
Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 472

Classification of Machine Learning Engines

using Latent Semantic Indexing

Yuhanis Yusof
1
, Taha Alhersh

2
, Massudi Mahmuddin

3
 and Aniza Mohamed Din

4

1Universiti Utara Malaysia, Malaysia, yuhanis@uum.edu.my
2Universiti Petronas Malaysia, Malaysia, taha.trh@gmail.com

3Universiti Utara Malaysia, Malaysia, ady@uum.edu.my
4Universiti Utara Malaysia, Malaysia, anizamd@uum.edu.my

ABSTRACT

With the huge increase of software functionalities,

sizes and application domain, the difficulty of cate-

gorizing and classifying software for information

retrieval and maintenance purposes is on demand.

This work includes the use of Latent Semantic In-

dexing (LSI) in classifying neural network and k-

nearest neighborhood source code programs. Func-

tional descriptors of each program are identified by

extracting terms contained in the source

code.Inaddition, information on where the terms

are extracted from is also incorporated in the LSI.

Based on the undertaken experiment, the LSI clas-

sifier is noted to generate a higher precision and

recall compared to the C4.5 algorithm as provided

in the Weka tool.

Keywords—Latent Semantic Indexing, Software

Classification; C4.5,Machine Learning Algorithms

I. I&TRODUCTIO&

 Document classification has always been

an important application for information retrieval.

It can improve the speed of information retrieval

and aid in locating and obtaining the desired infor-

mation rapidly and accurately. Nowadays, due to

the development of information technology, exten-

sive studies have been conducted on document

classification. Automatic software classification

became one of the most important topics in soft-

ware engineering area (Kawaguchi, Garg, Makoto,

& Inoue, 2002). This is because of the new prob-

lems occurred upon constructionof software arc-

hives. For instance in 2002, the SourceForge.net

had over seventy thousand registered software

(Kawaguchi, Garg, Makoto, & Inoue, 2004). As

this repository receives input (i.e. software files)

from various developers whom have various back-

grounds, categorizing the packages relies heavily

on the textual provided and/or contained in them.

One issue which arises from such situation is the

involvements of human which may be subjective.

Existing approaches that adopts manual classifica-

tion require more time and high level of software

understanding (Kawaguchi et al, 2002). This is be-

cause of the large size code embedded in software

and the ambiguous code specification. Hence, the

classification tasks are very time consuming. Addi-

tionally, inconsistent classification resultsmay oc-

cur due to more than one employee organizing the

files.
 This work tries to overcome such problem

by introducing the use of Latent Semantic Indexing
(LSI) that utilizes terms extracted from source code
program for classification purposes. The LSI in-
formation retrieval model builds upon the prior re-
search in information retrieval and, using the singu-
lar value decomposition (SVD)(Golub& Loan,
1996) to reduce the dimensions of the term-
document space. Such an attempt is seen to solve
the synonomy and polysemy problems that affect
automatic information retrieval systems. In this
work, the LSI relies on the constituent terms of the
source code program to suggest the program's se-
mantic content.

 The undertaken work is a preliminary expe-
riment to investigate the utilization of LSI on func-
tional descriptors of source code programs in de-
termining the domain of a program.Furthermore; it
is to identify whether the LSI approach is better
compared to existing work that employs decision
tree, C4.5. This paper is structured as follows; in
section II, we present brief information on existing
work in software classification along with Latent
Semantic Indexing. Section III includes description
on how the work was performed and this is fol-
lowed with a discussion on the obtained results in
section IV. Finally, we conclude the work in section
V that also contains the future work.

II. SOFTWARE CLASSIFICATIO&

 There are many source code uploaded on

the Internet that can be accessed through various

web sites such as SourceForge, Plant Source Code

and Free code(Korvetz, Ugurel, & Giles,

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 473

2003).Software classification plays a role in the

field of software reusability(Poulin&Yglesias,

1993). For instance70% of software development

budgets are spent on software maintenance, so the

need of classifying the software to a particular type

became an important topic to help in making accu-

rate decision on code changes(Phillips & Black,

2005). Software classification helps to order soft-

ware components in one repository into specific

groups. With this, similar components can be

grouped in the same category depending on the

functionality of these components (Merkl, 1995).

