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ABSTRACT 

With the huge increase of software functionalities, 

sizes and application domain, the difficulty of cate-

gorizing and classifying software for information 

retrieval and maintenance purposes is on demand. 

This work includes the use of Latent Semantic In-

dexing (LSI) in classifying neural network and k-

nearest neighborhood source code programs.  Func-

tional descriptors of each program are identified by 

extracting terms contained in the source 

code.Inaddition, information on where the terms 

are extracted from is also incorporated in the LSI. 

Based on the undertaken experiment, the LSI clas-

sifier is noted to generate a higher precision and 

recall compared to the C4.5 algorithm as provided 

in the Weka tool.  

Keywords—Latent Semantic Indexing, Software 

Classification; C4.5,Machine Learning Algorithms 

 

I. I&TRODUCTIO& 

 

 Document classification has always been 

an important application for information retrieval. 

It can improve the speed of information retrieval 

and aid in locating and obtaining the desired infor-

mation rapidly and accurately. Nowadays, due to 

the development of information technology, exten-

sive studies have been conducted on document 

classification. Automatic software classification 

became one of the most important topics in soft-

ware engineering area (Kawaguchi, Garg, Makoto, 

& Inoue, 2002). This is because of the new prob-

lems occurred upon constructionof software arc-

hives. For instance in 2002, the SourceForge.net 

had over seventy thousand registered software 

(Kawaguchi, Garg, Makoto, & Inoue, 2004). As 

this repository receives input (i.e. software files) 

from various developers whom have various back-

grounds, categorizing the packages relies heavily 

on the textual provided and/or contained in them. 

One issue which arises from such situation is the 

involvements of human which may be subjective. 

Existing approaches that adopts manual classifica-

tion require more time and high level of software 

understanding (Kawaguchi et al, 2002). This is be-

cause of the large size code embedded in software 

and the ambiguous code specification. Hence, the 

classification tasks are very time consuming. Addi-

tionally, inconsistent classification resultsmay oc-

cur due to more than one employee organizing the 

files. 
 This work tries to overcome such problem 

by introducing the use of Latent Semantic Indexing 
(LSI) that utilizes terms extracted from source code 
program for classification purposes. The LSI  in-
formation retrieval model builds upon the prior re-
search in information retrieval and, using the singu-
lar value decomposition (SVD)(Golub& Loan, 
1996) to reduce the dimensions of the term-
document space. Such an attempt is seen to solve 
the synonomy and polysemy problems that affect 
automatic information retrieval systems. In this 
work, the LSI relies on the constituent terms of the 
source code program to suggest the program's se-
mantic content. 

 The undertaken work is a preliminary expe-
riment to investigate the utilization of LSI on func-
tional descriptors of source code programs in de-
termining the domain of a program.Furthermore; it 
is to identify whether the LSI approach is better 
compared to existing work that employs decision 
tree, C4.5. This paper is structured as follows; in 
section II, we present brief information on existing 
work in software classification along with Latent 
Semantic Indexing. Section III includes description 
on how the work was performed and this is fol-
lowed with a discussion on the obtained results in 
section IV. Finally, we conclude the work in section 
V that also contains the future work.  

 

II. SOFTWARE  CLASSIFICATIO&  

 There are many source code uploaded on 

the Internet that can be accessed through various 

web sites  such as SourceForge, Plant Source Code 

and Free code(Korvetz, Ugurel, & Giles, 
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2003).Software classification plays a role in the 

field of software reusability(Poulin&Yglesias, 

1993). For instance70% of software development 

budgets are spent on software maintenance, so the 

need of classifying the software to a particular type 

became an important topic to help in making accu-

rate decision on code changes(Phillips & Black, 

2005). Software classification helps to order soft-

ware components in one repository into specific 

groups. With this, similar components can be 

grouped in the same category depending on the 

functionality of these components (Merkl, 1995).  

 Code metric histograms and genetic algo-

rithms have been used to develop the Author Iden-

tification Software that identifies the original au-

thor(Lange & Mancoridis, 2007). 14 variables have 

been specified such as the way of typing the name 

of the functions and code specifications. Also soft-

ware metrics were used to portray specified va-

riables into histograms and later studied the histo-

grams to identify the author(Lange & Mancoridis, 

2007). 

 Recent work that also utilizes software me-

trics in source code classification is reported by 

(Yusof & Ramadan, 2010) and (Lerthathairat & 

Prompoon, 2011). In the former work, the re-

searchers classify source code programs using clas-

sifiers included in WEKA. Three software metrics 

were used to automatically classify software pack-

ages, namely the Line of Codes (LOC), McCabe's 

Cyclomatic Complexity (MVG) and Weighted 

Methods per Class (WMC1). On the other hand, the 

work presented in (Lerthathairat & Prompoon, 

2011) focuses on  software metrics  and  fuzzy  

logic  to  improve  code  quality  with  refactoring 

techniques. They classify bad smell, clean code and 

ambiguous code. 

