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ABSTRACT. Understanding the legacy systems and its changed 

requirements is the main problem in software process. The legacy systems 

must be maintain to meet the needs of new computing environments or 

technology, and must be enhanced to implement new business request or to 

make it interoperable with more modern system or databases. Reverse 

engineering is the main idea in maintaining legacy systems throughout 

understanding the source code. This paper focused on developing an 

approach for merging static and dynamic analysis using Altova and 

LAMBDES tools. In addition to developed an automated tool for integrated 

the static and dynamic approach in one merged file. The approach used the 

new XMI file for modifying the legacy system requirement by extract the 

pattern. Then the tool allows the user to modify the requirement in 

graphical representation. 
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INTRODUCTION 

Software systems have been applied in many difficult and complex applications, from 

different environments. Each software system may contain thousands of source code lines, a 

fact which makes it difficult to manually walk through these software without aids tools. This 

problem becomes even more complicated when the developer uses a large software system.  

Several approaches had been developed in design pattern for legacy system. Erdos and Sneed 

(Erdos, and Sneed) suggest partial comprehension of complex programs. The approach 

contends that maintenance tasks require the comprehension of a relatively small portion of the 

program. This is done by developing an automated tool. This tool answers a set of 

programmer question automatically. This approach permits unfamiliar programmers with the 

purpose and function of the programs during maintenance. The approach used Fan-in diagram 

which is used along with Low level Data Flow Diagrams. Decision Trees are used to model 

complex conditional series of statements. 

The supposed ease of comprehension of object-oriented programs is squarely denounced 

by (Sneed and Dombovari). Their paper deals with an ongoing research project that aims at 

the difficult task of comprehending complex, distributed, object-oriented software systems by 

approaching in a formal disciplined manner. Citing contemporary work in initiatives, the 

paper goes on to explain that if modeled properly and if similar supported by automated tools, 

even complex, object oriented systems can be comprehended formally. This approach also 

places emphasis on reverse engineering required only to the extent of maintaining software. 

Mayrhauser and Vans approach is used for large scale programs. The approach reports on a 

software understanding study during adaptation of large-scale software. The study was 
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designed as an observational field study of professional maintenance programmers adapting 

software. The approach details the design of the study and discusses the results from the 

programmers. The goal was to answer several questions about how programmers approach 

software adaptations, their work process and their information needs. The programmers were 

found to work predominantly at the domain model level, adopting opportunistic and 

systematic understanding. A report on the general understanding process, the type of action 

programmers performed during the adaptation task, and the level of abstraction at which they 

work is included.  

Antoniol et al present an approach to recover object-oriented design patterns from the 

design and code (Antoniol et. al.). Design patterns are micro-architectures, high level building 

blocks. Design patterns are an emergent technology: they represent well-known solutions to 

common design problems in a given context. From the perspective of reverse engineering the 

discovery of patterns in software artifacts represents a step in the program understanding 

process. A pattern provides knowledge about the role of each class within the pattern, the 

reason for certain relationships among pattern constituents and/or the remaining parts of the 

system. Design patterns being a relatively young filed, there are currently few works that 

address design pattern recovery in the field of program understanding and design recovery. 

A pattern description encompasses its static structure, in terms of classes and objects 

participating to the pattern and their relationships, but also behavioral pattern dynamics, in 

terms of participants exchanged messages. Five specific design patterns suggested in previous 

literature are chosen as samples for recovery.  

Abd-El- Hafiz evaluates knowledge-based approach to achieve program comprehension. 

The approach mechanically documents programs by generating first order predicate logic 

annotations of their loops. A family of analysis techniques has been developed to cover 

different levels of program complexity. The knowledge based approach exploits the fact that 

there are certain stereotyped programming concepts that are heavily used in programs and 

detecting these can be easy using this approach. An attempt is made to prove that the 

knowledge base built using a specific program can help in understanding similar stereotyped 

programming constructs in other programs. The approach can be greatly enhanced by trying 

to create knowledge bases that are sufficient for specific application domains.  

