Knowledge Transfer in Non-Collocated Software Architecture
Development: From the Perspective of Analysts and Software
Architects

Salfarina, A.', Marzanah, A. J.2, Sazly, Al

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Malaysia
Lsal79.sa@gmail.com, *marzanah@putra.upm.edu.my, >sazly@jfsktm.upm.edu.my

ABSTRACT

Learning within software development involves the
transfer of knowledge between different yet
interdependent  functional teams. In reality
however, these teams often create islands of
knowledge due mostly to indistinct flow of
knowledge transfer (KT), thus fail to take
advantage of the opportunity to learn from each
other. Taking the mnon-collocated software
architecture development teams as a challenge, the
goal of this study is to investigate the nature of KT
that occurs between the analyst and software
architect teams in non-collocated software
architecture development. Data are collected from
semi-structured interviews with 30 respondents
consisting of industrial experts ranging from
analyst, software architects and project managers.
We managed to gather sufficient evidence that
proves KT occurs, and successfully characterize the
areas of knowledge used and exchanged, the
interdependency between teams, the utilization of
knowledge, the medium used for KT and finally,
the external conditions surrounding KT during non-
collocated software architecture development.
These findings are useful as they rest a good
understanding of KT and its vital elements in non-
collocated software architecture development for
all prospective researchers and practitioners.

Keywords: Knowledge transfer (KT), non-
collocated software architecture development,
analyst, software architects.

I INTRODUCTION

Literature review indicates that there is KT in
software development. Software architecture
development in particular, is highly recognized as a
phase where knowledge integration mostly occurs
to determine the outcome of subsequent
development processes. The encounter between
analyst and software architect teams as the
prominent roles in developing software architecture
have highlighted the need for KT in order to help

accelerate and better facilitate each teams’
responsibility towards completing their tasks.
However, KT between non-collocated teams is
often problematic. One of the biggest issues is lack
of understanding of the process. In other words,
having inadequate details on how the knowledge is
being transferred, from whom and to whom,
including the content of the knowledge and how it
will be made into use. Several studies have proven
that within software development, KT occurs more
often, informally. Therefore our study aims to
provide a complete picture that acts as a guideline
of reference for prospective researchers and
practitioners about the essentials of KT. In the next
sections, the methodology is briefly highlighted,
the results and discussions are explained, followed
by the conclusions of the results.

II METHODOLOGY.

Each interview session is done individually at the
respondent’s preferred location. The interviewer
was the researcher herself and assisted by a
research assistant. Since the interview exercised the
semi structured form of questionnaires, every
session took at least 1 hour to complete.

III RESULTS AND DISCUSSIONS

We adopt a communication-based perspective and
the orientation of knowledge flow (Jablin and
Putnam, 2001; Szulanski, 2000; Wei’e, 2011) that
has often been used to study virtual or distributed
teams, which indicates five basic elements that
determine and influence the transfer of knowledge:
channel, message, context, recipient, and source. In
addition, there are elements called the evaluation
(Berlo, 1960; Jablin & Putnam, 2001) and external
environmental (Wei’e, 2011) that have also been
claimed to influence KT. In what follows, we
simultaneously present and discuss our findings
drawn from those key elements of KT.

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 — 6 July 2012 494



A. The Areas
Exchanged

of Knowledge Used and

To address the first factor, a list of knowledge areas
identified from the literature as being most relevant
and significant to both analyst and software
architect were initially investigated. The list
comprises of four distinct areas of knowledge
including technical, application domain, project
management and people knowledge. Technical
knowledge area encompasses a breadth of
knowledge;  programming, problem solving
strategies, code testing & debugging, development
knowledge and skills, architecture concepts &
techniques, detailed design, design constraints,
specific and general technologies & platforms,
software development methods and specification
techniques & languages, software design
principles, abstractions of design/code as schemas
or plans, and design techniques & tools (Harandi,
1998; Joshi et al., 2007; Faraj & Sproull, 2000; Ko
et al., 2005; Rus & Lindvall, 2002; Walz et al.,
1993 ; Hansen, 2002 ; Convoy & Soltan, 1998 ;
Boloix & Robillard, 1995; Ramesh & Tiwana,
1999; Correa, 1996; Tiwana, 2004). Application
domain knowledge area concerns about the specific
system to which the software pertains, customers’
business process, client operations, business rules,
stakeholders’ needs, as well as the customers’
business objectives (Harandi, 1998; Faraj &
Sproull, 2000; Rus & Lindvall, 2002; Convoy &
Soltan, 1998; Walz et al., 1993; Boloix &
Robillard, 1995).While project management
knowledge deals with planning, staffing, managing
and leading a project (Ko et al., 2005; Rus &
Lindvall, 2002; Correa, 1996), people knowledge
on the other hand, accounts the knowledge about
leadership, teamwork, communication, negotiation,
accepting direction, mentoring and consulting
(Bass et al.,, 2008). Table 1 summarizes the
frequency of agreement of both teams pertaining to
each knowledge area.

