
Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 494

Knowledge Transfer in �on-Collocated Software Architecture

Development: From the Perspective of Analysts and Software

Architects

Salfarina, A.
1
, Marzanah, A. J.

2
, Sazly, A.

3

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Malaysia
1sal79.sa@gmail.com, 2marzanah@putra.upm.edu.my, 3sazly@fsktm.upm.edu.my

ABSTRACT

Learning within software development involves the

transfer of knowledge between different yet

interdependent functional teams. In reality

however, these teams often create islands of

knowledge due mostly to indistinct flow of

knowledge transfer (KT), thus fail to take

advantage of the opportunity to learn from each

other. Taking the non-collocated software

architecture development teams as a challenge, the

goal of this study is to investigate the nature of KT

that occurs between the analyst and software

architect teams in non-collocated software

architecture development. Data are collected from

semi-structured interviews with 30 respondents

consisting of industrial experts ranging from

analyst, software architects and project managers.

We managed to gather sufficient evidence that

proves KT occurs, and successfully characterize the

areas of knowledge used and exchanged, the

interdependency between teams, the utilization of

knowledge, the medium used for KT and finally,

the external conditions surrounding KT during non-

collocated software architecture development.

These findings are useful as they rest a good

understanding of KT and its vital elements in non-

collocated software architecture development for

all prospective researchers and practitioners.

Keywords: Knowledge transfer (KT), non-

collocated software architecture development,

analyst, software architects.

I I�TRODUCTIO�

Literature review indicates that there is KT in

software development. Software architecture

development in particular, is highly recognized as a

phase where knowledge integration mostly occurs

to determine the outcome of subsequent

development processes. The encounter between

analyst and software architect teams as the

prominent roles in developing software architecture

have highlighted the need for KT in order to help

accelerate and better facilitate each teams’

responsibility towards completing their tasks.

However, KT between non-collocated teams is

often problematic. One of the biggest issues is lack

of understanding of the process. In other words,

having inadequate details on how the knowledge is

being transferred, from whom and to whom,

including the content of the knowledge and how it

will be made into use. Several studies have proven

that within software development, KT occurs more

often, informally. Therefore our study aims to

provide a complete picture that acts as a guideline

of reference for prospective researchers and

practitioners about the essentials of KT. In the next

sections, the methodology is briefly highlighted,

the results and discussions are explained, followed

by the conclusions of the results.

II METHODOLOGY.

Each interview session is done individually at the

respondent’s preferred location. The interviewer

was the researcher herself and assisted by a

research assistant. Since the interview exercised the

semi structured form of questionnaires, every

session took at least 1 hour to complete.

III RESULTS A�D DISCUSSIO�S

We adopt a communication-based perspective and

the orientation of knowledge flow (Jablin and

Putnam, 2001; Szulanski, 2000; Wei’e, 2011) that

has often been used to study virtual or distributed

teams, which indicates five basic elements that

determine and influence the transfer of knowledge:

channel, message, context, recipient, and source. In

addition, there are elements called the evaluation

(Berlo, 1960; Jablin & Putnam, 2001) and external

environmental (Wei’e, 2011) that have also been

claimed to influence KT. In what follows, we

simultaneously present and discuss our findings

drawn from those key elements of KT.

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 495

A. The Areas of Knowledge Used and

Exchanged

To address the first factor, a list of knowledge areas

identified from the literature as being most relevant

and significant to both analyst and software

architect were initially investigated. The list

comprises of four distinct areas of knowledge

including technical, application domain, project

management and people knowledge. Technical

knowledge area encompasses a breadth of

knowledge; programming, problem solving

strategies, code testing & debugging, development

knowledge and skills, architecture concepts &

techniques, detailed design, design constraints,

specific and general technologies & platforms,

software development methods and specification

techniques & languages, software design

principles, abstractions of design/code as schemas

or plans, and design techniques & tools (Harandi,

1998; Joshi et al., 2007; Faraj & Sproull, 2000; Ko

et al., 2005; Rus & Lindvall, 2002; Walz et al.,

1993 ; Hansen, 2002 ; Convoy & Soltan, 1998 ;

Boloix & Robillard, 1995; Ramesh & Tiwana,

1999; Correa, 1996; Tiwana, 2004). Application

domain knowledge area concerns about the specific

system to which the software pertains, customers’

business process, client operations, business rules,

stakeholders’ needs, as well as the customers’

business objectives (Harandi, 1998; Faraj &

Sproull, 2000; Rus & Lindvall, 2002; Convoy &

Soltan, 1998; Walz et al., 1993; Boloix &

Robillard, 1995).While project management

knowledge deals with planning, staffing, managing

and leading a project (Ko et al., 2005; Rus &

Lindvall, 2002; Correa, 1996), people knowledge

on the other hand, accounts the knowledge about

leadership, teamwork, communication, negotiation,

accepting direction, mentoring and consulting

(Bass et al., 2008). Table 1 summarizes the

frequency of agreement of both teams pertaining to

each knowledge area.

