
Towards Developing Distributed Heterogeneous Mobile Phone Applications

Ali R. Mustafa Kattana, Rosni Abdullahb, Rosalina Abdul Salamc, Sureswaran Ramadassd

a,b,cSchool of Computer Science, Universiti Sains Malaysia
11800 USM, Penang, Malaysia

Tel:604-6533888 ext: 3610/2155/2170, Fax: 604-6573335
E-mail: akattan@cs.usm.my, brosni@cs.usm.my, crosalina@cs.usm.my

dNational Advanced IPv6 Center of Excellence(NAv6),
Level 6, School of Computer Science Building,

11800 USM, Penang, Malaysia.
Tel: 604-6533888 ext: 3004, Fax: 604-6533001

E-mail: sures@nav6.org

ABSTRACT

The advances in the mobile phone technology have enabled such
devices to be programmed to run general-purpose applications
using a special mobile edition of the Java programming
language. Java is designed to be a heterogeneous programming
language targeting different platforms. Such ability when
coupled with the provision of high-speed mobile Internet access
would open the door for a new breed of distributed mobile
applications. This paper explores the limitations of this
technology and addresses the consideration that must be taken
when designing and developing such applications.

Keywords
Mobile Java, MIDlet Development, Distributed Applications.

1.0 INTRODUCTION

The wide spread of mobile cell-phones is far more ubiquitous
when compared to the spread of PCs. Their processing power,
as well as their storage capacity, has increased dramatically
during the past few years (Knyziak and Winiecki 2003). The
‘call’ functionality, which is what the phone is about, became
just one of many others functionalities that are equally
important from a customer perspective. Taking and editing
digital photos, watching live video, listening to music, are just
few to mention. Applications can be added or removed
depending on desired functions. The Java programming
language became the common ground for developing
applications for such phones (Xu 2006).

Fast Internet access via UMTS (3G), EDGE or WiFi
technologies would become a standard low cost service
provided to any mobile network subscriber. The relatively slow
response time for the mobile applications that used to utilize
the former CSD and GPRS technologies (Knyziak and
Winiecki 2003) is something of the past. This would open the
door for a new breed of mobile-based distributed applications
that are to be integrated into larger existing computing
infrastructures (Mock and Couturier 2005).

This paper explores the limitations as well as the consideration
that must be perceived when designing and developing such

applications. These were concluded based on actual tests done
in comparison with their desktop counterparts. It is essential to
have an idea about the Java mobile framework environment
first in order to understand the nature of mobile application
development.

This paper is organized as follows. Section II and III, will
cover mobile Java framework. They also include highlights
about the type of tests that need to be conducted to evaluate the
capabilities that are considered relevant to distributed
processing. The test model and the actual tests are presented in
section IV and V respectively. Finally, the conclusions are in
section VI.

2.0 PROGRAMMING MOBILE DEVICES

Sun Micro Systems Java programming language is one of the
most popular languages used to program mobile devices. It is
referred to as Java 2 Micro Edition or J2ME (lately known as
Java ME). Basically, this is a cut-down version of the Java 2
Platform, Standard Edition (J2SE) that is tailored to suit mobile
devices. As can be seen in Figure 1 (Xu 2006), Sun Micro
Systems divides mobile devices into two categories; High-end
representing PDAs and Low-end representing mobile phones
and entry-level PDAs. The processing power of the former is
usually 32-bit while the latter is limited to 16-bit which is the
interest of this paper since they are more ubiquitous. Writing
applications for mobile devices is totally different from writing
applications for PCs (Mazlan 2006).

The framework is composed of a set of basic classes that are
built into the mobile phone’s firmware in addition to a set of
optional packages that are loaded into the phone memory based
on the application’s needs.

JCP; Java Community Process (www.jcp.org) represents an
alliance of participating members with most of the major
mobile manufacturers and mobile service providers being
involved. JCP is responsible for laying out the specifications
for mobile Java. These are introduced in the form of JSRs; Java
Specification Requests, to provide common implementation
guidelines for mobile device manufactures and service vendors
to undertake (Klingsheim, Moen et al. 2007). Such

specifications are flexible to allow extension and promote
compatibility. Despite of this, some manufactures have
followed custom trends to add more functionality to their line
of mobile devices. Unfortunately this would sometimes violate
the promoted compatibility between different phone brands and
might result in some unanticipated Java application bugs
(Klingsheim, Moen et al. 2007).