Table 1. Results regarding knowledge areas as perceived
important to both analyst and software architect

Frequency of Percent
Knowledge areas agreement (YES or (%)
NO)
Technical 30-YES 100
Application domain 30-YES 100
. 20 - YES 66.7
Project Mgt. 10-NO 333
People 30-YES 100

All 30 participants unanimously believe that

technical, application domain and people
knowledge areas are valuably important for them to
complete their tasks. Surprisingly, only 20

participants perceive that project management
knowledge area is useful during the development of
software architecture. The other 10 participants
who believe otherwise might partly be driven by
the thought that planning, staffing, managing or
scheduling timeline or the project as a whole is not
their primary responsibility. One participant gave a
similar comment when asked why he does not
perceive project management as equally important:

“We have project manager and team leader to deal
with these kinds of stuff. It’s an advantage to know
some about managing project but we prefer to focus in
our real tasks.”

Then the participants were asked an open question
about three topics or specific areas of knowledge
that are most commonly exchanged and discussed
between teams during software architecture
development. Table 2 illustrates a compilation of
their responses. We analyze these responses by
categorizing the specific topics accordingly to the
knowledge areas. We have found that most of the
topics exchanged between the two teams are
mainly based on the deliverables and discussion
activity during the process of software architecture
development itself. The deliverables are typically
in the form of documentation artifacts. Topics
discussed during the process of software
architecture development are generally about
making negotiations regarding the requirements,
managing clients’ expectations as well as
explaining rationales of the design. They also share
about each other’s experience from working in
previous projects.

The areas of technical and application domain
knowledge were the most commonly exchanged
and discussed between both analyst and software
architect teams. Their dominance implies that in
developing software architecture, the integration of
technical and application domain knowledge is a
must to ensure completion of the given tasks to
produce desired deliverables. This is further
supported by Tiwana (2004) and Faraj & Sproull
(2000), who state that in devising a coherent
software solution (software architecture) for a
business problem, these two areas of knowledge
are germane to the process. Some participants also
stress the ultimate importance of technical and

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 — 6 July 2012 495



application domain knowledge areas by saying
that:

“Notwithstanding the importance of other knowledge
areas, we do rely heavily upon the technical and
application domain knowledge in accomplishing our
tasks”

Table 2. Specific topics/areas of knowledge

Knowledge
Areas

Specific topics/areas of knowledge

Technical Use case diagram — overall system flow

DFD, ERD

System specification

Component diagram architecture

Standards

Architectural principals and rules

Technical constraints

Detailed design specifications

Design decisions

Documentation: BRD, SDP, SRS, SDD,
FRD, TRS. FRS

Application | Business process prototypes

Domain Business rules for business process

Domain subjects

Business model

Functional and non functional requirement

Project Gantt Chart — due date of completion

Management | Assignment  delegation among  team

members

Ad-hoc meeting scheduling

Rational trade-off ~ concerning the
requirements, technical constraints

People

Client’s expectations & priorities

negotiations

Past experiences from working on other
projects

Communicating the deliverables

The results depicted from Table 2 also do not
contradict with our prior postulation regarding the
areas of knowledge exchanged and used during
software architecture development. In fact, we can
conclude that the transfer of knowledge during the
development of software architecture is mainly
stemmed from these four areas of knowledge as
indicated specifically in the table.

B. The Interdependencies between Teams

Despite of physical dispersion, the necessity to
share and exchange knowledge between teams is
continuously stimulated by the need to produce the
desired deliverables from one phase to another. “In
software development, teams are often highly
dependent on one-another and that the
dependencies are not sequential ...which means the
two teams work closely together...” (Sawyer,

2001). Additionally, requirement management and
architectural design evolve in parallel and support
each other (Kruchten, 2011). This has lending
further support as to display the interdependencies
that exist between both analyst and software
architect teams although are non-collocated.

