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ABSTRACT. All stochastic classifiers attempt to improve their classification
performance by constructing an optimized classifier. Typically, all of
stochastic classification algorithms employ accuracy metric to discriminate
an optimal solution. However, the use of accuracy metric could lead the
solution towards the sub-optimal solution due less discriminating power.
Moreover, the accuracy metric also unable to perform optimally when dealing
with imbalanced class distribution. In this study, we propose a new evaluation
metric that combines accuracy metric with the extended precision and recall
metrics to negate these detrimental effects. We refer the new evaluation
metric as optimized accuracy with recall-precision (OARP). This paper
demonstrates that the OARP metric is more discriminating than the accuracy
metric and able to perform optimally when dealing with imbalanced class
distribution using one simple counter-example. We also demonstrate
empirically that a naive stochastic classification algorithm, which is Monte
Carlo Sampling (MCS) algorithm trained with the OARP metric, is able to
obtain better predictive results than the one trained with the accuracy and F-
Measure metrics. Additionally, the #-test analysis also shows a clear
advantage of the MCS model trained with the OARP metric over the two
selected metrics for almost five medical data sets.
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INTRODUCTION

Instance selection (IS) is one of the classification methods which aim to reduce the
instances as much as possible and simultaneously attempt to achieve the highest possible
classification accuracy. From the previous studies, some of the IS methods are developed using
stochastic methods such as Monte Carlo (Skalak, 1994), genetic algorithm (Garcia-Pedrajas et
al., 2010) and tabu search (Ceveron & Ferri, 2001). In general, these algorithms use the
training stage learns from the data and at the same time attempt to optimize the solution by
discriminating the optimal solution from the large space of solutions. In order to find the
optimal solution, the selection of suitable evaluation metric is essential. According to
Ranawana and Palade (2006), to select the suitable evaluation metric for discriminating an
optimal solution, the selected evaluation metric must be able to maximize the total number of
correct predicted instances in every class. In certain situation, it is hard to build an optimized
classifier that can obtain the maximal value for every class. This is because, traditionally, most
of the stochastic classification algorithms employ the accuracy rate or the error rate (1-
accuracy) to discriminate and to select the optimal solution. In (Huang & Ling, 2005;
Ranawana & Palade, 2006; Wilson, 1996), they have demonstrated that the simplicity of this
accuracy metric could lead to the sub-optimal solutions. For instance, when dealing with
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imbalanced class instances, it is often happen that the classification model is able to perform
extremely well on a large class instances but unfortunately perform poorly on the small class
instances. Furthermore, the accuracy metric also exhibits poor discriminating power to
discriminate better solution in order to build an optimized classifier (Huang & Ling, 2005,
Ling et al., 2003, Rakotomamonyj, 2004).

Based on the drawbacks of the accuracy metric, clearly, this indicates that the main
objective of any development of evaluation metric should be able to maximize all class
instances in order to build an optimized classifier. Thus, in this study, we are going to propose
a new evaluation metric that attempts to improve the accuracy metric. In this study, we are
proposing to combine the accuracy metric with the precision and recall metrics. The new
evaluation metric is known as an optimized accuracy with recall-precision (OARP) metric.

Precision and recall are two evaluation metrics that are commonly used as the alternative
metrics to measure the performance of binary classifiers for two different aspects (Buckland &
Gey, 1994). Basically, precision is used to determine the fraction of positive instances that are
correctly predicted in a positive class, while recall measures the fraction of positive instances
being correctly classified over the total of positive instances. However, it is not easy to apply
both precision and recall metrics separately because it will turn the selection and
discrimination processes more difficult due to multiple comparisons. In fact, this strategy can
lead to the sub-optimal solution especially when the classifier attempts to maximize both
metrics simultaneously. Moreover, the conventional precision and recall metrics are not
suitable to be employed for the combination process with the accuracy metric. This is because
both metrics only measure one class of instances (positive class). This is somewhat against the
ideal idea of formulating the best evaluation metric as aforesaid, which is must be able to
maximal the correct predicted instances for every class. To resolve this limitation, the extended
precision and recall metrics proposed by (Lingras & Butz, 2007) were suggested for the
combination. The main justification is that every class instance should be able to be measured
individually using both metrics.