Figure 1: The different Java frameworks (Xu 2006)

2.1 Connected Limited Device Configuration

The configuration that defines small, mobile devices is known
as the Connected, Limited Device Configuration (CLDC) (Sun
Microsystems Inc. website). Examples of CLDC devices are
mobile phones and pagers. These devices will have memory
between 160 and 512 Kbytes and use the Kilobyte Virtual
Machine (KVM) (Helal 2002) though such a memory based
distinction is no longer valid. CLDC 1.1 (JSR 139) is the
current version. CLDC 1.1 provides two basic packages for
networking support:

• The java.io package, which provides classes for input
and output through data streams. This includes
reading of primitive data types streams and byte array
streams.

• The javax.microedition.io, which provides classes for
the Generic Connection framework. This includes
creating connections (TCP based) and datagrams
(UDP based).

Object Serialization is not supported and the created
connections use blocking IO methods to achieve its
functionality. Java RMI (Remote Method Invocation) is not
supported under CLDC (Mock and Couturier 2005).

2.2 Mobile Information Device Profile

On top of the CLDC lies another set of classes, known as
MIDP, that extend CLDC’s functionality further (Klingsheim,
Moen et al. 2007). This set is referred to as a profile. The
Mobile Information Device Profile 2.0 or MIDP 2.0 (JSR 118),
which is an enhancement over the former MIDP 1.0 (Sun

Microsystems Inc. website), is currently the most commonly
used profile in mobile phones.

Most of these enhancements address the security and privacy
issues due to the added networking capabilities and the
increased functionalities of the device (Klingsheim, Moen et al.
2007). The profile does not allow for security reasons dynamic
class loading from sources different than its own JAR file
(Mock and Couturier 2005).

Figure 2: J2ME Optional Packages

2.3 Optional Packages

As can be seen in Figure 2, many optional packages can be
added based on the intended application needs. These are also
specified under JCP as JSRs (Klingsheim, Moen et al. 2007).
These optional packages are tied to the provision of certain
hardware features within the mobile device itself. For instance,
the BTAPI package contains classes that enable the use and
control of the device’s Bluetooth feature if such a feature
exists.

The same can be said about the other packages and the
manufacturer should state clearly which of these are supported
to facilitate application development and testing (Mazlan
2006). In addition to the optional packages, we found that the
vendors sometimes would achieve extra functionality by
providing their own customized packages as will be discussed
later.

3.0 MIDLETS

A MIDlet is a J2ME mobile application. MIDlets are analogous
to Java Applets known under the J2SE framework. The mobile
phone has its own dedicated OS, namely the Application
Management System (AMS). AMS is responsible for the
loading, starting, pausing and destroying of MIDlets (Marejka
2005). Most of the recent mobile phones have a more complete
and multi-threading capable OS like Symbian™ (Jode 2004).

3.1 MIDlet Lifecycle

In order to develop distributed Java based mobile applications
it is essential to understand that MIDlets have different
execution states (Marejka 2005).

Figure 3: MIDlet Lifecycle

As can be seen in Figure 3, once the MIDlet files are installed
in the phone’s memory, the user can run the MIDlet by
selecting it using a menu like GUI. The AMS would create an
instance of this MIDlet and prepare it for execution. The
MIDlet has three different states: Paused, Active, and
Destroyed. All of these states are reflected by special methods
within the MIDlet’s code (Mock and Couturier 2005), (Helal
2002), (Marejka 2005). The Active state is where the MIDlet is
doing its intended functionality. The paused state is the state
where the MIDlet would be in the event of an incoming call or
other high priority event that requires the MIDlet to pause. The
MIDlet in such case would release its resources and wait till
the high priority event is completed were by then it can ask the
AMS to resume its functionality. Finally the Destroyed state is
the state were the final house keeping is done to release any
used resources and save any data prior to MIDlet termination.
MIDlets can save persistent data on the phone memory using a
system known as RMS (Record Management System) (Jode
2004).

Once the MIDlet instance is terminated, it seizes to exist from
the working memory of the device. However it may keep the
RMS saved data for use in the next run.

It is worth mentioning that recent mobile phones have a more
capable operating system due to their higher processing power
capability. Such OS would ignore the Paused state where the
MIDlet may continue running in the background. The Nokia™
S40 series with its Symbian™ based OS is an example of this
(Jode 2004).

3.2 MIDlet Development

Sun Micro Systems have provided a special development kit
that makes use of the existing J2SE compiler to develop
MIDlets. Java Wireless Toolkit for CLDC can be used to
develop, test and debug mobile applications (Sun
Microsystems Inc. website). It has a special set of emulators
that will mimic a mobile environment.

The developer would use his/her preferred text-editor or
integrate the toolkit with an IDE (Helal 2002) to edit the
program code since it’s not provided along with the kit.