Based from the interviews, we learnt that the
interdependencies between these non-collocated
teams stem from the task and team
interdependencies. Task interdependencies in
general refer to the extent to which one group is
dependent upon one another to perform their tasks.
They have to gain as much input as required to
perform and complete the given tasks. This extends
to the interdependencies explained by the necessity
to access other expertise located in another team in
order to carry out the assignments. Existing studies
have provided ample evidence that both collocated
and distributed software development teams
frequently engage in communication to acquire
necessary information from peer developers (Ko et
al. 2007, La Toza et al. 2006). In this case, both
teams play the role of both knowledge sender and
receiver.

Although each team seems totally foreign to each
other in terms of the skills and expertise, they
actually share a lot of traits. Both teams deal with
making decisions as well as relying more on the
experiences. The overlapping picture displayed by
the nature of their tasks has induced stronger
support to confirm that there are serious
interdependencies between the teams.

Concerning the questions in regards to the
interdependencies between teams, all of the
participants are in agreement that the
interdependencies exist between both teams are
primarily driven by the several highlighted reasons.
Firstly is to gain as much input as required to
complete the tasks and produce desired
deliverables. Secondly, is to obtain knowledge and
understanding of a particular aspect of the software
artifact under investigation. Third, is to gain access
to expert for their valuable experiences and
knowledge obtained from previous projects. La
Toza et al. (2006) describe the role of the “team
historian” who possesses knowledge about the
origins of a project and its architecture”, in which
this kind of knowledge is not obtainable from any
artifacts resources. And fourthly, is to coordinate
development activities among them.

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 — 6 July 2012 496



C. The Utilization of Exchanged Knowledge

In this study, our interest lies in determining the
extent of knowledge utilization during software
architecture development among both analyst and
software architect teams. Our strategy was to list
down 23 items concerning the application of
related knowledge into each possible step-by-step
activity in software architecture development.
Every item asked was constructed in a way it tells
where the participant gain the knowledge from, and
how does the knowledge being put into use to
accommodate the activities involved. We name this
method as knowledge utilization characterizing.

As anticipated, majority of the participants have
successfully characterized the extent of their
knowledge utilization. As shown in Table 3, 100%
of the participants agree and strongly agree that
they perform all of the listed items regarding
knowledge utilization. This suggests that they have
engaged in KT and prove that they have actually
applied the knowledge they gained into their tasks.
This is consistent with the requirement or
prerequisite of effective KT that emphasizes
putting the knowledge into action and not merely
knowledge transferring and receiving situation.

We also found that although both teams produce
different deliverables, their tasks are overlapping
dependent by nature. This simply means that there
are tasks involving both teams that rely on their
capability to make mutual decision, “... in order to
reach a consensus regarding the multiple
interpretations of the software requirements ... and
clarify any existing instances of role ambiguity”
(Andres, 2002). They are not just sequentially
dependent but they corroborate each other to
accomplish their tasks. For example, as commented
by one of the participants:

“As a software architect, although I am not directly
involved in requirements gathering, I work together with
the SA (analyst) to articulate and refine architectural
requirements. This is important to ensure that the
architecture fulfills the requirements and clients’
expectations.”

The reason we highlight the existence of
overlapping tasks between these teams is to show
that despite of distance barrier, both teams still
keep themselves engaged in KT.

Table 3. Characterization of knowledge utilization

Frequency (and percentage

%)
Items Someh Strongl
ow Agree
agree y agree
Using the knowledge gained
from the mentoring session 28 2
held prior to starting the 0 (0%)
project, we analyze software (93.3%) | (6.7%)
requirements.
We held regular meetings and
discussions for both teams in 26 4
ord.er to ensure we understand 0 (0%) 86.7%) | (13.3%)
business and customer needs
before development begins.
We capture software
specifications from business 1
requirements described by the 0 (0%) (70%) 9 (30%)
clients through brainstorming
session.
Using our architectural and
design knowledge, we 11 18 1
articulate and refine (36.7%) | (60%) (3.3%)
architectural requirements.
Using our knowledge in
software development 27
methods, we document the 0 (0%) (90%) 3 (10%)
defined requirements to
produce SRS.
Through several meetings and
progress reviews, we get input 0 (0%) 28 2
on needs to evolve and (93.3%) | (6.7%)
improve the architecture.
We create/draw the initial
architecture based on an 24
analysis of the given 3 (10%) (80%) 3 (10%)
requirements.
We often use reference
architecture and make some 10 20 0 (0%)
adjustments to save time on (33.3%) | (66.7%)
architectural decisions.
We make design decisions
based on mutual agreement 4 o 1§ 8 o
with the other team. (13.3%) | (60%) | (26.7%)
Using our architectural and
design knowledge, we identify
the style and articulate the 16 5
. 0
el il 20 | 5330 | e
architecture partitioning the
system.
We define how the various 27
components fit together. 3 (10%) (90%) 0 (0%)
We evaluate the architecture
through various means 5 25 0 (0%)
including prototyping, (16.7%) | (83.3%)
reviews, and assessments.
We do trade-off analysis on
the design through active
discussions with the 4 o 23 20
business/software analyst (13.3%) | (80%) (6.7%)
team.
497

