1
(
xm
)− v2

(
ym
)− m

2

∣∣xm− ym
∣∣2−η(ψk(xm)+ψk

(
ym
))

≥ v1
(
x
)− v2

(
x
)− 2ηψk

(
x
)
> 0,

(2.61)

from which

m

2

∣∣xm− ym
∣∣2
< v1

(
xm
)− v2

(
ym
)−η(ψk(xm)+ψk

(
ym
))

≤ C
(

2 +
∣∣xm∣∣n +

∣∣ym∣∣n
)
−η(2 +

∣∣xm∣∣k +
∣∣ym∣∣k)

−→−∞ as
∣∣xm∣∣,

∣∣ym∣∣−→∞,

(2.62)

where C > max{K ,ρ}. Thus we deduce that the sequences {xm}, {ym} are bounded and
then {m|xm− ym|2} is bounded by some constant C > 0, and

∣∣xm− ym
∣∣≤

(
C

m

)1/2

−→ 0 as m−→∞. (2.63)

Now, we claim that

m
∣∣xm− ym

∣∣2 −→ 0 as m−→∞, (2.64)

xm, ym −→ x̃ or ỹ as m−→∞. (2.65)

Indeed, by the definition of (xm, ym),

Φ
(
xm, ym

)≥ v1
(
xm
)− v2

(
xm
)− 2ηψk

(
xm
)
. (2.66)

Hence, by (1.7) and (2.61)

m

2

∣∣xm− ym
∣∣2 ≤ v2

(
xm
)− v2

(
ym
)

+η
(
ψk
(
xm
)−ψk(ym))

= v2
(
xm
)− v2

(
ym
)

+η
(∣∣xm∣∣k −∣∣ym∣∣k

)

≤ v2
(
xm
)− v2

(
ym
)

+η(n+ 1)Ck−1
∣∣xm− ym

∣∣
≤ Cρ

∣∣xm− ym
∣∣n + ρ

(
1 +

∣∣xm∣∣n +
∣∣ym∣∣n

)
+η(n+ 1)Ck−1

∣∣xm− ym
∣∣.

(2.67)
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Letting m→∞ and then ρ → 0, we obtain (2.64). Moreover, by (2.63) we have (2.65)
taking a subsequence if necessary. Equation (2.63) implies x̃ = ỹ. Passing to the limit in
(2.61), we get

v1(x̃)− v2(x̃)− 2η
(
1 + |x̃|k) > 0. (2.68)

�

We apply Ishii’s lemma below to

V1(x)= v1(x)−ηψk(x),

V2(y)= v2(y) +ηψk(y).
(2.69)

Lemma 2.8 (Ishii). Let V1, −V2 be upper semicontinuous in an open domain, and set

Φ(x, y)=V1(x)−V2(y)− m

2
|x− y|2. (2.70)

Let (x̂, ŷ) be the local maximizer of Φ(x, y). Then there exist symmetric matrices X1, X2 such
that

(
m(x̂− ŷ),X1

)∈ J2,+
V1(x̂),

(
m(x̂− ŷ),X2

)∈ J2,−
V2( ŷ),

(
X1 0

0 −X2

)
≤ 3m

(
I −I
I I

)
, I = identity,

(2.71)

where

J
2,±
V1(x)={(p,X1

)
: ∃xr −→ x,∃(pr ,Xr)∈ J2,±V1

(
xr
)
,

(
V1
(
xr
)
, pr ,Xr

)−→ (
V1(x), p,X1

)}
.

(2.72)

Proof. For the proof, see Crandall et al. [4, Theorem 3.2], Fleming and Soner [7, Lemma
6.1, page 238], and Ishii [8, Lemma 1, page 149].

We remark that if V1,V2 ∈ C2, then

Φx(x̂, ŷ)=Φy(x̂, ŷ)= 0, (2.73)

from which

V ′
1(x̂)=m(x̂− ŷ), V ′

2( ŷ)=−m(x̂− ŷ). (2.74)

Since

Φxx =V ′′
1 (x)−m, Φxy =m, Φyy =−V ′′

2 (y)−m, (2.75)
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the maximum principle gives

0≥D2Φ(x̂, ŷ)=
⎛
⎝V ′′

1 (x̂) 0

0 −V ′′
2 ( ŷ)

⎞
⎠−m

⎛
⎝ 1 −1

−1 1

⎞
⎠ . (2.76)

We obtain X1,X2 ∈R1 such that

(
m
(
xm− ym

)
,X1

)∈ J2,+
V1
(
xm
)
,

(
m
(
xm− ym

)
,X2

)∈ J2,−
V2
(
ym
)
,

−3m

(
I 0

0 I

)
≤
(
X1 0

0 −X2

)
≤ 3m

(
I −I
−I I

)
, I = identity,

(2.77)

where

J
2,±
Vi(x)= {(p,X) : ∃xr −→ x,∃(pr ,Xr)∈ J2,±Vi

(
xr
)
,

(
Vi
(
xr
)
, pr ,Xr

)−→ (
Vi(x), p,X

)}
, i= 1,2.