The kit was used to develop some basic applications to test
with. Sun’s kit represents a generic platform to develop mobile
applications without targeting a specific mobile brand. Java
promotes the concept of ‘write once run any were’.
Unfortunately, this is not totally true when it comes to mobile
Java applications. To be able to access the device’s specific
features and avoid compatibility issues that might exist
between different mobile brands, special tailored versions of
this kit are being offered by the device vendors (Klingsheim,
Moen et al. 2007), (Helal 2002). These customized kits would
include special packages that augment the original set. In
addition, the emulators are extended to emulate actual
commercial sets not just generic virtual emulators like those
provided with Sun’s toolkit. The developed MIDlets must be
re-compiled and tested using those customized toolkits to avoid
possible bugs (Klingsheim, Moen et al. 2007).

3.3 MIDlet Signing and Installation

MIDP 2.0 has introduced a new security model. In order to
have trusted MIDlet suite the origin and integrity of the MIDlet
must some how be authenticated. This is accomplished by
having the MIDlet suite signed using a public key
infrastructure (PKI). It uses the X.509 PKI, an ITU-T standard
(Klingsheim, Moen et al. 2007).

Trusted MIDlet suites will be associated with a root certificate,
which in turn is associated with a protection domain. The
device vendor installs many of such root certificates on the
device itself. The MIDlet suite should explicitly declare what
permissions are needed. Such permissions must be a subset of
the permissions given to the associated protection domain
otherwise MIDlet suite installation will fail. The signing
process is subjective to a fee by the root certificate party.

The MIDP 2.0 security model also provides the concept of
protected API where access to those APIs is controlled by
permissions. A Protection Domain is used to define a set of
interaction modes and permissions, which grant access to an
associated set of protected APIs.

An installed MIDlet suite is bound to one protection domain.
MIDP 2.0 supports at least one protection domain; the
untrusted domain. A set of protection domains supported by an
implementation defines the security policy.

Signed MIDlets could acquire special privileges. Such
privileges are not granted to "untrusted" MIDlets and user
intervention may be needed to grant them access. This could
become an inconvenient process and the MIDlet's functionality
could be crippled if it's not granted the right permissions since
user intervention is not always possible

4.0 DISTRIBUTED MOBILE APPLICATION
MODEL

A client-server model is basically a distributed system where
processes in the distributed system are divided into two
(possibly overlapping) groups. The request-reply behavior is
when the client is requests a service from a server by sending it
a request and subsequently waiting for the server’s reply
(Tanenbaum and Steen 2002).

This model was adopted to develop a simple test application
that would promote testing the distribution and networking
functionality in the mobile devices and as seen in Figure 4.

Figure 4: Test Application

In this application the client, which is supposed to be the
mobile device in this case, would ask the server to provide a
random (double) number. Upon receiving this number the
mobile client is to calculate the 'Square' of it and then send it
back to the server and so on. Care was taken to handle the
application's "Paused" state such that the device would be able
to store and retrieve its current connection state. The idea is to
compare how the development of this application would go
when targeting a mobile platform.

5.0 CONDUCTING TESTS

Or first goal was to see how convenient it was to build the
mobile client MIDlet for the application discussed in the
previous section. Our server application was hosted in a
Windows 2003 server connected to the Internet using a global
IP address. To build the client, we tested using three
development kits (SDKs); Sun's, Nokia's and SonyEricsson's.
Our MIDlet's code used the standard CLDC 1.1 and MIDP 2.0
avoiding any custom packages.

Since the environment lacks RMI and Object Serialization, we
had to rely on building basic client-server sockets to achieve
the mentioned functionality. J2ME relay’s on blocking I/O
methods and lacks the new non-blocking model available on
the desktop version. Other than that the J2ME framework
supported a wealth of classes and methods that are comparable
to what is being provided on the desktop version J2SE. The
development process on the three aforementioned SDKs was

straight forward with no issues. We tested the client application
using the included emulator application with each SDK.
Although there are some considerable differences in terms of
GUI appearance between the three emulators, the basic
functionality is still the same.

The three MIDlets were uploaded to our server ready for
download from a webpage using the mobile phone Internet
browser. We used mobile phones from Nokia and
SonyEricsson equipped with 3G Internet access. We faced
issues in the applications installation process since our MIDlets
were not signed. The installation and running of the MIDlet
would require explicit user approval which must be granted.
The same is true when the MIDlet tries to make an actual
Internet connection.

The performance of the mobile application was acceptable in
terms of speed, accuracy and the ability of handling network
connections. However, our tests have also clearly showed how
the 'behavior' of the mobile Java application would differ from
one device to another due to different way of handling
MIDlet's states and security measures by different vendors.

Unexpectedly, we have discovered another important issue that
might hinder the proper running of our application. It seems
that some mobile service providers would implement a
NAT/Firewall solution for their subscribers’ Internet access
resulting in server-to-client communication problems.

