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ABSTRACT. The advancement of technology in scientific community has
produced terabytes of biological data. This datum includes DNA sequences.
String matching algorithm which is traditionally used to match DNA
sequences now takes much longer time to execute because of the large size
of DNA data and also the small number of alphabets. To overcome this
problem, the indexing methods such as suffix arrays or suffix trees have
been introduced. In this study we used suffix arrays as indexing algorithm
because it is more applicable, not complex and used less space compared to
suffix trees. The parallel method is then introduced to speed up the index
construction process. Graphic processor unit (GPU) is used to parallelize a
segment of an indexing algorithm. In this research, we used a GPU to
parallelize the sorting part of suffix array construction algorithm. Our
results show that the GPU is able to accelerate the process of building the
index of the suffix array by 1.68 times faster than without GPU.

Keywords: Indexing technique, Graphic Processor Unit (GPU), Speed up,
DNA sequences.

INTRODUCTION

String matching is an essential process for some computer applications. String matching is
the process of finding the existence and positions of a pattern within a longer string or text.
The applications of string matching process include spelling checker, parser, validating of id
and password and many others. It is also a basic operation in areas like information retrieval,
pattern recognition, data compression, network security and others. Because of the vast
application of string matching and the rapid increased of data size, string matching is an
active area in even until to date.

There are two common techniques used to string matching process, that are lookup tables
such as direct-address tables or hash tables, and text preprocessing or indexing such as suffix
tree (ST) or suffix array (SA). The advantage of lookup table is that it is faster to access a
number from a list than to compute the number. However, lookup tables need larger memory
space because of the extra variable needed to track all numbers and stored unused numbers.
Therefore, most fast string matching algorithm pre-process the text to facilitate faster
searching.

Developments in the molecular biology techniques lead to the increasing number of
genomic and proteomic data. The size of GenBank and its collaborating DNA and protein
databases which contain data coded as long strings has reached 100 Giga bases , doubles
every 17 months. It has become critical for researchers to develop effective data structure and
efficient algorithms and also using sophisticated technology equipment for storing, querying,
and analyzing these data.

Recent graphics architectures provide tremendous memory bandwidth and computational
horsepower. For example, the NVIDIA GeForce 6800 Ultra can achieve a sustained 35.2
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GB/sec of memory bandwidth. Performance of the graphics hardware increases more rapidly
than CPUs.

This paper offers a faster suffix array construction algorithm using GPU. To construct
index quickly, we adopt the algorithm proposed by (Karkkainen & Sanders et al., 2006) that

represents a reliable indexing technique with time complexity of O(n) Sorting technique is

important part of this algorithm, effort to increase the speed of sorting on this algorithm is
done by replacing sequential radix sort with parallel radix sort using GPU (Satish, Harris et al.
2009).

RELATED WORKS

Several index structures for sequence data has been introduced, including PATRICIA trees
(Morrison,1968), inverted files (Weiner,1973), prefix index (Jagadish et al. ,2000), String B-
Tree (Ferragina and Grossi, 1999), q-grams (Burkhardt et al.,1999), suffix trees (ST) (Weiner
,1973), and suffix arrays (SA) (Manber and Myers, 1990). Biological data sequence, a special
type of string, do not have a proper structure whereby it cannot be segmented into meaningful
terms. Some of the existing data structure such as inverted files, prefix index and string B-
Tree, which are efficient to natural language strings, are not applicable to biological
sequences. That also applies to g-gram, which plays an important role in fast exact string
matching algorithms, is not suitable for low similarity search as in pattern search(. Thus, there
is an increasing interest on ST and SA as desirable index structures to support a wide range of
applications on biological sequence data.

Weiner proposed the idea of suffix trees in 1973 (Weiner,1973). McCreight in 1976
reported an efficient but complex algorithm that builds a suffix tree in a time proportional to
the length of the input string (Edward,1976). Ukkonen gave another simpler linear-time
algorithm for this purpose in 1995(Ukkonen,1995). Although suffix trees are fundamental to
string processing, they are not widely used in practical software programs because they
involve extensive space usage. In 1990, Manber and Myers (Manber and Myers,1990)
invented suffix arrays, which have been widely accepted as a space-efficient alternative to
suffix trees. An experimental comparison of many suffix array construction algorithms are
presented in (Puglisi, Smyth et al. ,2007). The best algorithms in the comparison is the
algorithm by Maniscalco and Puglisi(Maniscalco and Puglisi, 2006) which is the fastest but
has an Q(nz) worst-case complexity, and a variant of the algorithm by Burkhardt and
Karkkainen (Burkhardt and K"arkk“ainen ,2003). Some other researcher focused on using
faster computer and parallelism for example: using 128 processor for a scalable parallel suffix
array construction (Kulla and Sanders ,2007), using PC cluster for a parallel construction of
large suffix (Chen and Schmidt, 2005), and parallel/distributed external-memory suffix tree
construction introduced by (Gao and Zaki, 2008).