In this paper, we will show that our newly constructed evaluation metric will improve the
conventional accuracy metric using one counter-example in terms of discriminatory and
perform optimally when dealing with imbalanced class distribution. To prove this theoretical
evidence, we demonstrate empirically that the OARP metric is better than conventional
accuracy metric using a naive stochastic classification in classifying five medical data sets that
obtained from UCI Machine Learning Repository (Frank & Asuncion, 2009). From this
experiment, the expectation is to see that the naive stochastic algorithm trained by the OARP
metric will produce better predictive result than the one trained by the accuracy metric.

OPTIMIZED ACCURACY WITH PRECISION AND RECALL (OARP)

As aforesaid, the purpose of this study is to improve the accuracy metric by combining the
accuracy metric with the extended precision and recall metrics. In order to combine these
metrics into a singular form of metric, we have adopted two important formulas from
(Ranawana & Palade, 2006), which are the Relationship Index (RI) and OP. Due to limited
pages, the details of these reference metrics can be found in (Lingras & Butz, 2007; Ranawana
& Palade, 2006). The combination process involves two-step efforts, whereby first we have to
find a suitable way to employ the RI formula and next is to identify the best approach to adopt
the OP formula in order to improve the accuracy metric.

As proved by (Lingras & Butz, 2007), for two-class problem, the extended precision value
in a particular class is proportional to the extended recall values of the other class and vice
versa. From this correlation, the RI formula can be implemented. To employ the RI formula,
the precision and recall from different classes were paired together (p;, r2), (p2, 7;) based on the
correlation given in (Lingras & Butz, 2007). At this point, the aim is to minimize the value of
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|pi-72| and |p,-r;|, and maximize the value of p;+r, and p,+r;. Hence, we define the RI for both
correlations as stated in Eq. (1) and (2).
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However, these individual RI values are still pointless and could not be applied directly to
calculate the value of new evaluation metric. Thus, to resolve this problem, we compute the
average of total RI (AVRI) as shown in Eq. (3) to formulate the new evaluation metric.

avel = Rt RE ; REz 3)

As mentioned earlier, the use of accuracy value alone could lead the searching process to
the sub-optimal solutions mainly due to its less discriminative power and inability to deal with
imbalanced class distribution. Such drawbacks motivate us to combine the beneficial properties
of AVRI with the accuracy metric. With this combination, we expect the new evaluation metric
is able to produce better value (more discriminating) than the accuracy metric and at the same
time remain relatively stable when dealing with imbalanced class distribution. The new
evaluation metric is called the optimized accuracy with recall-precision (OARP) metric. The
computation of this OARP metric is defined in Eq. (14).

OARP = Acc — AVRI 4)
However, during the computation of this new evaluation metric, we noticed that the value
of OARP may deviate too far from the accuracy value especially when the value of AVRI is
larger than accuracy value. Therefore, we proposed to resize the AVRI value into a small value
before computing the OARP metric. To resize the AVRI value, we employed the decimal
scaling method to normalize the AVRI value as shown in Eq. (5).

AVRInew_val = M (5)

where x is the smallest integer such that max (|4VRI,.,, va) < 1. In this study, we set the x=1
for the entire experiments. By resizing the AVRI value, we found that the OARP value is
comparatively close to the accuracy value as shown in the next sub-section. At the end, the
objective of OARP metric is to optimize the classifier performance. A high OARP value
entails a low value of AVRI which indicates a better generated solution has been produced. We
also noticed that via this new evaluation metric, the OARP value is always less than the
accuracy value (OARP < Acc). The OARP value will only equal to the accuracy value
(OARP=Acc) when the AVRI value is equivalent to 0 (4VRI=0), which indicates a perfect
training classification result (100%).