Finally, we experimented with some 'customized' packages
provided by the vendor. These packages address platform
specific features or OS extra functionalities. Nokia S60 series
SDK for example have included extra packages that address
Nokia S60 series features and/or Symbian OS features. This
would definitely whack out the sought compatibility since such
MIDlets ran only on their respective vendor devices.

6.0 CONCLUSIONS

Java enabled mobile phones definitely have the potential for
running diverse distributed applications. There are many
programming limitations in the mobile Java version when
compared to desktop Java. These limitations include the lack of
RMI support, Object Serialization Support, and the support of
only blocking I/O connections. Yet, and due to the increasing
processing power and memory capacity of such mobile
devices, those limitations can be compensated to a certain
extent making mobile phones eligible candidates in any
distributed computation that is part of a larger computer
infrastructures.

Special care must be taken when developing such applications
to ensure compatibility or at least portability across a wide
range of the “said to be” compatible Java-enabled mobile
devices due to different manufacturer implementations. Actual
device testing is the best means to test for such issues.

Installing and running mobile Java applications that utilize
Internet communication would require special permissions on
the device itself, a bit of stringent security requirement. The
running application is subject to be interrupted and paused by
the device AMS. These issues must be well considered when
designing and developing mobile based distributed
applications.

REFERENCES

Helal, S. (2002). Pervasive Java. Pervasive Computing 1(1), 82
– 85.

Helal, S. (2002). Pervasive Java, Part II. Pervasive Computing
1(2), 85-89.

Jode, M. d. (2004). Programming Java 2 Micro Edition for
Symbian OS: A developer's guide to MIDP 2.0.
Chichester, West Sussex, Wiley.

Klingsheim, A. N., V. Moen, et al. (2007). Challenges in
Securing Networked J2ME Applications. Computer
40(2), 24-30.

Knyziak, T. and W. Winiecki (2003). The new prospects of
distributed measurement systems using Java™ 2
Micro Edition mobile phone. Proceedings of the
Second IEEE International Workshop on Intelligent
Data Acquisition and Advanced Computing Systems:
Technology and Applications, Lviv, Ukraine, 291-295.

Marejka, R. (2005). MIDlet Life Cycle. Retrieved December 15,
2008 from
http://developers.sun.com/mobility/learn/midp/lifecycl
e/

Mazlan, M. A. (2006). Stress Test on J2ME Compatible
Mobile Device. Innovations in Information
Technology, Dubai, 1 – 5.

Mock, M. and S. Couturier (2005). Middleware - integration of
small devices. 10th IEEE Conference on Emerging
Technologies and Factory Automation, 8 pp. - 814.

Sun Microsystems Inc. website. Connected Limited Device
Configuration (CLDC). Retrieved 10, Jan., 2009,
from http://java.sun.com/products/cldc/.

Sun Microsystems Inc. website. Mobile Information Device
Profile (MIDP). Retrieved 10, Jan., 2009, from http://
java.sun.com/products/midp/.

Sun Microsystems Inc. website. Sun Java Wireless Toolkit for
CLDC. Retrieved 10, Jan., 2009, from
http://java.sun.com/products/sjwtoolkit/.

Tanenbaum, A. S. and M. v. Steen (2002). Distributed Systems
Principles and Paradigms. Singapore, Pearson
Education.

Xu, C.-w. (2006). A Framework for Developing Wireless
Mobile Online Applications. 5th IEEE/ACIS
International Conference on Computer and
Information Science, 2006 and 2006 1st IEEE/ACIS
International Workshop on Component-Based
Software Engineering, Software Architecture and
Reuse, Hawaii, 231-237.

http://java.sun.com/products/sjwtoolkit/
http://java.sun.com/products/midp/
http://java.sun.com/products/midp/
http://java.sun.com/products/cldc/
http://developers.sun.com/mobility/learn/midp/lifecycle/
http://developers.sun.com/mobility/learn/midp/lifecycle/

	Abstract
	Keywords
	1.0 introduction
	2.0 Programming Mobile Devices
	Figure 1: The different Java frameworks (Xu 2006)
	2.1 Connected Limited Device Configuration
	2.2 Mobile Information Device Profile
	Figure 2: J2ME Optional Packages

	2.3 Optional Packages

	3.0 MIDlets
	3.1 MIDlet Lifecycle
	In order to develop distributed Java based mobile applications it is essential to understand that MIDlets have different execution states (Marejka 2005).
	Figure 3: MIDlet Lifecycle

	3.2 MIDlet Development
	3.3 MIDlet Signing and Installation

	4.0 Distributed Mobile Application Model
	Figure 4: Test Application

	5.0 Conducting Tests
	6.0 ConclusionS
	References