DeBaud et al. contend that instead of the current reverse engineering techniques that takes 

a program and constructs a high level representation by analyzing the lexical, syntactic and 

semantic rules, an approach that utilizes the relationship between the application domain 

analysis and reverse engineering can be used. A domain is a problem area and domain 

analysis is an attempt to identify the objects, operators, and relationships between what 

domain experts perceive to be important about the domain. A domain description will give the 

reverse engineer a set of expected constructs to look for in the code.  

Another research trend of reverse engineering is design pattern recognition from source 

code. A design pattern (Gamma  et. al.) is a reusable object oriented software design artifacts 

that solves a problem in particular context. Design patterns in an architecture making faster 

the understanding the design considerations of a software system. There are several different 

approaches to identify patterns in source code, design patterns can be identified by among 

others inter-class relationship in method call, data-flow analysis, by fuzzy logic, graph 

matching or formal semantic. 

Pattern recognition is also suitable for measuring software quality (Brown  et. al.), because 

not only design patterns, but also anti-patterns (Beyer and Lewerentz) can be detected in the 

implementation, thus, bad design considerations or weakness of the code can be discovered. 

Similarly to design patterns, anti-patterns are piece of reusable code, but applying these kinds 

of patterns shuld be avoided. CrocoPat e. al. tool does graph search, it processes RSF (Rigi 

Standard Format) files that contains the graph of a system that uses own imperative language 
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to find the predefined patterns between class inheritance relations and method calls. 

Columbus uses graph matching algorithms. Other methods are also available, such as PtideJ, 

which uses constraint solving or SPOOL (Nija and Olsson), which uses database query. 

PINOT (Hakjin et. al.) pattern inference and recovery tool reclassifies the GoF patterns and 

implements a lightweight static inter-class and data-flow analysis. 

RELATED WORK 

In Jing Dong et al, present an approach to discover design patterns by defining the 

structural characteristics of each design pattern in terms of weight and matrix. The system 

structure is represented in a matrix with the columns and rows to cover classes in the system. 

The value of each cell represents the relationships among the classes. The structure of each 

design pattern is also represented in another matrix. The discovery of design patterns from 

source code becomes matching between the two matrices. If the pattern matrix matches the 

system matrix, a candidate instance of the pattern is found. Also, they use weight to represent 

the attributes and operations of each class and its relationships with other classes. In addition 

to the structural aspect, the approach investigates the behavioral and semantic aspects of 

pattern discovery. The approach consists of three phases: structural, behavioral, and semantic 

analyses. The structural analysis phase concentrates on the structural characteristics of the 

system, such as classes and their relationships. The results of the structural analysis may 

include the detected instances that are actually not a design pattern. Although such instances 

satisfy the structural characteristics of a design pattern, they may not be the instances of such 

design pattern due to missing behavioral characteristics. Behavioral analysis checks the 

results from the structural analysis for false positives. In the semantic analysis there are 

certain closely related design patterns which are similar with respect to their structural and 

behavioral aspects but just different by their intent with which they were created. The 

approach is includes several analysis phases and based on matrix and weight to discover 

design patterns from source code. They need many steps and some time they repeat the same 

steps in behavioral analysis and need to execute the code, which is a time consuming step. 

And the behavioral patterns can't be detected in structural and behavioral phase, also, 

semantic analysis.  

In Hakjin Lee et al proposed taxonomy of GoF design patterns that can guide the reverse 

engineering process. The approach applies a number of existing applications, such as PURE 

toolkit, JINI based home application system. The approach shows that using a static analysis 

only is very difficult to distinguish pattern among similar structure with high false-positive 

rate. Furthermore the approach shows that using dynamic analysis only needs too many 

searching space to read source code and requires the well-arranged testing environment. 

According to the inputs of the reverse process used in this approach source code is read first, 

and the next step is detect a static analysis of source code to generate the structure candidate 

instances. The next step is detects a dynamic analysis. These steps require more time because 

firstly, they apply static analysis, after that both static and dynamic analysis is applied to 

detect the behavioral patterns. Also, this process make the approach is difficult to integrate 

with other tools.  