10*

EMPIRICAL VERIFICATION

In this particular section, two types of empirical verification have been conducted in order
to verify the advantage of OARP metric. Firstly, we compare the OARP metric with the
conventional accuracy metric using one simple counter-example. Secondly, we empirically
compare the OARP metric with the accuracy and F-Measure metrics for selecting and
discriminating five medical data sets using a naive stochastic classification algorithm.

OAREP vs. Accuracy using Counter-examples

In this particular sub-section, we attempt to demonstrate that the OARP metric is better than
the accuracy metric using the following counter-example. Let us consider counter-example as
shown in Table 1 that focused on imbalanced class distribution. In this counter-example, the
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accuracy metric could not distinguished whether a or b is better, while the OARP metric
otherwise. Intuitively, we can conclude that b is better than a. This is because, b is able to
predict correctly all the minority class instances if compared to a. Clearly, a is poor since no
single instance from minority class instances is correctly predicted by a (non-informative
output for the minority class). Hence, we can conclude that the result obtained by the OARP
metric is similar to intuitive decision and clearly better than the accuracy metric in
discriminating the optimal solution. On top of that, the counter-example in Table 1 also shows
that the accuracy metric could not work optimally when dealing with imbalanced class
distribution.

Table 1. Accuracy vs. OARP for imbalanced data set (95:5)

s tp fp tn fn TC Accuracy OARP
a 95 5 0 0 95 0.950000 0.850000
b 90 0 5 5 95 0.950000 0.934545

Note: tp-true positive, fp-false positive, tn-true negative, fn-false negative, TCC-
total correct classified

Real Data Sets

As we established in the previous section, it is not enough to claim that the OARP metric is
better than accuracy metric using one simple counter-example. Through the counter-example,
we only can demonstrate a very little evidence in order to prove that the OARP metric is really
better than the accuracy metric. Thus, in this particular section, we are going to demonstrate
the generalization capability of the OARP metric using real world application data sets. Instead
of accuracy metric, we add another existing metric that is F-measure (van Rijsbergen, 1979) to
compare with the OARP metric. F-measure is chosen to represents the conventional precision
and recall metrics. As aforesaid, it is hard to apply the precision and recall metrics separately,
thus, F-measure is the best way to represents these two metrics. In fact, F-measure is proven to
be the more favorable evaluation metric for evaluating the imbalanced class distribution (Joshi,
2002).

Experimental Setup. For the purpose of comparison and evaluation on the capability of OARP
metric against the accuracy and F-measure metrics, five medical data sets from UCI Machine
Learning Repository (Frank & Asuncion, 2010) were selected. The brief descriptions about
these selected data sets are summarized in Table 2.

Table 2: Brief description of each medical data set.

Dataset No. of Instances  No. of Attributes Missing Value  Class Distribution
Breast-cancer 699 9 Yes M
Heart270 270 13 No M
Hepeatitis 155 19 Yes M
Liver 345 6 No M
Pima-diabetes 768 8 No M

All data sets have been normalized within the range of [0, 1] using min-max normalization.
Normalized data is essential to speed up the matching process for each attribute and prevent
any attribute variables from dominating the analysis (Al-Shalabi et al., 2006). All missing
attribute values in several data sets were simply replaced with median value for numeric value
and mode value for symbolic value of that particular attribute across all instances. In this
study, all data sets were divided into ten approximately equal subsets using 10-fold cross
validation method similar to (Garcia-Pedrajas et al., 2010). Each data set was run for 10 times.