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 — 6 July 2012




Using the application domain
knowledge gained from the
early phase of requirement 2 22
analysis, we document the (6.7%) | (73.3%)
domains for which the
system/software will be built.

6 (20%)

We prepare architectural
documents and deliver
presentations to the
stakeholders and other
development teams.

27

0 (0%) (90%)

3 (10%)

Recall that we choose to define KT as learning
from the experience of others. It is worth noting
that every activity in the software architecture
development involves collaboration of both
analyst and software architect teams. The task
specified for each activity either requires the
application of knowledge obtained from previous
engagement with other people/team or necessarily
demand for participation from other people/team
for their input, view and agreement on certain
issues. This has therefore strengthened the fact that
KT in software architecture development does not
only address the utilization of knowledge but put
the emphasis in the essentials of learning from
others and their experiences. We extend our effort
by proving that despite of physical distance, these
teams (analysts and software architects) managed
to characterize their knowledge utilization which
span from technical, application domain, project
management to people knowledge throughout the
activities involved.

D. The Mediums Used for KT

For dispersed teams, the ideal means for KT are
translated through communication technologies.
The activities in software architecture development
demonstrate such a knowledge intensive
environment that not only integrate diverse
knowledge, skills and expertise from different
group of people but also demand a great deal of
communication to ensure the deliverables produced
are as expected. More importantly, sufficient
efforts need to be addressed to adequately facilitate
these dispersed teams in accomplishing their goals.
In our study, our attention is directed into
determining types of mediums utilized for KT. We
provide a list of potential mediums that are used for
KT as shown in Table 4 below. The frequency
column indicates the number of participants who
chose each medium. Email or electronic mail,
review meetings and document preparations make
the top three lists. This is followed by
presentations, training courses, workshops and on-
line forums. There are also participants that choose

other mediums such as teleconferencing,
videoconferencing, face-to-face discussion, social
networks, and intranet. These observable findings
signify the diversity of mediums used for KT,
which implicitly highlights the importance of KT
itself. In addition, these findings also suggest their
vitality to reduce uncertainty and equivocality
associated with the information requirements of the
assigned tasks (Andres, 2002). Uncertainty
reduction refers to the elimination of the lack of
information needed to complete the tasks.
Equivocality reduction on the other hand, refers to
reducing the ambiguity associated with a task.

Table 4. Result of mediums used for KT

Medium Frequency Percentage
(%)
Document preparations 30 100
Review Meetings 30 100
Email 30 100
Presentations 28 93.3
Training courses 27 90.0
Workshops 23 76.7
Knowledge 19 63.3
portals/discussion forums
Teleconferencing 11 36.7
Face-to-face discussion 9 30.0
Videoconferencing 8 26.7
Social networks 6 20.0
Intranet 4 13.3
Desktop computer 0 0
conferencing
Extranet 0 0
Story telling 0 0
Conferences 0 0

The findings also indicate the use of different
categories of communication media including lean
and rich media. Email, intranets, knowledge
portals/online  forums, social networks are
categorized as lean media. Rich media includes
videoconferencing, teleconferencing, face-to-face
meetings, training courses, and workshops. Based
from the table, we can see that the utilization of
rich media dominates over lean media. This is
particularly an interesting finding since we are
studying non-collocated teams, in which despite of
physical constraint, they still manage to meet up
face-to-face. One reason that best explain this is
most of the knowledge is partly tacit, which is not
easily transferred to others. However, we learnt that
most of the time, the meetings were done
unplanned, or ad-hoc. This usually caused by
unexpected demands or changes over the
requirements and design that need immediate
attention. Architecture evaluation is another cause
for such ad-hoc meetings to be organized. As
anticipated, during any other times, any problems

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 — 6 July 2012 498



or issues arise regarding the tasks assigned between
teams are discussed and solved over the phone or
emails.