Table 1. Results regarding knowledge areas as perceived

important to both analyst and software architect

Knowledge areas

Frequency of

agreement (YES or

�O)

Percent

(%)

Technical 30 –YES 100

Application domain 30 – YES 100

Project Mgt.
20 – YES

10 – NO

66.7

33.3

People 30 – YES
100

All 30 participants unanimously believe that

technical, application domain and people

knowledge areas are valuably important for them to

complete their tasks. Surprisingly, only 20

participants perceive that project management

knowledge area is useful during the development of

software architecture. The other 10 participants

who believe otherwise might partly be driven by

the thought that planning, staffing, managing or

scheduling timeline or the project as a whole is not

their primary responsibility. One participant gave a

similar comment when asked why he does not

perceive project management as equally important:

“We have project manager and team leader to deal

with these kinds of stuff. It’s an advantage to know

some about managing project but we prefer to focus in

our real tasks.”

Then the participants were asked an open question

about three topics or specific areas of knowledge

that are most commonly exchanged and discussed

between teams during software architecture

development. Table 2 illustrates a compilation of

their responses. We analyze these responses by

categorizing the specific topics accordingly to the

knowledge areas. We have found that most of the

topics exchanged between the two teams are

mainly based on the deliverables and discussion

activity during the process of software architecture

development itself. The deliverables are typically

in the form of documentation artifacts. Topics

discussed during the process of software

architecture development are generally about

making negotiations regarding the requirements,

managing clients’ expectations as well as

explaining rationales of the design. They also share

about each other’s experience from working in

previous projects.

The areas of technical and application domain

knowledge were the most commonly exchanged

and discussed between both analyst and software

architect teams. Their dominance implies that in

developing software architecture, the integration of

technical and application domain knowledge is a

must to ensure completion of the given tasks to

produce desired deliverables. This is further

supported by Tiwana (2004) and Faraj & Sproull

(2000), who state that in devising a coherent

software solution (software architecture) for a

business problem, these two areas of knowledge

are germane to the process. Some participants also

stress the ultimate importance of technical and

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 496

application domain knowledge areas by saying

that:

“7otwithstanding the importance of other knowledge

areas, we do rely heavily upon the technical and

application domain knowledge in accomplishing our

tasks”

Table 2. Specific topics/areas of knowledge

Knowledge

Areas

Specific topics/areas of knowledge

Technical Use case diagram – overall system flow

DFD, ERD

System specification

Component diagram architecture

Standards

Architectural principals and rules

Technical constraints

Detailed design specifications

Design decisions

Documentation: BRD, SDP, SRS, SDD,

FRD, TRS. FRS

Application

Domain

Business process prototypes

Business rules for business process

Domain subjects

Business model

Functional and non functional requirement

Project

Management

Gantt Chart – due date of completion

Assignment delegation among team

members

Ad-hoc meeting scheduling

People Rational trade-off concerning the

requirements, technical constraints

Client’s expectations & priorities

negotiations

Past experiences from working on other

projects

Communicating the deliverables

The results depicted from Table 2 also do not

contradict with our prior postulation regarding the

areas of knowledge exchanged and used during

software architecture development. In fact, we can

conclude that the transfer of knowledge during the

development of software architecture is mainly

stemmed from these four areas of knowledge as

indicated specifically in the table.

B. The Interdependencies between Teams

Despite of physical dispersion, the necessity to

share and exchange knowledge between teams is

continuously stimulated by the need to produce the

desired deliverables from one phase to another. “In

software development, teams are often highly

dependent on one-another and that the

dependencies are not sequential …which means the

two teams work closely together…” (Sawyer,

2001). Additionally, requirement management and

architectural design evolve in parallel and support

each other (Kruchten, 2011). This has lending

further support as to display the interdependencies

that exist between both analyst and software

architect teams although are non-collocated.

