
Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

008

128

DETECTION A DESIGN PATTERN THROUGH MERGE

STATIC AND DYNAMIC ANALYSIS USING ALTOVA AND

LAMBDES TOOLS

Hamed J. Al-Fawareh

Zarqa University, Zarqa, Jordan,fawareh@zpu,edu.jo, fawareh@hotmail.com

ABSTRACT. Understanding the legacy systems and its changed

requirements is the main problem in software process. The legacy systems

must be maintain to meet the needs of new computing environments or

technology, and must be enhanced to implement new business request or to

make it interoperable with more modern system or databases. Reverse

engineering is the main idea in maintaining legacy systems throughout

understanding the source code. This paper focused on developing an

approach for merging static and dynamic analysis using Altova and

LAMBDES tools. In addition to developed an automated tool for integrated

the static and dynamic approach in one merged file. The approach used the

new XMI file for modifying the legacy system requirement by extract the

pattern. Then the tool allows the user to modify the requirement in

graphical representation.

Keyword: Reverse Engineering, Legacy System, Design Pattern

INTRODUCTION

Software systems have been applied in many difficult and complex applications, from

different environments. Each software system may contain thousands of source code lines, a

fact which makes it difficult to manually walk through these software without aids tools. This

problem becomes even more complicated when the developer uses a large software system.

Several approaches had been developed in design pattern for legacy system. Erdos and Sneed

(Erdos, and Sneed) suggest partial comprehension of complex programs. The approach

contends that maintenance tasks require the comprehension of a relatively small portion of the

program. This is done by developing an automated tool. This tool answers a set of

programmer question automatically. This approach permits unfamiliar programmers with the

purpose and function of the programs during maintenance. The approach used Fan-in diagram

which is used along with Low level Data Flow Diagrams. Decision Trees are used to model

complex conditional series of statements.

The supposed ease of comprehension of object-oriented programs is squarely denounced

by (Sneed and Dombovari). Their paper deals with an ongoing research project that aims at

the difficult task of comprehending complex, distributed, object-oriented software systems by

approaching in a formal disciplined manner. Citing contemporary work in initiatives, the

paper goes on to explain that if modeled properly and if similar supported by automated tools,

even complex, object oriented systems can be comprehended formally. This approach also

places emphasis on reverse engineering required only to the extent of maintaining software.

Mayrhauser and Vans approach is used for large scale programs. The approach reports on a

software understanding study during adaptation of large-scale software. The study was

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

008

129

designed as an observational field study of professional maintenance programmers adapting

software. The approach details the design of the study and discusses the results from the

programmers. The goal was to answer several questions about how programmers approach

software adaptations, their work process and their information needs. The programmers were

found to work predominantly at the domain model level, adopting opportunistic and

systematic understanding. A report on the general understanding process, the type of action

programmers performed during the adaptation task, and the level of abstraction at which they

work is included.

Antoniol et al present an approach to recover object-oriented design patterns from the

design and code (Antoniol et. al.). Design patterns are micro-architectures, high level building

blocks. Design patterns are an emergent technology: they represent well-known solutions to

common design problems in a given context. From the perspective of reverse engineering the

discovery of patterns in software artifacts represents a step in the program understanding

process. A pattern provides knowledge about the role of each class within the pattern, the

reason for certain relationships among pattern constituents and/or the remaining parts of the

system. Design patterns being a relatively young filed, there are currently few works that

address design pattern recovery in the field of program understanding and design recovery.

A pattern description encompasses its static structure, in terms of classes and objects

participating to the pattern and their relationships, but also behavioral pattern dynamics, in

terms of participants exchanged messages. Five specific design patterns suggested in previous

literature are chosen as samples for recovery.

Abd-El- Hafiz evaluates knowledge-based approach to achieve program comprehension.

The approach mechanically documents programs by generating first order predicate logic

annotations of their loops. A family of analysis techniques has been developed to cover

different levels of program complexity. The knowledge based approach exploits the fact that

there are certain stereotyped programming concepts that are heavily used in programs and

detecting these can be easy using this approach. An attempt is made to prove that the

knowledge base built using a specific program can help in understanding similar stereotyped

programming constructs in other programs. The approach can be greatly enhanced by trying

to create knowledge bases that are sufficient for specific application domains.

DeBaud et al. contend that instead of the current reverse engineering techniques that takes

a program and constructs a high level representation by analyzing the lexical, syntactic and

semantic rules, an approach that utilizes the relationship between the application domain

analysis and reverse engineering can be used. A domain is a problem area and domain

analysis is an attempt to identify the objects, operators, and relationships between what

domain experts perceive to be important about the domain. A domain description will give the

reverse engineer a set of expected constructs to look for in the code.