(2.78)

Recall that

J2,+v1(x)= {(p+ηk|x|k−1 sgn(x), X +ηk(k− 1)|x|k−2) : (p,X)∈ J2,+V1(x)
}

,

J2,−v2(y)= {(p−ηk|y|k−1 sgn(y), X −ηk(k− 1)|y|k−2) : (p,X)∈ J2,−V2(y)
}
.
(2.79)

Hence

(
p1,X1

)
:=
(
m
(
xm− ym

)
+ηk

∣∣xm∣∣k−1
sgn

(
xm
)
,X1 +ηk(k− 1)

∣∣xm∣∣k−2
)

∈ J2,+
v1
(
xm
)
,

(
p2,X2

)
:=
(
m
(
xm− ym

)−ηk∣∣xm∣∣k−1
sgn

(
ym
)
,X2−ηk(k− 1)

∣∣ym∣∣k−2
)

∈ J2,−
v2
(
ym
)
,

x2
mX1 ≤ y2

mX2.

(2.80)

By virtue of (1.6), (2.2) and (2.3) give

−βv1(x) +
1
2
σ2x2X1 +Axp1−

∣∣p1
∣∣2

4
+h(x)|x=xm ≥ 0,

−βv2(y) +
1
2
σ2y2X2 +Ayp2−

∣∣p2
∣∣2

4
+h(y)|y=ym ≤ 0.

(2.81)
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Putting these inequalities together, we get

β
[
v1
(
xm
)− v2

(
ym
)]

≤ 1
2
σ2(xm2X1− ym

2X2
)

+A
(
xmp1− ymp2

)

− 1
4

((∣∣p1
∣∣)2− (∣∣p2

∣∣)2
)

+h
(
xm
)−h(ym)

≤ 1
2
σ2ηk(k− 1)

[∣∣xm∣∣k +
∣∣ym∣∣k

]
+Am

(
xm− ym

)2

+Aηk
[∣∣xm∣∣k +

∣∣ym∣∣k
]

− 1
4

[(∣∣m(xm− ym
)

+ηk
∣∣xm∣∣k−1

sgn
(
xm
)∣∣)2

−
(∣∣m(xm− ym

)−ηk∣∣ym∣∣k−1
sgn

(
ym
)∣∣)2

]
+h

(
xm
)−h(ym).

(2.82)

Letting m→∞, we have

β
[
v1(x̃)− v2(x̃)

]

≤ 2η
[

1
2
σ2x̃2k(k− 1)|x̃|k−2 +Ax̃k|x̃|k−1− k2

4

(|x̃|k−1)2
]
≤ 2ηβ

(
1 + |x̃|k),

(2.83)

which follows from (2.53). This is contrary of (2.68), completing the proof. �

3. Stability of viscosity solutions of u

Theorem 3.1. Assume (1.3), (1.4), (1.7), and (2.6). Then u(x) is a viscosity solution of
(1.5), which satisfies (1.4) and (1.7).

Proof. Combining Theorems 2.5 and 2.6, we get the assertion by the stability result of
Fleming and Soner [7, Lemma 6.2, page 73] as follows.

Let ϕ∈ C2(R) and let z be the maximizer of u−ϕ such that u(z)−ϕ(z) > u(x)−ϕ(x)
in the closed ball B(z,δ) with radius δ of z �= x.

By Theorem 2.6, vL −ϕ attains a local maximum at some zL ∈ B(z,δ). Take a subse-
quence {zL′ } of {zL} such that

zL′ −→ z′ ∈ B(z,δ). (3.1)

By Theorem 2.6

(
vL′ −ϕ

)(
zL′
)−→ (u−ϕ)

(
z′). (3.2)

Since

(
vL′ −ϕ

)(
zL′
)
>
(
vL′ −ϕ

)
(x), x ∈ B(z,δ), (3.3)
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we have

(u−ϕ)
(
z′
)≥ (u−ϕ)(x), x ∈ B(z,δ). (3.4)

In particular,

(u−ϕ)
(
z′
)≥ (u−ϕ)(z). (3.5)

Thus we deduce

z = z′, (3.6)

and the convergence of the whole sequence.
Now it follows from Theorem 2.5 that

−βvL +
1
2
σ2x2ϕ′′ +Axϕ′ + min

|c|≤L
(|c|2 + cϕ′

)
+h(x)|x=zL ≥ 0. (3.7)

Note that

min
|c|≤L

(|c|2 + cζ
)−→min

c

(|c|2 + cζ
)

locally uniformly in � as L−→∞. (3.8)

Letting L→∞, we get

−βu+
1
2
σ2x2ϕ′′ +Axϕ′ + min

c

(|c|2 + cϕ′
)

+h(x)|x=z ≥ 0. (3.9)

Again a similar argument gives the proof for the minimizer of u−ϕ, that is,

−βu+
1
2
σ2x2ϕ′′ +Axϕ′ + min

c

(|c|2 + cϕ′
)

+h(x)|x=z ≤ 0. (3.10)

Therefore, we see that u is a viscosity solution of (1.5) and then by Theorem 2.3, it is clear
that u fulfills (1.4) and (1.7). �

Stochastic control problem: in general we can further study a stochastic control problem
for linear degenerate systems to minimize the discounted expected cost:

J(c)= E
[∫∞

0
e−αt

{
h
(
xt
)

+
∣∣ct∣∣m}dt

]
, (3.11)

over c ∈� subject to the degenerate stochastic differential equation (1.2) and a continu-
ous function h on R such that (1.4) and (1.7), in addition

k0|x|m− k1 ≤ h(x), (3.12)

for some constants k0,k1 > 0 and for a fixed integer m≥ 2.
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