BASIC SUFFIX ARRAY CONSTRUCTION (Kasahara and Morishita, 2006)

Definition 1: Let S denote the target string b,b,...b, ,of length n. The i-th element of S
is described by S[i]. The substring of S that ranges from the left position /-4 to the right
position r-th, b,...b,, is denoted by S[/,r], where /,r€[0,n—1]. A prefix is a substring
starting from the 0-th position, S[0,7], while a suffix is a substring ending at the last position,
S{l,n—-1].

Prefix and suffix are proper if they are shorter than original string.

Example 1 Let S denote ATAATACGATAATAA. In the following table, the left half shows
proper prefixes of S, while the right presents proper suffixes of S .
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s [0,0]=A s [10,14]= AATAA
s [0,1]=AT s [11,14]= ATAA
s [0,2] = ATA s [12,14]= TAA

Definition 2: Let S be a string of length n. A suffix array SA of S is an array of
lexicographically sorted suffixes of S such that S4 [i] = k if and only if the i-th suffix in the
lexicographic order starts at position k in S . An inverse suffix array ISA is such an array
that IS4 [k] =1 if and only if S4 [i]=k. In other words, the suffix starting at k position in S
has rank IS4 [k] in lexicographic order. We assume that both S4 and ISA have zero-origin
indexing.

SUFFIX ARRAY CONSTRUCTION ALGORITHM
Linear-Time Suffix Array Construction (LSAC)

Linear-Time Suffix Array Construction (LSAC) algorithm adopt the idea of the divide-
and-conquer approach (Karkkainen, Sanders et al. 2006) . Given an input string of length n,
this algorithm builds the suffix array of 2n/3 suffixes. Let 7' (n) denote the computation time
of the overall execution. The recursive call takes T (2n/3), and hence we have the recurrence
T (n) = T (2n/3) + cn. Solving this gives 1T (n) ~3cn, and therefore the time complexity of
the algorithm is O(n).

Figure 1 represents operation of Karkkainen-Sanders (LSAC) algorithm. S12 [j] describes
the starting position i= f* (j) for the suffix in the inputS . The first half stores such indexes
that imod 3 =1, e.g., 1, 4, 7, and the latter half contains i mod 3 =2, e.g., 2, 5, 8... We then
radix sort first triplets of individual suffixes so that all the triplets are ranked and put into
rankl2. Then we replace the starting positions of suffixes in S12 with ranks of the first
triplets of suffixes. For example, the first triplet TAA in the suffix starting at position 1 of S
is ranked 7 among all the triplets, and hence 7 is assigned to S12 [0]. This replacement
transforms S12 into the list of ranks of triplets, 7863234551.

If all triplets are ranked differently, it is almost straightforward to order suffixes in S12
according to the ranks of triplets; however, more than one triplet can have the same rank. In
this case, we call the algorithm recursively to generate the suffix array 9435687201 for string
7863234551. Since the length of 7863234551 is 10, which is two-thirds the length of the input
S, the original problem is partitioned into a smaller problem.
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Figure 1. Operation kiirkkidinen-Sanders algorithm (Karkkainen, Sanders et al. 2006).
Next, we consider how to build the suffix array of suffixes that start at position i mod 3 =
0. First, the starting positions of these suffixes are put into S0 . We then treat each suffix as
the pair of its first element and the rank of the suffix next to the first element according to the
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order defined by S412 . For instance, the suffix starting at position 0 is represented by A9,
because its first element is A and its next suffix is ranked 9. This encoding allows us to radix
sort pairs for suffixes in SO to build the suffix array S40 for SO, which takes time
proportional to the size of S0 . Having the two sorted lists of suffixes in S412 and SA4 0, the
final step is to merge them.

Having the two sorted lists of suffixes in SA12 and SAO, the final step is to merge them.
Care must be taken to compare the two elements in these two lists. A suffix in SA12 that
starts at x can be represented in one of the following two forms:

» If x mod 3 = 1, the suffix starting at x+1 is ranked, making it possible to represent
the suffix as the pair of the first element and the rank of the following suffix, e.g.,
Al for x=13.

* If x mod 3 = 2, the suffix starting at x+1 is not ranked because x+1 mod 3 = 0. We
herefore denote the suffix by the triplet of the first and second elements and the
rank of the following suffix, e.g., 128 for x=5.

In the former case, a suffix cannot be represented by the triplet because the rank of the
suffix starting from x+2 is missing; e.g., consider the case when x=I. Similarly, in the latter
case, we cannot express a suffix by a pair. However, a suffix in SAO can be denoted by both
representations. For example, the suffix starting at 0 can be expressed by either A9 or AT4,
making it possible to compare it to any suffix in SA12. Merging the two sorted lists yields the
suffix array of the original input string in S. This step is straightforward and takes time
proportional to the sum of the lengths of the two lists.