 Code metric histograms and genetic algo-

rithms have been used to develop the Author Iden-

tification Software that identifies the original au-

thor(Lange & Mancoridis, 2007). 14 variables have

been specified such as the way of typing the name

of the functions and code specifications. Also soft-

ware metrics were used to portray specified va-

riables into histograms and later studied the histo-

grams to identify the author(Lange & Mancoridis,

2007).

 Recent work that also utilizes software me-

trics in source code classification is reported by

(Yusof & Ramadan, 2010) and (Lerthathairat &

Prompoon, 2011). In the former work, the re-

searchers classify source code programs using clas-

sifiers included in WEKA. Three software metrics

were used to automatically classify software pack-

ages, namely the Line of Codes (LOC), McCabe's

Cyclomatic Complexity (MVG) and Weighted

Methods per Class (WMC1). On the other hand, the

work presented in (Lerthathairat & Prompoon,

2011) focuses on software metrics and fuzzy

logic to improve code quality with refactoring

techniques. They classify bad smell, clean code and

ambiguous code.

 To classify source code programs into cat-

egories, existing software classification approach

also utilizes the Comments and specification,

source code variables and Readme files(Korvetz, et

al., 2003). Another work done in software classifi-

cation is discussed in (Jianhui, 2008).They classify

malicious samples into categories using three phas-

es: Analyzing an object, Represent and store the

knowledge and self learning from the new objects.

A. Latent Semantic Indexing

 Latent Semantic Indexing reduces the vec-

tor space by creating a subspace of the matrix di-

mensions in order to remove noise and redundant

terms. The reduced space presents a meaningful

association between terms that in turn relate docu-

ment(Kosala&Blockeel, 2000). The first step is to

index frequently occurring terms in a term-

document matrix and compute singular value de-

composition (SVD) from the original k-

dimensional term-document matrix. SVD is a ma-

trix decomposition method commonly used for data

analysis. The original term-document matrix, X, is

decomposed into several matrices so their features

can be revealed, for example document-document

relationships. The decomposition is expressed as,

X(SVD) = T t×k · Sk×k · Dk×d

where, T is a left singular vector representing a

term by dimension matrix, S is a singular value

dimension by dimension matrix and D is a right

singular vector representing document by docu-

ment matrix(Kontostathis&Pottenger, 2003). The

decomposed matrices are then truncated into a di-

mension less than the original k-value and the

original X matrix approximated in the reduced la-

tent space which better represents semantic rela-

tionships between terms compared to the original

k-dimension document space.

 A work that utilizes LSI in document clas-

sification can be seen in (Kosala & Blockeel,

2000). They extend the use of existing LSI by inte-

grating information on the document ontologies.

Such an approach is believed to improve knowl-

edge extraction from web resident documents.

 In the work done by (Cheng Hua & Soon

Cheol, 2007), they construct document classifica-

tion systems using artificial neural network that is

integrated with LSI. The experimental evaluations

show that the system training with the LSI is consi-

derably faster than the original system training with

the Vector Space Model and that the former yields

better classification results. There are two differ-

ences between our work and theirs. First, we are

using LSI independently and second we are utiliz-

ing LSI on a semi structured document. Hence,

terms contained in the document may have differ-

ent weighting.

 A recent work on LSI in document classifi-

cation is as reported by (Liping et al, 2010). They

proposed a compact document representation with

term semantic units which are identified from the

implicit and explicit semantic information. The im-

plicit semantic information is extracted from syn-

tactic content via LSI while the expli-

cit semantic information is mined from the external

semantic resource namely the Wikipedia.

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 474

III. MATERIALS A&D METHODS

 This section provides information on how
the work was undertaken. There are 4 steps in-
volved; data collection, data preprocessing, devel-
opment of LSI matrix and evaluation.

A. Data Collection

 In the first stage, we downloaded 100 pro-

grams of neural network and k-nearest neighbor-

hood, respectively, from software repositories (e.g.

SourceForge.net and Koders.com).These programs

are then stored in separate folders. From the ob-

tained programs, we only include 90% of the pro-

grams while the remaining 10 programs from each

category will later be used as the testing dataset.

B. Data Preprocessing

 In order to extract the functional descrip-

tors terms (terms contained in the source code pro-

gram), we utilizes a code parser that is able to ex-

tract each term separately from each line in the

program. This parser is able to operate on two pro-

gramminglanguages which are the C and Java lan-

guage. Prior to utilizing the extracted term, we per-

formed two other processes. The first process is

stemming which is done using Porter Stemmer

algorithm (Porter, 1997). Stemming algorithm is a

process for removing the commoner morphological

and inflexional endings from words in English. Its

main use is as part of a term normalization process

that is usually done when setting up information

retrieval systems.In the second process, we discard

common adjectives (big, late, high), frilly terms

(therefore, thus, however, albeit, etc.), terms that

appear in every source code program and that ap-

pear in only one program.