Based from the interviews, we learnt that the

interdependencies between these non-collocated

teams stem from the task and team

interdependencies. Task interdependencies in

general refer to the extent to which one group is

dependent upon one another to perform their tasks.

They have to gain as much input as required to

perform and complete the given tasks. This extends

to the interdependencies explained by the necessity

to access other expertise located in another team in

order to carry out the assignments. Existing studies

have provided ample evidence that both collocated

and distributed software development teams

frequently engage in communication to acquire

necessary information from peer developers (Ko et

al. 2007, La Toza et al. 2006). In this case, both

teams play the role of both knowledge sender and

receiver.

Although each team seems totally foreign to each

other in terms of the skills and expertise, they

actually share a lot of traits. Both teams deal with

making decisions as well as relying more on the

experiences. The overlapping picture displayed by

the nature of their tasks has induced stronger

support to confirm that there are serious

interdependencies between the teams.

Concerning the questions in regards to the

interdependencies between teams, all of the

participants are in agreement that the

interdependencies exist between both teams are

primarily driven by the several highlighted reasons.

Firstly is to gain as much input as required to

complete the tasks and produce desired

deliverables. Secondly, is to obtain knowledge and

understanding of a particular aspect of the software

artifact under investigation. Third, is to gain access

to expert for their valuable experiences and

knowledge obtained from previous projects. La

Toza et al. (2006) describe the role of the “team

historian” who possesses knowledge about the

origins of a project and its architecture”, in which

this kind of knowledge is not obtainable from any

artifacts resources. And fourthly, is to coordinate

development activities among them.

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 497

C. The Utilization of Exchanged Knowledge

In this study, our interest lies in determining the

extent of knowledge utilization during software

architecture development among both analyst and

software architect teams. Our strategy was to list

down 23 items concerning the application of

related knowledge into each possible step-by-step

activity in software architecture development.

Every item asked was constructed in a way it tells

where the participant gain the knowledge from, and

how does the knowledge being put into use to

accommodate the activities involved. We name this

method as knowledge utilization characterizing.

As anticipated, majority of the participants have

successfully characterized the extent of their

knowledge utilization. As shown in Table 3, 100%

of the participants agree and strongly agree that

they perform all of the listed items regarding

knowledge utilization. This suggests that they have

engaged in KT and prove that they have actually

applied the knowledge they gained into their tasks.

This is consistent with the requirement or

prerequisite of effective KT that emphasizes

putting the knowledge into action and not merely

knowledge transferring and receiving situation.

We also found that although both teams produce

different deliverables, their tasks are overlapping

dependent by nature. This simply means that there

are tasks involving both teams that rely on their

capability to make mutual decision, “… in order to

reach a consensus regarding the multiple

interpretations of the software requirements … and

clarify any existing instances of role ambiguity”

(Andres, 2002). They are not just sequentially

dependent but they corroborate each other to

accomplish their tasks. For example, as commented

by one of the participants:

 “As a software architect, although I am not directly

involved in requirements gathering, I work together with

the SA (analyst) to articulate and refine architectural

requirements. This is important to ensure that the

architecture fulfills the requirements and clients’

expectations.”

The reason we highlight the existence of

overlapping tasks between these teams is to show

that despite of distance barrier, both teams still

keep themselves engaged in KT.

Table 3. Characterization of knowledge utilization

Items

Frequency (and percentage

%)

Someh

ow

agree

Agree
Strongl

y agree

Using the knowledge gained

from the mentoring session

held prior to starting the

project, we analyze software

requirements.

0 (0%)
28

(93.3%)

2

(6.7%)

We held regular meetings and

discussions for both teams in

order to ensure we understand

business and customer needs

before development begins.

0 (0%)
26

(86.7%)

4

(13.3%)

We capture software

specifications from business

requirements described by the

clients through brainstorming

session.

0 (0%)
21

(70%)
9 (30%)

Using our architectural and

design knowledge, we

articulate and refine

architectural requirements.

11

(36.7%)

18

(60%)

1

(3.3%)

Using our knowledge in

software development

methods, we document the

defined requirements to

produce SRS.

0 (0%)
27

(90%)
3 (10%)

Through several meetings and

progress reviews, we get input

on needs to evolve and

improve the architecture.

0 (0%)
28

(93.3%)

2

(6.7%)

We create/draw the initial

architecture based on an

analysis of the given

requirements.

3 (10%)
24

(80%)
3 (10%)

We often use reference

architecture and make some

adjustments to save time on

architectural decisions.