Following the response from the participants
regarding the specific topic or areas of knowledge
used and exchanged during software architecture
development, we provide some extensions as
shown in Table 5 below that suggests different
mediums, which can be employed for KT
according to the nature of knowledge to be
transferred. In general, the nature of knowledge can
be either categorized as explicit or tacit. As
depicted in the table, technical knowledge
transferred is predominantly explicit in nature thus
calls for lean media to facilitate KT. Explicit
knowledge is transferred most efficiently through
written media because it will save the unnecessary
communication costs associated with face-to-face
communication (Pedersen et al., 2003).

Table 5. Suggested medium for KT

People Rational trade- Rich Media
off concerning Examples:
the requirements, presentation
technical Face-face
constraints discussion
Client’s Teleconference
expectations & Predominantly | Videoconference
priorities Tacit

negotiations
Past experiences
from working on
other projects
Communicating
the deliverables

Knowledge | Specific Nature of Suggested
Areas topics/areas of knowledge medium for
knowledge transfer
Technical Use case diagram Lean Media
— overall system Examples:
flow Email
DFD, ERD Documentation
System Discussion
specification Forum
Component
diagram
architecture
Standards
Architectural Predominantly
principals and Explicit
rules
Technical
constraints
Detailed design
specifications
Design decisions
Documentation:
BRD, SDP, SRS,
SDD, FRD, TRS.
FRS
Application | Business process Lean and Rich
Domain prototypes Media
Business rules Examples:
for business Predominantly | Email
process a combination | Documentation
Domain subjects | of Explicit and | Training courses
Business model Tacit Workshops
Functional and
non functional
requirement
Project Gantt Chart — Lean and Rich
Mgt. due date of Media
completlon Predominantly Exan}ples.
Assignment . Email
delegation a comb}n_a Hon -\ 1y cumentation
among team of EXphc.lt and Review meetings
members Tacit Mentoring
Ad-hoc meeting
scheduling

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 — 6 July 2012

On the other hand, application domain and project
management knowledge are mainly comprised of
combination of both explicit and tacit, which
suggests for the use of lean and rich media. People
knowledge however is predominantly tacit in
nature, hence is highly recommended to use rich
media to ensure effective KT. As cited by Pedersen
et al., (2003), according to Daft/Huber (1987), and
Bresman et al. (1999), face-to-face interaction
between individuals facilitates transfer of
knowledge that is experience-based and permits
interactive communication, questioning, flexibility,
and adaptation.

E. External conditions surrounding KT

To date, research in KT has received enormous
attention especially in investigating the barriers or
impediments to effective KT (Ko et al., 2005; Wu
et al., 2007; Anna et al., 2009; Paulin & Suneson,
2012). This phenomenon is not surprising since the
best strategy to implement effective KT is by
identifying and overcoming these impediments.
Our study takes slightly different approach in that
we are not only determining what the barriers are,
but most importantly, we are looking at them from
more positive perspectives. We believe that
underneath some of the barriers, lays the hidden
potential contribution on teams’ capability.
Therefore, we decide to use “external conditions
surrounding” KT instead of barriers. A list of
surrounding conditions identified from the
literature was explicitly investigated through
question 15 to 31. The following Table 6
summarizes the findings for surrounding conditions
of KT.

499




Table 6. Results for External Conditions Surrounding

KT

External Conditions Frequency Perz(t;n)t age
(1)

Physical distance 28 93.3
Functional, experience,
and capability 23 76.7
differences
Lacking of time 20 66.7
Lacking of trust 18 60.0
Reluctance to share
knowledge 13 433
Lacking of motivation 7 233
Low awareness of the
value and benefit of 5 16.7

possessed knowledge to
others

As predicted, physical distance was the most
frequently chosen by the participants as an external
condition surrounding KT. This result is in
agreement with Gregory et al. (2009) and Anna et
al. (2009) who highlight the physical distance as
one of the main impediments for effective KT. The
fact that two interdependent teams working
distantly from one another has definitely reducing
the ease for KT. The problem with KT becomes
even more acute as more and more issues arose,
particularly when the chances for direct face-to-
face meeting or social communication, becomes
less and less impractical. The fact that software
architecture  development is a knowledge
integration activity, to bridge the physical gap is
very important. This explains the previous findings
of mediums used for KT, in which various types of
communication technologies have been employed
to cater the communication problems between the
non-collocated teams.