In this experiment, all of selected data sets were trained using a naive stochastic
classification algorithm which is Monte Carlo Sampling algorithm (Skalak, 1994). This
algorithm combines simple stochastic method (random search) and instance selection strategy.
There are two main reasons this algorithm is selected. Firstly, this algorithm simply applies
accuracy metric to discriminate the optimal solution during the training phase. Secondly, this
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algorithm is aligned with the purpose of this study which is to optimize the stochastic
classification algorithm. To compute the similarity distance between each training instance and
prototype solution (each class has one representative instance), the Euclidean distance
measurement is employed. The MCS algorithm was re-implemented using MATLAB Script
version 2009b. To ensure fair experiment, the MCS algorithm was trained simultaneously
using the accuracy, F-Measure and OARP metrics for selecting and discriminating the optimal
solution. For simplicity, we refer these four MCS models as MCSa.., MCSgy and MCSgagrp
respectively. All parameters used for this experiment are similar to (Skalak, 1994) except in the
number of generated solution, x. In this experiment, we employed #=500 similar to (Bezdek &
Kuncheva, 2002). From this experiment, the expectation is to see that the MCSqagp is able to
predict better than the model optimized by the MCS4.. and MCSgy;. For evaluation purposes,
the average of testing accuracy (Testa.) will be used for further analysis and comparison.

Experimental Results. Table 3 shows the average testing accuracy for each data set based on
each MCS model. From Table 3, we can see that the average testing accuracy obtained by
MCSoarp is better than the MCS 4. and MCSgy models. The average testing accuracy obtained
by MCSparp model is 0.8542 while the MCS,.. and MCSgy models obtained 0.8186 and
0.7806 respectively for all five medical data sets. On top of that, the MCSgarp model has
improved the classification performance in all data sets if compared to MCS,.. and MCSgy
models.

To verify this outstanding performance, we perform a paired #-test with 95% confidence
level on each medical data set by using the ten trial records from each data set. The summary
result of this comparison is listed in Table 4. As indicated in Table 4, the MCSoarp model
obtained four statistically significant wins against both MCS,. and MCSgy models.
Meanwhile only one data set (Heart270) shows no significant differences from both
comparisons.

Table 3: Average testing accuracy for both MCS models.

Use MCSACC Use MCSFM Use MCSOARP
Data set Testxcc Testxc. Testxcc
Breast-Cancer 0.9700 0.9685 0.9814
Heart270 0.8704 0.8556 0.8778
Hepeatitis 0.8454 0.8183 0.8900
Liver 0.6468 0.5302 0.7160
Pima-diabetes 0.7513 0.7305 0.8060
Average 0.8168 0.7806 0.8542
Table 4. Comparison summary of the z-test analysis based on ten
trial records for each medical data set.
Data set MCS()ARP VS. MCSA“ MCSOARP VS. MCSFM
Breast-Cancer Ssw SSW
Heart270 Sns Sns
Hepatitis Ssw SSW
Liver SSW SSW
Pima-diabetes SSW SSW

Note: ssw-statistically significant win, ss/-statistically significant loss,
sns-statistically not significant

CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a new evaluation metric called the Optimized Accuracy
with Recall-Precision (OARP) based on combination of three existing metrics, which are the
accuracy, and the extended recall and precision metrics. Theoretically, we have proved that our
newly constructed evaluation metric is better than conventional accuracy metric using a simple
counter-example. From this counter-example, we have showed that the OARP metric is more
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discriminating than accuracy metric. More importantly, the OARP also shows that it can work
optimally when dealing with the imbalanced class distribution. To support our theoretical
evidence, we have compared experimentally the OARP metric against the accuracy metric
using five medical data sets. In this experiment, we have added the F-Measure metric for
representing the conventional precision and recall metrics. Interestingly, the naive stochastic
classification algorithm, which is Monte Carlo Sampling (MCS) algorithm optimized by the
OARP metric has outperformed and statistically significant than the MCS algorithm optimized
by the accuracy and F-Measure metrics. This indicates that the OARP metric is more likely to
choose an optimal solution in order to build an optimized stochastic classifier. For the future
work, we are planning to extend this new evaluation metric, OARP for solving multi-class
problems. Moreover, we are also interested to verify the advantage of the OARP metric using a
statistical consistency and discriminatory analysis proposed by Huang and Ling (2005).
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