10

(33.3%)

20

(66.7%)
0 (0%)

We make design decisions

based on mutual agreement

with the other team.

4

(13.3%)

18

(60%)

8

(26.7%)

Using our architectural and

design knowledge, we identify

the style and articulate the

principles and key

mechanisms of the

architecture partitioning the

system.

9 (30%)
16

(53.3%)

5

(16.7%)

We define how the various

components fit together.
3 (10%)

27

(90%)
0 (0%)

We evaluate the architecture

through various means

including prototyping,

reviews, and assessments.

5

(16.7%)

25

(83.3%)
0 (0%)

We do trade-off analysis on

the design through active

discussions with the

business/software analyst

team.

4

(13.3%)

24

(80%)

2

(6.7%)

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 498

Using the application domain

knowledge gained from the

early phase of requirement

analysis, we document the

domains for which the

system/software will be built.

2

(6.7%)

22

(73.3%)
6 (20%)

We prepare architectural

documents and deliver

presentations to the

stakeholders and other

development teams.

0 (0%)
27

(90%)
3 (10%)

Recall that we choose to define KT as learning

from the experience of others. It is worth noting

that every activity in the software architecture

development involves collaboration of both

analyst and software architect teams. The task

specified for each activity either requires the

application of knowledge obtained from previous

engagement with other people/team or necessarily

demand for participation from other people/team

for their input, view and agreement on certain

issues. This has therefore strengthened the fact that

KT in software architecture development does not

only address the utilization of knowledge but put

the emphasis in the essentials of learning from

others and their experiences. We extend our effort

by proving that despite of physical distance, these

teams (analysts and software architects) managed

to characterize their knowledge utilization which

span from technical, application domain, project

management to people knowledge throughout the

activities involved.

D. The Mediums Used for KT

For dispersed teams, the ideal means for KT are

translated through communication technologies.

The activities in software architecture development

demonstrate such a knowledge intensive

environment that not only integrate diverse

knowledge, skills and expertise from different

group of people but also demand a great deal of

communication to ensure the deliverables produced

are as expected. More importantly, sufficient

efforts need to be addressed to adequately facilitate

these dispersed teams in accomplishing their goals.

In our study, our attention is directed into

determining types of mediums utilized for KT. We

provide a list of potential mediums that are used for

KT as shown in Table 4 below. The frequency

column indicates the number of participants who

chose each medium. Email or electronic mail,

review meetings and document preparations make

the top three lists. This is followed by

presentations, training courses, workshops and on-

line forums. There are also participants that choose

other mediums such as teleconferencing,

videoconferencing, face-to-face discussion, social

networks, and intranet. These observable findings

signify the diversity of mediums used for KT,

which implicitly highlights the importance of KT

itself. In addition, these findings also suggest their

vitality to reduce uncertainty and equivocality

associated with the information requirements of the

assigned tasks (Andres, 2002). Uncertainty

reduction refers to the elimination of the lack of

information needed to complete the tasks.

Equivocality reduction on the other hand, refers to

reducing the ambiguity associated with a task.

Table 4. Result of mediums used for KT

Medium Frequency Percentage

(%)

Document preparations 30 100

Review Meetings 30 100

Email 30 100

Presentations 28 93.3

Training courses 27 90.0

Workshops 23 76.7

Knowledge

portals/discussion forums

19 63.3

Teleconferencing 11 36.7

Face-to-face discussion 9 30.0

Videoconferencing 8 26.7

Social networks 6 20.0

Intranet 4 13.3

Desktop computer

conferencing

0 0

Extranet 0 0

Story telling 0 0

Conferences 0 0

The findings also indicate the use of different

categories of communication media including lean

and rich media. Email, intranets, knowledge

portals/online forums, social networks are

categorized as lean media. Rich media includes

videoconferencing, teleconferencing, face-to-face

meetings, training courses, and workshops. Based

from the table, we can see that the utilization of

rich media dominates over lean media. This is

particularly an interesting finding since we are

studying non-collocated teams, in which despite of

physical constraint, they still manage to meet up

face-to-face. One reason that best explain this is

most of the knowledge is partly tacit, which is not

easily transferred to others. However, we learnt that

most of the time, the meetings were done

unplanned, or ad-hoc. This usually caused by

unexpected demands or changes over the

requirements and design that need immediate

attention. Architecture evaluation is another cause

for such ad-hoc meetings to be organized. As

anticipated, during any other times, any problems

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 499

or issues arise regarding the tasks assigned between

teams are discussed and solved over the phone or

emails.