 To classify source code programs into cat-

egories, existing software classification approach 

also utilizes  the Comments and specification, 

source code variables and Readme files(Korvetz, et 

al., 2003). Another work done in software classifi-

cation is discussed in (Jianhui, 2008).They classify 

malicious samples into categories using three phas-

es: Analyzing an object, Represent and store the 

knowledge and self learning from the new objects. 

 

A. Latent Semantic Indexing 

 Latent Semantic Indexing reduces the vec-

tor space by creating a subspace of the matrix di-

mensions in order to remove noise and redundant 

terms. The reduced space presents a meaningful 

association between terms that in turn relate docu-

ment(Kosala&Blockeel, 2000). The first step is to 

index frequently occurring terms in a term-

document matrix and compute singular value de-

composition (SVD) from the original k-

dimensional term-document matrix. SVD is a ma-

trix decomposition method commonly used for data 

analysis. The original term-document matrix, X, is 

decomposed into several matrices so their features 

can be revealed, for example document-document 

relationships. The decomposition is expressed as, 

 

X(SVD) = T t×k · Sk×k · Dk×d 

 

where, T is a left singular vector representing a 

term by dimension matrix, S is a singular value 

dimension by dimension matrix and D is a right 

singular vector representing document by docu-

ment matrix(Kontostathis&Pottenger, 2003). The 

decomposed matrices are then truncated into a di-

mension less than the original k-value and the 

original X matrix approximated in the reduced la-

tent space which better represents semantic rela-

tionships between terms compared to the original 

k-dimension document space. 

 A work that utilizes LSI in document clas-

sification can be seen in (Kosala & Blockeel, 

2000). They extend the use of existing LSI by inte-

grating information on the document ontologies. 

Such an approach is believed to improve knowl-

edge extraction from web resident documents. 

 In the work done by (Cheng Hua & Soon 

Cheol, 2007), they construct document classifica-

tion systems using artificial neural network that is 

integrated with LSI. The experimental evaluations 

show that the system training with the LSI is consi-

derably faster than the original system training with 

the Vector Space Model and that the former yields 

better classification results. There are two differ-

ences between our work and theirs. First, we are 

using LSI independently and second we are utiliz-

ing LSI on a semi structured document. Hence, 

terms contained in the document may have differ-

ent weighting.   

 A recent work on LSI in document classifi-

cation is as reported by (Liping et al, 2010). They 

proposed a compact document representation with 

term semantic units which are identified from the 

implicit and explicit semantic information. The im-

plicit semantic information is extracted from syn-

tactic content via LSI while the expli-

cit semantic information is mined from the external 

semantic resource  namely the Wikipedia. 
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III. MATERIALS A&D METHODS 

 This section provides information on how 
the work was undertaken. There are 4 steps in-
volved; data collection, data preprocessing, devel-
opment of LSI matrix and evaluation. 

 

A. Data Collection 

 In the first stage, we downloaded 100 pro-

grams of neural network and k-nearest neighbor-

hood, respectively, from software repositories (e.g. 

SourceForge.net and Koders.com).These programs 

are then stored in separate folders. From the ob-

tained programs, we only include 90% of the pro-

grams while the remaining 10 programs from each 

category will later be used as the testing dataset.   

 

B. Data Preprocessing 

 In order to extract the functional descrip-

tors terms (terms contained in the source code pro-

gram), we utilizes a code parser that is able to ex-

tract each term separately from each line in the 

program. This parser is able to operate on two pro-

gramminglanguages which are the C and Java lan-

guage.  Prior to utilizing the extracted term, we per-

formed two other processes. The first process is 

stemming which is done using Porter Stemmer  

algorithm (Porter, 1997). Stemming algorithm is a 

process for removing the commoner morphological 

and inflexional endings from words in English. Its 

main use is as part of a term normalization process 

that is usually done when setting up information 

retrieval systems.In the second process, we discard 

common adjectives (big, late, high), frilly terms 

(therefore, thus, however, albeit, etc.), terms that 

appear in every source code program and that ap-

pear in only one program. 

 Using the list of content terms and pro-

grams, we later generate a term-document matrix. 

This matrix represents a very large grid, with pro-

grams listed along the horizontal axis, and content 

terms along the vertical axis. For each term in the 

list, we go across the appropriate row and put ‘1’ in 

the column for any program where that term ap-

pears. If the term does not appear, we assign ‘0’. 