GPU Radix Sort

Satish, Harris and Garland (Satish, Harris et al. 2009) parallelized the radix sort on CUDA
by dividing the sequences into p blocks for each thread. Their method focuses on utilizing the
memory bandwidth into two ways, minimizing communication with global memory and
maximizing synchronizing of scatters. The first goal was accomplished by partitioning the
data and limits the size of digit b > 1. The second goal was achieved by locally sort the
partitioned data using on-chip shared memory.

Our propose algorithm.

The input to our algorithm is the DNA text file. The steps are given as follows:
1) Convert DNA alphabet as number (A=1, C=2, G=3, T=4).
2) Give three digit values 0 at the end of sequence.

3) Divide suffixes into two classes, e.g., suffixes starting at positions i mod 3 # 0 and the
others

4) Construct the suffix array of the first class by using GPU radix sort of the first triplets
of individual suffixes, so that all the triplets are ranked and put into histogram. If
more than one triplet have the same rank, repeat steps 3 and 4.

5) Use the result in step 4 to radix sort pairs for suffixes in second class to build the
suffix array

6) Merge the two suffix arrays into one, and return the result.

The above algorithm is designed as heterogencous computing. Construction suffix array is
done in sequential, whereas the sorting process, step 4 and 5, that is the most compute
intensive parts are done in parallel using GPU. In sorting process, we adopt the method by
(Satish, Harris et al. 2009) whereby CUDA kernels are executed by blocks of t = 256 threads
each, processing 4 elements per thread or 1024 elements per block. Since each block will
process a tile of 1024 elements, we use P = [n/1024] blocks in our computations.
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IMPLEMENTATION AND RESULT

In this section, we describe the experiments carried to evaluate performance of the
indexing techniques, and compare them based on their construction times. We used a standard
desktop computer with AMD Phenom-I1810 2.6GHz Quad-Core processor, Dual Channel
4GB (2x2GB) DDR2-800 Memory, Tesla C2050 Cards (GPU), Ubuntu 8.04 64-bit Operating
System. We used the C++ source code to implement sequential radix sort and LSAC
algorithm, CUDA source code and Thrust libraries (Seward 2000) to implement GPU radix
sort and our algorithm.

Sort Performance

Before implementation of our algorithm, we test performance of sequential radix sort and
of GPU radix sort. To conduct this experiments, we use some input data which randomly
chosen consisting of four alphabet.

Table 1. Construction time and Speedup data.

pr Sequential

Radix
N Sort sort Speedup

Second) (second)

2" 0.08 0.02 0.25
2% 0.09 0.04 0.44
2% 0.09 0.08 0.89
22 0.1 0.14 1.40
2% 0.12 0.29 242
2% 0.15 0.57 3.80
2% 0.22 1.16 527
2% 0.35 2.32 6.63
277 0.63 4.62 7.33
2% 1.16 9.24 7.97

For the number of data that is smaller than 2*', sequential radix sort is faster than the GPU
radix sort. GPU radix sort outperforms sequential radix sort when the size of data is larger
than 2°'.

Table 1 present the time of sorting. The speed up of GPU radix sort is 7.93 times faster
compared to the sequential sort. These results suggest that adopting GPU sort algorithm with
GPU to construct DNA data using the LSAC algorithm can significantly increase the speed
indexing construction. To prove this hypothesis, we carried out our algorithm in constructing
SA using actual DNA data as input data.

We use 25 Homosapiens (DNA) data, which is presented in fasta. We removed the header
lines, new line symbols, and blanks from original data.

Figure 4 show that our algorithm works well in constructing SA for all the DNA data that
we took as sample. It also shows the speed up of the construction algorithm of SA is 0.98 to
1.68 times compared to the original LSAC algorithm.

Implementation Sequential and Linear-Time Suffix Array Construction with GPU for
DNA data sequences
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Figure 4. the graph shows the performance of LSAC and LSAC

CONCLUSION

Base on the results, we conclude that the GPU is a device that can potentially to improve
the performance of suffix array constructing algorithm. Selection sorting task can be
processed in parallel with GPU, because it provides a significant effect on construction time,
where it can accelerate the process to 1.68 times. Indeed, acceleration of suffix array
construction process is much slower than acceleration of GPU sorting which reached 7.93
times. This is because to construct SA of a DNA data that has characteristics of the loop
alphabet; require sorting process in multiple times to form an unique ranking. Plus in the
process of formation of ranking the number of data in sorting process shrinks if looping is
common. Therefore, it reduces performance because the GPU radix sort is low performance
when sorting small data as shown in Fig.3 In other words if the GPUs are involved in the
processing of data, problems handling large bioinformatics data quickly can be resolved by
using the GPU.
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