Following the response from the participants

regarding the specific topic or areas of knowledge

used and exchanged during software architecture

development, we provide some extensions as

shown in Table 5 below that suggests different

mediums, which can be employed for KT

according to the nature of knowledge to be

transferred. In general, the nature of knowledge can

be either categorized as explicit or tacit. As

depicted in the table, technical knowledge

transferred is predominantly explicit in nature thus

calls for lean media to facilitate KT. Explicit

knowledge is transferred most efficiently through

written media because it will save the unnecessary

communication costs associated with face-to-face

communication (Pedersen et al., 2003).

Table 5. Suggested medium for KT

Knowledge

Areas

Specific

topics/areas of

knowledge

�ature of

knowledge

Suggested

medium for

transfer

Technical Use case diagram
– overall system

flow

Predominantly

Explicit

Lean Media

Examples:

Email

Documentation
Discussion

Forum

DFD, ERD

System
specification

Component

diagram
architecture

Standards

Architectural

principals and
rules

Technical

constraints

Detailed design
specifications

Design decisions

Documentation:

BRD, SDP, SRS,
SDD, FRD, TRS.

FRS

Application
Domain

Business process
prototypes

Predominantly

a combination
of Explicit and

Tacit

Lean and Rich

Media

Examples:

Email
Documentation

Training courses

Workshops

Business rules

for business

process

Domain subjects

Business model

Functional and

non functional
requirement

Project

Mgt.

Gantt Chart –

due date of

completion
Predominantly

a combination
of Explicit and

Tacit

Lean and Rich

Media

Examples:
Email

Documentation

Review meetings
Mentoring

Assignment

delegation

among team
members

Ad-hoc meeting

scheduling

People Rational trade-

off concerning
the requirements,

technical

constraints

Predominantly

Tacit

Rich Media

Examples:
presentation

Face-face

discussion
Teleconference

Videoconference

Client’s
expectations &

priorities

negotiations

Past experiences

from working on

other projects

Communicating
the deliverables

On the other hand, application domain and project

management knowledge are mainly comprised of

combination of both explicit and tacit, which

suggests for the use of lean and rich media. People

knowledge however is predominantly tacit in

nature, hence is highly recommended to use rich

media to ensure effective KT. As cited by Pedersen

et al., (2003), according to Daft/Huber (1987), and

Bresman et al. (1999), face-to-face interaction

between individuals facilitates transfer of

knowledge that is experience-based and permits

interactive communication, questioning, flexibility,

and adaptation.

E. External conditions surrounding KT

To date, research in KT has received enormous

attention especially in investigating the barriers or

impediments to effective KT (Ko et al., 2005; Wu

et al., 2007; Anna et al., 2009; Paulin & Suneson,

2012). This phenomenon is not surprising since the

best strategy to implement effective KT is by

identifying and overcoming these impediments.

Our study takes slightly different approach in that

we are not only determining what the barriers are,

but most importantly, we are looking at them from

more positive perspectives. We believe that

underneath some of the barriers, lays the hidden

potential contribution on teams’ capability.

Therefore, we decide to use “external conditions

surrounding” KT instead of barriers. A list of

surrounding conditions identified from the

literature was explicitly investigated through

question 15 to 31. The following Table 6

summarizes the findings for surrounding conditions

of KT.

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 500

Table 6. Results for External Conditions Surrounding

KT

External Conditions Frequency
Percentage

(%)

Physical distance 28 93.3

Functional, experience,

and capability

differences

23 76.7

Lacking of time 20 66.7

Lacking of trust 18 60.0

Reluctance to share

knowledge
13 43.3

Lacking of motivation 7 23.3

Low awareness of the

value and benefit of

possessed knowledge to

others

5 16.7

As predicted, physical distance was the most

frequently chosen by the participants as an external

condition surrounding KT. This result is in

agreement with Gregory et al. (2009) and Anna et

al. (2009) who highlight the physical distance as

one of the main impediments for effective KT. The

fact that two interdependent teams working

distantly from one another has definitely reducing

the ease for KT. The problem with KT becomes

even more acute as more and more issues arose,

particularly when the chances for direct face-to-

face meeting or social communication, becomes

less and less impractical. The fact that software

architecture development is a knowledge

integration activity, to bridge the physical gap is

very important. This explains the previous findings

of mediums used for KT, in which various types of

communication technologies have been employed

to cater the communication problems between the

non-collocated teams.