The findings are continued by the selection of
functional, experience and capability differences as
second most frequently chosen external conditions
surrounding KT. Software architecture
development witnesses the integration of team
members from diverse backgrounds, experiences,
and capabilities. In addition, being assigned with
different roles and functions has consequently
increased the gap between teams. Sarker (2003), in
her study found that difference in individual
capabilities undermines KT. Reige (2005) also
mentions the difference in experience in his study
regarding barriers in sharing of knowledge.

The numbers are closely entailed by lacking of
time (Roux et al. 2006; Reige, 2005; Ramirez,
2007) as one of the external conditions surrounding

KT. A typical nature of software project teams
(including software architecture development) does
not only confined into achieving specified purpose
but also to work within constraints of time. Time
restrictions have become the possible reason that
drives the teams to hoard their knowledge rather
than transfer and share with others. Participants
also highlighted the lack of time to engage in KT as
a result for being too occupied with the assigned
task and reaching the dateline. This comment is
consistent with Michailova and Husted (2003), in
which according to them, people naturally focus on
those tasks that are more beneficial to them. There
was one participant who also commented that due
to physical distance, they rarely have the time to
identify colleagues in need of specific knowledge.

By far, lacking of trust has been nominated by the
literature as one of the most common impediments
to effective KT (Naftanaila, 2010; Falconer, 2006;
Lucas, 2006; Reige, 2005; Hildreth & Kimble,
2004). According to findings in Reige (2005),
there are two terms concerning this issue. Firstly,
there is a lack of trust in people because they may
misuse knowledge or take unjust credit for it and
secondly there is a lack of trust in accuracy and
credibility of knowledge due to the source, which
the latter was studied by Sarker (2002), in her
research that investigate KT among information
system development (ISD) team members.
Naftanaila (2010) asserts that most people are
unlikely to share their knowledge and experience
without a feeling of trust. This is particularly true
when according to some participants, lack of trust
is mainly due to lack of social communication
between teams, since they are not physically
collocated. Social communication often realized
through informal networks, which is very limited
considering the nature of non-collocated teams.
Additionally, “...the nature of inter community
social relation...where people have limited sense of
shared identity, makes the existence of trust less
likely...” (Hildreth & Kimble, 2004)

Reluctance to share knowledge can be possibly
caused by the specialized nature of the knowledge
both analyst and software architect teams
possessed. The specialist nature of their
knowledge, combined with the extensive lack of
interaction which had been typical, meant that they
had very poor understanding of how other
functions worked, or what their constraints or
requirements were (Hildreth & Kimble, 2004).
When asked further about the extent of their
agreement concerning this as a reason why there is

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 — 6 July 2012 500



a reluctance to share knowledge with others, there
were seemed to be no deniable. However, there
were few participants who added personal gain and
power (job security) as the causes to become
reluctant to share knowledge. This finding is in line
with Paghaleh et al. (2011). Another finding
perceived from the participants concerning the
cause for this reluctance is the inability to absorb
new knowledge due to incompetence or limitation
in their existing stock of knowledge:

“Sometimes, we feel hesitant to share because
we are not so sure we can correctly convey to others
what we really want to tell them ...it is better to keep
that to ourselves than giving them the wrong ideas”

Another external condition surrounding KT during
software architecture development as perceived by
the participants is lack of motivation. There is an
indication that it is the primary trigger for KT
(Ajmal & Koskinen, 2008; Frey & Osterloh,
2000;). Many studies have been conducted to
investigate the extent of effect the lack of
motivation has, upon KT (Mclaughlin et al., 2008;
Disterer, 2001; Frey & Osterloh, 2000). Lack of
motivation, particularly extrinsic motivation has
been raised by many as closely related with
managerial or organizational issues. This type of
motivation is about expected organizational
rewards and reciprocal benefits. On the other hand,
intrinsic motivation refers to knowledge self-
efficacy and enjoyment in helping others and is
very important to help perform complex or creative
tasks such as developing architecture. In neither
ways, both team leader and project manager plays a
significant role in cultivating the sense of
motivation among team members. In order to fulfill
their  tasks  during software  architecture
development, KT between teams should be of
importance despite of physical distance. An
observation reported by one participant regarding
this is that KT has always been seen as laborious
especially in terms of time and effort. The tendency
to fully concentrate in one’s work in order to catch
the dateline explains why KT is seen in such a way.
It is important to note, as is mentioned by Milne
(2007), that individuals are often motivated to keep
their tacit knowledge for themselves rather than
share it. In software architecture development, both
analyst and software architect teams need to be
able to exploit these tacit knowledge.