 Using the list of content terms and pro-

grams, we later generate a term-document matrix.

This matrix represents a very large grid, with pro-

grams listed along the horizontal axis, and content

terms along the vertical axis. For each term in the

list, we go across the appropriate row and put ‘1’ in

the column for any program where that term ap-

pears. If the term does not appear, we assign ‘0’.

We then obtain a numerical grid with a sparse scat-

tering of 1.

 In order to better represent the extracted

terms, we also employ the local and global weight-

ing. Termsthat frequently appear in a program and

are at specific location (for example a term found

as a class name is more important compared to the

one found in a comment statement) are given a

greater local weight than terms that appear once.

We use a formula called logarithmic local weight-

ing to generate our actual value. On the other hand,

the global weighting applies to the set of all pro-

grams in our collection. Such a weighting indicates

that terms that appear in only a few programs are

likely to be more significant than terms that are

distributed widely across the collection. In this

work, we employ the inverse document frequen-

cy to calculate global weights.

C. LSI Matrix Development

 Once the final term-document matrix is

constructed, we need the Singular Value Decompo-

sition(Golub& Loan, 1996)of this matrix in order to

construct a semantic vector space that can be used

to represent conceptual term-document associa-

tions. Such decomposition projects the large multi-

dimensional space down into a smaller number of

dimensions. In doing so, terms that are semantical-

ly similar will get squeezed together, and will no

longer be completely distinct.

D. Evaluation

 In order to evaluate the LSI classifier, we

compare its performance against the classification

made using decision tree C4.5. A total of 10 source

code programs from both Neural Network and K-

nearest neighborhood categories (which were not

used in constructing the LSI matrix) are utilized as

the testing dataset.

 Precision and recall are the two measure-

mentsused to evaluate the classification accuracy.

Precision is the proportion of relevant instances in

the results returned. For instance, if the precision is

0.72 then it means that 72% of returned instances

were relevant. On the other hand, recall values

represent the ratio of relevant instances found to the

total of relevant instances(Pumpuang, et al, 2008).

IV. RESULTS

 The obtained result is depicted in Tables 1

and 2. Table 1 contains the precision and recall for

dataset involving neural network programs while

Table 2 depicts the related values for k-nearest

neighborhood source code programs.

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 475

Table 1: Precision and Recall for &eural &etwork
Programs

 LSI C4.5

 Precision Recall Precision Recall

Q1 0.60 0.80 0.50 0.75

Q2 0.60 0.80 0.50 0.74

Q3 0.80 0.85 0.70 0.59

Q4 0.80 0.85 0.60 0.79

Q5 0.70 0.68 0.80 0.72

Q6 0.80 0.79 0.70 0.75

Q7 0.90 0.83 0.80 0.80

Q8 0.50 0.83 0.50 0.81

Q9 0.70 0.77 0.70 0.71

Q10 0.70 0.78 0.60 0.78

Table 2: Precision and Recall for K-nearest &eigh-
borhood Programs

 LSI C4.5

 Precision Recall Precision Recall

Q1 0.90 0.92 0.80 0.90

Q2 0.80 0.79 0.80 0.75

Q3 0.80 0.85 0.80 0.86

Q4 0.80 0.85 0.80 0.83

Q5 0.70 0.71 0.70 0.70

Q6 0.80 0.84 0.80 0.83

Q7 0.90 0.93 0.80 0.90

Q8 0.60 0.75 0.70 0.74

Q9 0.80 0.84 0.80 0.82

Q10 0.80 0.84 0.80 0.85

In all of the testing programs, LSI has generated at

least equal precision with C4.5 except for Q5 in

Neural Network and Q8 in K-nearest neighborhood

domain. We also illustrate the average of precision

and recall values in Figure 1 and Figure 2 respec-

tively. In both figures, it is noted that LSI generates

a higher precision and recall values compared to

C4.5.