The findings are continued by the selection of

functional, experience and capability differences as

second most frequently chosen external conditions

surrounding KT. Software architecture

development witnesses the integration of team

members from diverse backgrounds, experiences,

and capabilities. In addition, being assigned with

different roles and functions has consequently

increased the gap between teams. Sarker (2003), in

her study found that difference in individual

capabilities undermines KT. Reige (2005) also

mentions the difference in experience in his study

regarding barriers in sharing of knowledge.

The numbers are closely entailed by lacking of

time (Roux et al. 2006; Reige, 2005; Ramirez,

2007) as one of the external conditions surrounding

KT. A typical nature of software project teams

(including software architecture development) does

not only confined into achieving specified purpose

but also to work within constraints of time. Time

restrictions have become the possible reason that

drives the teams to hoard their knowledge rather

than transfer and share with others. Participants

also highlighted the lack of time to engage in KT as

a result for being too occupied with the assigned

task and reaching the dateline. This comment is

consistent with Michailova and Husted (2003), in

which according to them, people naturally focus on

those tasks that are more beneficial to them. There

was one participant who also commented that due

to physical distance, they rarely have the time to

identify colleagues in need of specific knowledge.

By far, lacking of trust has been nominated by the

literature as one of the most common impediments

to effective KT (Naftanaila, 2010; Falconer, 2006;

Lucas, 2006; Reige, 2005; Hildreth & Kimble,

2004). According to findings in Reige (2005),

there are two terms concerning this issue. Firstly,

there is a lack of trust in people because they may

misuse knowledge or take unjust credit for it and

secondly there is a lack of trust in accuracy and

credibility of knowledge due to the source, which

the latter was studied by Sarker (2002), in her

research that investigate KT among information

system development (ISD) team members.

Naftanaila (2010) asserts that most people are

unlikely to share their knowledge and experience

without a feeling of trust. This is particularly true

when according to some participants, lack of trust

is mainly due to lack of social communication

between teams, since they are not physically

collocated. Social communication often realized

through informal networks, which is very limited

considering the nature of non-collocated teams.

Additionally, “…the nature of inter community

social relation…where people have limited sense of

shared identity, makes the existence of trust less

likely…” (Hildreth & Kimble, 2004)

Reluctance to share knowledge can be possibly

caused by the specialized nature of the knowledge

both analyst and software architect teams

possessed. The specialist nature of their

knowledge, combined with the extensive lack of

interaction which had been typical, meant that they

had very poor understanding of how other

functions worked, or what their constraints or

requirements were (Hildreth & Kimble, 2004).

When asked further about the extent of their

agreement concerning this as a reason why there is

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 501

a reluctance to share knowledge with others, there

were seemed to be no deniable. However, there

were few participants who added personal gain and

power (job security) as the causes to become

reluctant to share knowledge. This finding is in line

with Paghaleh et al. (2011). Another finding

perceived from the participants concerning the

cause for this reluctance is the inability to absorb

new knowledge due to incompetence or limitation

in their existing stock of knowledge:
 “Sometimes, we feel hesitant to share because

we are not so sure we can correctly convey to others

what we really want to tell them …it is better to keep

that to ourselves than giving them the wrong ideas”

Another external condition surrounding KT during

software architecture development as perceived by

the participants is lack of motivation. There is an

indication that it is the primary trigger for KT

(Ajmal & Koskinen, 2008; Frey & Osterloh,

2000;). Many studies have been conducted to

investigate the extent of effect the lack of

motivation has, upon KT (Mclaughlin et al., 2008;

Disterer, 2001; Frey & Osterloh, 2000). Lack of

motivation, particularly extrinsic motivation has

been raised by many as closely related with

managerial or organizational issues. This type of

motivation is about expected organizational

rewards and reciprocal benefits. On the other hand,

intrinsic motivation refers to knowledge self-

efficacy and enjoyment in helping others and is

very important to help perform complex or creative

tasks such as developing architecture. In neither

ways, both team leader and project manager plays a

significant role in cultivating the sense of

motivation among team members. In order to fulfill

their tasks during software architecture

development, KT between teams should be of

importance despite of physical distance. An

observation reported by one participant regarding

this is that KT has always been seen as laborious

especially in terms of time and effort. The tendency

to fully concentrate in one’s work in order to catch

the dateline explains why KT is seen in such a way.

It is important to note, as is mentioned by Milne

(2007), that individuals are often motivated to keep

their tacit knowledge for themselves rather than

share it. In software architecture development, both

analyst and software architect teams need to be

able to exploit these tacit knowledge.