We then obtain a numerical grid with a sparse scat-

tering of 1.  

 In order to better represent the extracted 

terms, we also employ the local and global weight-

ing. Termsthat frequently appear in a program and 

are at specific location (for example a term found 

as a class name is more important compared to the 

one found in a comment statement) are given a 

greater local weight than terms that appear once. 

We use a formula called logarithmic local weight-

ing to generate our actual value. On the other hand, 

the global weighting applies to the set of all pro-

grams in our collection. Such a weighting indicates 

that terms that appear in only a few programs are 

likely to be more significant than terms that are 

distributed widely across the collection.  In this 

work, we employ the inverse document frequen-

cy to calculate global weights. 

 

C. LSI Matrix Development 

 Once the final term-document matrix is 

constructed, we need the Singular Value Decompo-

sition(Golub& Loan, 1996)of this matrix in order to 

construct a semantic vector space that can be used 

to represent conceptual term-document associa-

tions. Such decomposition projects the large multi-

dimensional space down into a smaller number of 

dimensions. In doing so, terms that are semantical-

ly similar will get squeezed together, and will no 

longer be completely distinct. 

 

D. Evaluation 

 In order to evaluate the LSI classifier, we 

compare its performance against the classification 

made using decision tree C4.5. A total of 10 source 

code programs from both Neural Network and K-

nearest neighborhood categories (which were not 

used in constructing the LSI matrix) are utilized as 

the testing dataset.  

 Precision and recall are the two measure-

mentsused to evaluate the classification accuracy. 

Precision is the proportion of relevant instances in 

the results returned. For instance, if the precision is 

0.72 then it means that 72% of returned instances 

were relevant. On the other hand, recall values 

represent the ratio of relevant instances found to the 

total of relevant instances(Pumpuang, et al, 2008). 
 

 

IV. RESULTS 

 The obtained result is depicted in Tables 1 

and 2. Table 1 contains the precision and recall for 

dataset involving neural network programs while 

Table 2 depicts the related values for k-nearest 

neighborhood source code programs. 
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Table 1: Precision and Recall for &eural &etwork 
Programs 

  LSI C4.5 

  Precision Recall Precision Recall 

Q1  0.60 0.80 0.50 0.75 

Q2 0.60 0.80 0.50 0.74 

Q3 0.80 0.85 0.70 0.59 

Q4 0.80 0.85 0.60 0.79 

Q5 0.70 0.68 0.80 0.72 

Q6 0.80 0.79 0.70 0.75 

Q7 0.90 0.83 0.80 0.80 

Q8 0.50 0.83 0.50 0.81 

Q9 0.70 0.77 0.70 0.71 

Q10 0.70 0.78 0.60 0.78 

 
 

Table 2: Precision and Recall for K-nearest &eigh-
borhood Programs 

  LSI C4.5 

  Precision Recall Precision Recall 

Q1  0.90 0.92 0.80 0.90 

Q2 0.80 0.79 0.80 0.75 

Q3 0.80 0.85 0.80 0.86 

Q4 0.80 0.85 0.80 0.83 

Q5 0.70 0.71 0.70 0.70 

Q6 0.80 0.84 0.80 0.83 

Q7 0.90 0.93 0.80 0.90 

Q8 0.60 0.75 0.70 0.74 

Q9 0.80 0.84 0.80 0.82 

Q10 0.80 0.84 0.80 0.85 

 

 

In all of the testing programs, LSI has generated at 

least equal precision with C4.5 except for Q5 in 

Neural Network and Q8 in K-nearest neighborhood 

domain.  We also illustrate the average of precision 

and recall values in Figure 1 and Figure 2 respec-

tively. In both figures, it is noted that LSI generates 

a higher precision and recall values compared to 

C4.5.  
 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Precision - LSI vs. C4.5 

 

 

 
Figure 2: Recall - LSI vs. C4.5 

 

 

V. CO&CLUSIO& 

 

 In this work, we present the use of Latent 

Semantic Indexing that operates on terms extracted 

from source code programs. In addition, we utilize 

structure descriptors (that is the location of where 

the terms are extracted from) in calculating the lo-

cal weight of the terms. It is learned from the un-

dertaken experiments that LSI that integrates both 

functional and structural descriptors is a better clas-

sifier compared to a decision tree such as C4.5.  

 Further work needs to be done to improve 

the classification accuracy of LSI. This includes the 

use of other structure descriptors of source code 

programs. For example the data of software metric 

such as depth of inheritance tree and coupling be-
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tween objects may be useful in differentiating be-

tween machine learning engines.  
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