Figure 1: Precision - LSI vs. C4.5

Figure 2: Recall - LSI vs. C4.5

V. CO&CLUSIO&

 In this work, we present the use of Latent

Semantic Indexing that operates on terms extracted

from source code programs. In addition, we utilize

structure descriptors (that is the location of where

the terms are extracted from) in calculating the lo-

cal weight of the terms. It is learned from the un-

dertaken experiments that LSI that integrates both

functional and structural descriptors is a better clas-

sifier compared to a decision tree such as C4.5.

 Further work needs to be done to improve

the classification accuracy of LSI. This includes the

use of other structure descriptors of source code

programs. For example the data of software metric

such as depth of inheritance tree and coupling be-

0.71

0.79

0.64

0.78

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

NN KNN

LSI

C4.5

0.8

0.83

0.74

0.82

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

NN KNN

LSI

C4.5

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 476

tween objects may be useful in differentiating be-

tween machine learning engines.

REFERE&CES

Cheng Hua, L., & Soon Cheol, P. (2007, Nov).Artificial 9eural 9et-

work for Document Classification Using Latent Semantic

Indexing. Paper presented at the International Symposium on
Information Technology Convergence, .

Golub, G. H., & Loan, C. F. V. (1996).Matrix Computations (3rd ed.):

John Hopkins University Press.
Jianhui, L. (2008). On malicious software classification. Paper pre-

sented at the International Symposium on Intelligent Infor-
mation Technology Application Workshops.

Kawaguchi, S., Garg, P. K., Makoto, M., & Inoue, K. (2002).Automatic

categorization algorithm for evolvable software archive.Six
International Workshop on principles of Software Evolution,

195-200. Retrieved from

Kawaguchi, S., Garg, P. K., Makoto, M., & Inoue, K. (2004). MUDAB-
lue: An Automatic Categorization System for Open Source

Repositories. Proceedings of the 11th Asia-Pacific Software

Engineering Conference, 184-193. Retrieved from
Kontostathis, A., & Pottenger, W. M. (2003).A framework for under-

standing LSI performance. Paper presented at the Proceed-

ings of ACM SIGIR Workshop on Mathematical /Formal
Methods in Information Retrieval.

Korvetz, R., Ugurel, S., & Giles, C. (2003).Classification of Source

Code Archive. Paper presented at the 26th annual interna-
tional ACM SIGIR conference on Research and develop-

ment in information retrieval.

Kosala, R., & Blockeel, H. (2000). Web Mining Research: A Survey.
SIGKDD Explorations, 2(1), 1-15.

Lange, R., & Mancoridis, S. (2007). Using Code Metric Histograms

and Genetic Algorithms to Perform Author Identification for
Software Forensics. Paper presented at the Proceedings of

the 9th annual conference on Genetic and evolutionary com-

putation.
Lerthathairat, P., & Prompoon, N. (2011, May).An Approach for Source

Code Classification to Enhance Maintainability. Paper pre-

sented at the Eighth International Joint Conference on Com-
puter Science and Software Engineering (JCSSE).

Liping, J., Jiali, Y., Jian, Y., & Houkuan, H. (2010).Text Clustering via

Term Semantic Units. Paper presented at the
IEEE/WIC/ACM International Conference on Web Intelli-

gence and Intelligent Agent Technology (WI-IAT).

Merkl, D. (1995, Nov/Dec 1995). Content-based software classification

by self-organization. Paper presented at the Proceedings of
the IEEE International Conference on Neural Networks.

Phillips, N., & Black, S. (2005). Distinguish between Learning, Growth

and Evolution. Paper presented at the IEEE International
Workshop on Software Evolution.

Porter, M. F. (1997). An algorithm for suffix stripping. In J. P. Karen

Sparck, Willett (Ed.), Readings in Information Retrieval (pp.
313-316): Morgan Kaufmann Publishers Inc.

Poulin, J. S., & Yglesias, K. P. (1993).Experiences with a faceted clas-

sification scheme in a large reusable software library (RLS).
Paper presented at the Seventeenth Annual International

Computer Software and Application Conference.
Pumpuang, P., Srivihok, A., & Praneetpolgrang, P. (2008).Comparisons

of Classifier Algorithms: Bayesian 9etwork, C4.5, Decision

Forest and 9BTree for Course Registration Planning Model
of Undergraduate Students. Paper presented at the Confe-

rence on Systems, Man and Cybernetics.

Yusof, Y., & Ramadan, Q. H. (2010).Automation of Software Artifacts
Classification.International Journal of Soft Computing, 5(3),

109-115.