The participants also chose low awareness of the

value and benefit as one of the external conditions

surrounding KT, during software architecture

development. One probable reason that drives this

issue is that they do not believe these benefits from

transferring knowledge. Even worst, they did not

actually experience KT although they make claim

that they have. As displayed in typical scenario of

general software development teams, they often

create island of knowledge due to low awareness

that the knowledge possessed by the other teams is

valuable and useful, which can help accelerate the

completion of their tasks. Parallel to this, the

intention to transfer knowledge is refrained by the

thought that they already possessed a certain level

of knowledge, and thus KT is not much in need.

When asked their opinion regarding this, the

participants were unanimously agreed to have been

in such state of condition. A few added by stressing

their uncertainty of the presence of KT, due to lack

of understanding of the process involved.

IV CO�CLUSIO�

We believe our effort fills in the gap due to lack of

understanding and prescription of KT particularly

in software architecture development, which

consists of analyst and software architect teams that

are non-collocated. Future research directions

including examine KT in more detail from other

different phases in software development life

cycles (SDLC); development, testing and

maintenance. This strategy allows for a

comprehensive view in regards to KT event during

software development projects. In order to obtain

more concrete lens of KT in software architecture,

other roles apart from the analysts and software

architects, but are indirectly involved in developing

it (including project manager and project leader)

seemed to be a fruitful idea of interest to study.

REFERE�CES

Ajmal, M.M. and Koskinen, K.U. (2008), ‘‘Knowledge transfer in

project-based organizations: an organizational culture perspective’’,

Project Management Journal, 39(1), 7-15.
 Andreas, H. P. (2002). A comparison of face-to-face and virtual

software development teams. Team Performance Management: An

International Journal 8(1/2), 39-48.
Anna, W., Bambang, T., Glen, M. D., Chen, L. (2009). Barriers to

effective knowledge transfer in project-based organisations. In

McCaffer, Ron (Ed.) Proceedings of the 2009 International
Conference on Global Innovation in Construction Proceedings,

Loughborough University UK, Holywell Park, Loughborough
University, 220-230.

Bass, L., Clements, P., Kazman, R., Klien, M. (2008). Models for

Evalauting and Improving Architecture Competence. Technical
Report. Software Engineering Institude. Carnegie Melon.

Berlo, D.K (1960) The Process of Communication: an introduction to

the theory and practice. New York. Holt, Rinehart and Winston.
Boloix, G. & Robillard, P. N. (1995). A Software System Evaluation

Framework. IEEE, 17-26.

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 502

Conroy, G. Soltan, H. (1998). ConSERV, a project specific risk

management concept. International Journal of Project
Management, 16(6), 353-366.

Correa, C. M. (1996). Strategies for software exports from developing

countries. World Development, 24(1), 171-182.
Disterer, G. (2001). Individual and Social Barriers to Knowledge

Transfer. Conference Proceedings 34th Annual Hawaii

International Conference on System Sciences, Los Alamitos,
CA:IEEE Press.

Falconer, L. (2006). Organizational learning, tacit information, and e-

learning: a review. The Learning Organization, 13(2), 140-151.
Faraj, S., Sproull, L., (2000). Coordinating Expertise in Software

Development Teams. Management Science, 46(12), 1554-1568.
Gregory, R., Beck, R. and Prifling, M. 2009. ‗Breaching the

knowledge transfer blockade in it offshore outsourcing projects: A

case from the financial services industry‘. Proceedings of the 42nd
Hawaii International Conference on System Sciences. Wikoloa, Big

Island, Hawaii

Hansen, M. T. (2002). Knowledge Networks: Explaining Effective
Knowledge Sharing in Multiunit Companies. Organization Science,

13(3), 232-248.

Harandi, M. T. (1988). Building a Knowledge-Based Software
Development Environment. IEEE Journal on Selected Areas in

Communications, 6(5), 862-868.

Hildreth, Paul; Kimble, Chris (2004). Knowledge 7etworks:
Innovation through Communities of Practice. IGI Global.

Jablin, F. M., Putnam, L. L. (2001). The 7ew Handbook of

Organizational Communication: Advances in Theory, Research,
and Methods. Thousand Oaks, CA: Sage Publications.

Joshi, K. D., Sarker, S., Sarker, S. (2007). Knowledge transfer within

information systems development teams: Examining the role of
knowledge source attributes. Decision Support Systems, 43(2), 322-

335.