The participants also chose low awareness of the
value and benefit as one of the external conditions
surrounding KT, during software architecture
development. One probable reason that drives this

issue is that they do not believe these benefits from
transferring knowledge. Even worst, they did not
actually experience KT although they make claim
that they have. As displayed in typical scenario of
general software development teams, they often
create island of knowledge due to low awareness
that the knowledge possessed by the other teams is
valuable and useful, which can help accelerate the
completion of their tasks. Parallel to this, the
intention to transfer knowledge is refrained by the
thought that they already possessed a certain level
of knowledge, and thus KT is not much in need.
When asked their opinion regarding this, the
participants were unanimously agreed to have been
in such state of condition. A few added by stressing
their uncertainty of the presence of KT, due to lack
of understanding of the process involved.

v CONCLUSION

We believe our effort fills in the gap due to lack of
understanding and prescription of KT particularly
in software architecture development, which
consists of analyst and software architect teams that
are non-collocated. Future research directions
including examine KT in more detail from other
different phases in software development life
cycles (SDLC); development, testing and
maintenance. This strategy allows for a
comprehensive view in regards to KT event during
software development projects. In order to obtain
more concrete lens of KT in software architecture,
other roles apart from the analysts and software
architects, but are indirectly involved in developing
it (including project manager and project leader)
seemed to be a fruitful idea of interest to study.

REFERENCES

Ajmal, M.M. and Koskinen, K.U. (2008), ‘‘Knowledge transfer in
project-based organizations: an organizational culture perspective’’,
Project Management Journal, 39(1), 7-15.

Andreas, H. P. (2002). A comparison of face-to-face and virtual
software development teams. Team Performance Management: An
International Journal 8(1/2), 39-48.

Anna, W., Bambang, T., Glen, M. D., Chen, L. (2009). Barriers to
effective knowledge transfer in project-based organisations. In
McCaffer, Ron (Ed.) Proceedings of the 2009 International
Conference on Global Innovation in Construction Proceedings,
Loughborough University UK, Holywell Park, Loughborough
University, 220-230.

Bass, L., Clements, P., Kazman, R., Klien, M. (2008). Models for
Evalauting and Improving Architecture Competence. Technical
Report. Software Engineering Institude. Carnegie Melon.

Berlo, D.K ( 1960) The Process of Communication: an introduction to
the theory and practice. New York. Holt, Rinehart and Winston.

Boloix, G. & Robillard, P. N. (1995). A Software System Evaluation
Framework. /IEEE, 17-26.

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 — 6 July 2012 501



Conroy, G. Soltan, H. (1998). ConSERYV, a project specific risk
management concept. International  Journal of  Project
Management, 16(6), 353-366.

Correa, C. M. (1996). Strategies for software exports from developing
countries. World Development, 24(1), 171-182.

Disterer, G. (2001). Individual and Social Barriers to Knowledge
Transfer.  Conference  Proceedings 34th  Annual  Hawaii
International Conference on System Sciences, Los Alamitos,
CA:IEEE Press.

Falconer, L. (2006). Organizational learning, tacit information, and e-
learning: a review. The Learning Organization, 13(2), 140-151.

Faraj, S., Sproull, L., (2000). Coordinating Expertise in Software
Development Teams. Management Science, 46(12), 1554-1568.

Gregory, R., Beck, R. and Prifling, M. 2009. _Breaching the
knowledge transfer blockade in it offshore outsourcing projects: A
case from the financial services industry‘. Proceedings of the 42nd
Hawaii International Conference on System Sciences. Wikoloa, Big
Island, Hawaii

Hansen, M. T. (2002). Knowledge Networks: Explaining Effective
Knowledge Sharing in Multiunit Companies. Organization Science,
13(3), 232-248.

Harandi, M. T. (1988). Building a Knowledge-Based Software
Development Environment. [EEE Journal on Selected Areas in
Communications, 6(5), 862-868.

Hildreth, Paul; Kimble, Chris (2004). Knowledge Networks:
Innovation through Communities of Practice. IGI Global.

Jablin, F. M., Putnam, L. L. (2001). The New Handbook of
Organizational Communication: Advances in Theory, Research,
and Methods. Thousand Oaks, CA: Sage Publications.

Joshi, K. D., Sarker, S., Sarker, S. (2007). Knowledge transfer within
information systems development teams: Examining the role of
knowledge source attributes. Decision Support Systems, 43(2), 322-
335.