In Grose et al, they detect design patterns in legacy code combining static and dynamic 

analyses with required method. This approach analyses distinguishes between static and 

dynamic pattern restrictions or rules. The former restrict the code structure the latter the 

runtime behavior. Analyzing with the static restrictions, results in a set of candidate 

occurrences in the code. In practice this set is large and programmers hardly want to screen all 

of them to detect the actual instances. Therefore, they execute the program under investigation 

and monitor the executions of the candidate instances found by the static analysis with respect 

to the dynamic restrictions. The results of dynamic analyses depend on an execution of the 

candidate instances. The static analysis computes potential program parts playing a certain 
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role in a design pattern. The dynamic analysis further examines those candidates. In this 

approach  the detection process is separated into two step , static analysis detection  , and  

dynamic analysis  detection with the need to executing the source code to detect the 

behavioral aspects of the source code, which is time consuming process because the two steps 

of detection, other limitation appears after the detecting of design patterns. They don’t use the 

detected result in reengineering cycle, or benefits from these results. 

APPROACH TAKEN 

Reverse engineering aims to provide program descriptions on higher levels of abstractions, 

such an abstract level could be a program description using UML diagrams. These program 

descriptions facilitate the understanding of program structures and program behavior. This 

paper presents the Detection of Design Pattern through merge static and dynamic analysis 

(D2Pattern) as a proposed approach. The approach is shown in figure 1. The approach 

organized into five phases; the first two phases are generating a static and dynamic analysis. 

Altova Umodel 2010 is used in the first two phase to extract class diagrams and sequence 

diagrams of the design patterns respectively. Then, the third phase combines the static and 

dynamic furthermore the tool automatic generate an XMI file.  In addition in this phase the 

tool verify the design pattern candidates that found during the static and dynamic analysis. 

The fourth phase is design pattern detection and classification using automated software tool 

called LAMBDES. In this phase the XMI file which contains the class and the sequence is 

used to process the necessary information for detecting the design pattern. The design pattern 

is used during understanding a legacy system requirement. The fifth phase is integrated result 

with legacy requirement which supported maintenance phase. In addition, the fifth phase 

recovers requirements from the reversed design patterns and integrating the patterns in 

requirements phase. 

The result of the static analysis and dynamic analysis is merged and stored as XMI file, to 

be input in the detection phase, design pattern detected using LAMBDES. The tool build a 

pattern based on descriptive semantics a number of generators and a repository of design 

pattern specifications. It takes XMI file produced by Altova Umodel 2010 as input to perform 

logical analysis of the model and/or Metamodels. LAMBDES system translates the UML 

diagrams into their descriptive semantics and to decide whether the design conforms to a 

pattern. In addition facilitates reasoning about models through logical inference.  

When the results of detect pattern is fully detected, we classify it according to GoF 

classification to creational patterns, behavioral patterns, and structural patterns as shown in 

figure 1. The classification output allows maintainer to add any new requirements easily by 

insert the code content into a class model. The enhancement based on the new requirements. 

For example, the new requirements concern on enhancing the graphical user interface, then, 

the requirements engineer must do his/her modification in the structural patterns. 
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The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

 
Figure 1: D

2
Pattern approach 

RESULT AND DISCUSSION 

To evaluate the proposed approach we build a prototype system as shown in figure 1. the 

proposed system integrated Altova Umodel 2010 and LAMBDES tools in one system. The 

prototype firstly read the source code, also it perform a static and dynamic analysis; the result 

is used in detecting design patterns. The new system helps in understanding the legacy 

requirements. 

The adapter design pattern used to demonstrate each stage of our approach. As a case 

study the new approach reads the a java code as a first step then generate class and sequence 

diagrams using Altova Umodel 2010 LAMBDES tools. During static analysis the source code 

is analyzed. Then the system extracts a class diagram and its relationships among the 

components were visually represented by a dependency relationship between them. Major 

packages were also identified in these diagrams; furthermore the graphical view is represented 

for simplify the viewer’s time and effort to understand the architectural layout of the software.  
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Figure 2: System Prototype 

 

The proposed approach recovers requirements from the reversed design patterns. This 

done by integrated the new modification and enhancement requirement with the legacy code. 

Integration process is automatically done by this approach. The classification result by the 

prototype shown in figure 2. The result helps maintainer to answer question such as: what is 

redundant, what must be retained and what can be re-used. The new approach shows rationale 

of the necessity of eliciting requirements and proposed a modified model of existing model.  
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