Ko , A. J., DeLine, R., Venolia, G. (2007). Information needs in
collocated software development teams. International Conference

on Software Engineering (ICSE), 344–353.

Ko, D. G., Kirsch, L. J., & King, W. R. (2005). Antecedents of
Knowledge Transfer From Consultants to Clients in Enterprise

System Implementations. MIS Quarterly, 29(1), 59-85.

Kruchten, P. (2011). Software Architecture for the Business Analyst.
Tutorial 3 in the 9th Working IEEE/IFIP Conference on Software

Architecture. Boulder, Colorado, USA.

LaToza, T. D., Venolia G., Deline, R. (2006) Maintaining mental
models: A study of developer work habits. Proceedings of ICSE'06

Shanghai, 492–501.

Lucas, L.M. (2006). The role of culture on knowledge transfer: the
case of the multinational corporation. The Learning Organization,

13(3), 257-275.

McLaughlin, S., Paton, R. A., Macbeth, D. K. (2008). Barrier impact
on organizational learning within complex organizations. Journal of

Knowledge Management 12(2), 107-123.

Michailova, S. and Husted, K. (2003). Knowledge sharing in Russian
companies with western participation. Management International,

6(2), 19-28.

 Milne, P. (2007). Motivation, incentives and organisational culture.
Journal of Knowledge Management, 11, 28-38.

Naftanaila, I. (2010). Factors affecting Knowledge Transfer in Project

Environment. Review of International Comparative Management,
11(5), 834.

Osterloh, M., Frey, B.S. (2000). Motivation, knowledge transfer, and

organizational form. Organization Science, 11(5), 38-50.
Paghaleh, M. J., Shafizadeh, E., Mohammadi, M. (2011). Information

Technology and its Deficiencies in Sharing Organizational

Knowledge. International Journal of Business and Social Science
2(8).

Paulin, D and Suneson, K. (2012). Knowledge Transfer, Knowledge
Sharing and Knowledge Barriers – Three Blurry Terms in KM. The

Electronic Journal of Knowledge Management 10(1), 81-91.

Pedersen, T., Petersen, B., Sharma, D. (2003). Knowledge Transfer
Performance of Multinational Companies. Special Issue.

Management Internal Review, 43, 69-90.

Ramesh, B., Tiwana, A. (1999). Supporting collaborative knowledge
management in new product development teams. Decision Support

Systems, 27(2), 213-35.

Ramirez, A. (2007). To Blog or Not to Blog: Understanding and

Overcoming the Challenge of Knowledge Sharing, Journal of
Knowledge Management Practice, 8(1).

Riege, A. (2005). Three-dozen knowledge sharing barriers managers

must consider. Journal of Knowledge Management, 9(3), 18-35.
Roux, D. J., K. H. Rogers, H. C. Biggs, P. J. Ashton and A. Sergeant.

2006. Bridging the science–management divide: moving from

unidirectional knowledge transfer to knowledge interfacing and
sharing. Ecology and Society 11(1), 4.

Rus, I., Lindvall, M. (2002). Knowledge Management in Software

Engineering. IEEE Software, 19(3), 40-59.
Sarker, S., Sarker, S., Nicholson, D., & Joshi, K. D. (2003).

Knowledge Transfer in Virtual Information Systems Development
Teams: An Empirical Examination of Key Enablers. Proceedings of

the Hawaii International Conference on System Sciences (HICSS-

36), Big Island, Hawaii.
Sawyer, S. (2001) "Effects of Conflict on Packaged Software

Development Team Performance,"Information Systems Journal,

11(2) 155-178.
Szulanski, G. (2000). The process of knowledge transfer: A diachronic

analysis of stickiness. Organizational Behavior and Human

Decision Processes, 82(1), 9-27.
Tiwana, A. (2004). An empirical study of the effect of knowledge

integration on software development performance. Information &
Software Technology 46(13), 899-906.

Walz, D., Elam, J., and Curtis, B. (1993). Inside a Software Design
Team: Knowledge, Sharing, and Integration. Communications of the
ACM 36(10), 63-77.

Wei’e, W. (2011). Analysis of knowledge transfer process and model

building. International Conference on E-Business and E-
Government. IEEE, 1, 1-478.

Wu, W. L., Hsu, B. F., Yeh, R-S. (2007). Fostering the determinants of

knowledge transfer: a team-level analysis. Journal of Information
Science, 33(3) 326–339.