Ko , A. J, DeLine, R., Venolia, G. (2007). Information needs in
collocated software development teams. International Conference
on Software Engineering (ICSE), 344-353.

Ko, D. G., Kirsch, L. J., & King, W. R. (2005). Antecedents of
Knowledge Transfer From Consultants to Clients in Enterprise
System Implementations. MIS Quarterly, 29(1), 59-85.

Kruchten, P. (2011). Software Architecture for the Business Analyst.
Tutorial 3 in the 9" Working IEEE/IFIP Conference on Software
Architecture. Boulder, Colorado, USA.

LaToza, T. D., Venolia G., Deline, R. (2006) Maintaining mental
models: A study of developer work habits. Proceedings of ICSE'06
Shanghai, 492-501.

Lucas, L.M. (2006). The role of culture on knowledge transfer: the
case of the multinational corporation. The Learning Organization,
13(3), 257-275.

McLaughlin, S., Paton, R. A., Macbeth, D. K. (2008). Barrier impact
on organizational learning within complex organizations. Journal of
Knowledge Management 12(2), 107-123.

Michailova, S. and Husted, K. (2003). Knowledge sharing in Russian
companies with western participation. Management International,
6(2), 19-28.

Milne, P. (2007). Motivation, incentives and organisational culture.
Journal of Knowledge Management, 11, 28-38.

Naftanaila, 1. (2010). Factors affecting Knowledge Transfer in Project
Environment. Review of International Comparative Management,
11(5), 834.

Osterloh, M., Frey, B.S. (2000). Motivation, knowledge transfer, and
organizational form. Organization Science, 11(5), 38-50.

Paghaleh, M. J., Shafizadeh, E., Mohammadi, M. (2011). Information
Technology and its Deficiencies in Sharing Organizational
Knowledge. International Journal of Business and Social Science
2(8).

Paulin, D and Suneson, K. (2012). Knowledge Transfer, Knowledge
Sharing and Knowledge Barriers — Three Blurry Terms in KM. The
Electronic Journal of Knowledge Management 10(1), 81-91.

Pedersen, T., Petersen, B., Sharma, D. (2003). Knowledge Transfer
Performance of Multinational Companies. Special Issue.
Management Internal Review, 43, 69-90.

Ramesh, B., Tiwana, A. (1999). Supporting collaborative knowledge
management in new product development teams. Decision Support
Systems, 27(2), 213-35.

Ramirez, A. (2007). To Blog or Not to Blog: Understanding and
Overcoming the Challenge of Knowledge Sharing, Journal of
Knowledge Management Practice, 8(1).

Riege, A. (2005). Three-dozen knowledge sharing barriers managers
must consider. Journal of Knowledge Management, 9(3), 18-35.

Roux, D. J., K. H. Rogers, H. C. Biggs, P. J. Ashton and A. Sergeant.
2006. Bridging the science-management divide: moving from
unidirectional knowledge transfer to knowledge interfacing and
sharing. Ecology and Society 11(1), 4.

Rus, I, Lindvall, M. (2002). Knowledge Management in Software
Engineering. [EEE Software, 19(3), 40-59.

Sarker, S., Sarker, S., Nicholson, D., & Joshi, K. D. (2003).
Knowledge Transfer in Virtual Information Systems Development
Teams: An Empirical Examination of Key Enablers. Proceedings of
the Hawaii International Conference on System Sciences (HICSS-
36), Big Island, Hawaii.

Sawyer, S. (2001) "Effects of Conflict on Packaged Software
Development Team Performance,"Information Systems Journal,
11(2) 155-178.

Szulanski, G. (2000). The process of knowledge transfer: A diachronic
analysis of stickiness. Organizational Behavior and Human
Decision Processes, 82(1), 9-27.

Tiwana, A. (2004). An empirical study of the effect of knowledge
integration on software development performance. Information &
Software Technology 46(13), 899-906.

Walz, D., Elam, J., and Curtis, B. (1993). Inside a Software Design
Team: Knowledge, Sharing, and Integration. Communications of the
ACM 36(10), 63-77.

Wei’e, W. (2011). Analysis of knowledge transfer process and model
building. International Conference on E-Business and E-
Government. IEEE, 1, 1-478.

Wu, W. L., Hsu, B. F., Yeh, R-S. (2007). Fostering the determinants of
knowledge transfer: a team-level analysis. Journal of Information
Science, 33(3) 326-339.

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 — 6 July 2012 502