Another research trend of reverse engineering is design pattern recognition from source

code. A design pattern (Gamma et. al.) is a reusable object oriented software design artifacts

that solves a problem in particular context. Design patterns in an architecture making faster

the understanding the design considerations of a software system. There are several different

approaches to identify patterns in source code, design patterns can be identified by among

others inter-class relationship in method call, data-flow analysis, by fuzzy logic, graph

matching or formal semantic.

Pattern recognition is also suitable for measuring software quality (Brown et. al.), because

not only design patterns, but also anti-patterns (Beyer and Lewerentz) can be detected in the

implementation, thus, bad design considerations or weakness of the code can be discovered.

Similarly to design patterns, anti-patterns are piece of reusable code, but applying these kinds

of patterns shuld be avoided. CrocoPat e. al. tool does graph search, it processes RSF (Rigi

Standard Format) files that contains the graph of a system that uses own imperative language

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

008

130

to find the predefined patterns between class inheritance relations and method calls.

Columbus uses graph matching algorithms. Other methods are also available, such as PtideJ,

which uses constraint solving or SPOOL (Nija and Olsson), which uses database query.

PINOT (Hakjin et. al.) pattern inference and recovery tool reclassifies the GoF patterns and

implements a lightweight static inter-class and data-flow analysis.

RELATED WORK

In Jing Dong et al, present an approach to discover design patterns by defining the

structural characteristics of each design pattern in terms of weight and matrix. The system

structure is represented in a matrix with the columns and rows to cover classes in the system.

The value of each cell represents the relationships among the classes. The structure of each

design pattern is also represented in another matrix. The discovery of design patterns from

source code becomes matching between the two matrices. If the pattern matrix matches the

system matrix, a candidate instance of the pattern is found. Also, they use weight to represent

the attributes and operations of each class and its relationships with other classes. In addition

to the structural aspect, the approach investigates the behavioral and semantic aspects of

pattern discovery. The approach consists of three phases: structural, behavioral, and semantic

analyses. The structural analysis phase concentrates on the structural characteristics of the

system, such as classes and their relationships. The results of the structural analysis may

include the detected instances that are actually not a design pattern. Although such instances

satisfy the structural characteristics of a design pattern, they may not be the instances of such

design pattern due to missing behavioral characteristics. Behavioral analysis checks the

results from the structural analysis for false positives. In the semantic analysis there are

certain closely related design patterns which are similar with respect to their structural and

behavioral aspects but just different by their intent with which they were created. The

approach is includes several analysis phases and based on matrix and weight to discover

design patterns from source code. They need many steps and some time they repeat the same

steps in behavioral analysis and need to execute the code, which is a time consuming step.

And the behavioral patterns can't be detected in structural and behavioral phase, also,

semantic analysis.

In Hakjin Lee et al proposed taxonomy of GoF design patterns that can guide the reverse

engineering process. The approach applies a number of existing applications, such as PURE

toolkit, JINI based home application system. The approach shows that using a static analysis

only is very difficult to distinguish pattern among similar structure with high false-positive

rate. Furthermore the approach shows that using dynamic analysis only needs too many

searching space to read source code and requires the well-arranged testing environment.

According to the inputs of the reverse process used in this approach source code is read first,

and the next step is detect a static analysis of source code to generate the structure candidate

instances. The next step is detects a dynamic analysis. These steps require more time because

firstly, they apply static analysis, after that both static and dynamic analysis is applied to

detect the behavioral patterns. Also, this process make the approach is difficult to integrate

with other tools.

In Grose et al, they detect design patterns in legacy code combining static and dynamic

analyses with required method. This approach analyses distinguishes between static and

dynamic pattern restrictions or rules. The former restrict the code structure the latter the

runtime behavior. Analyzing with the static restrictions, results in a set of candidate

occurrences in the code. In practice this set is large and programmers hardly want to screen all

of them to detect the actual instances. Therefore, they execute the program under investigation

and monitor the executions of the candidate instances found by the static analysis with respect

to the dynamic restrictions. The results of dynamic analyses depend on an execution of the

candidate instances. The static analysis computes potential program parts playing a certain

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

008

131

role in a design pattern. The dynamic analysis further examines those candidates. In this

approach the detection process is separated into two step , static analysis detection , and

dynamic analysis detection with the need to executing the source code to detect the

behavioral aspects of the source code, which is time consuming process because the two steps

of detection, other limitation appears after the detecting of design patterns. They don’t use the

detected result in reengineering cycle, or benefits from these results.

APPROACH TAKEN

Reverse engineering aims to provide program descriptions on higher levels of abstractions,

such an abstract level could be a program description using UML diagrams. These program

descriptions facilitate the understanding of program structures and program behavior. This

paper presents the Detection of Design Pattern through merge static and dynamic analysis

(D2Pattern) as a proposed approach. The approach is shown in figure 1. The approach

organized into five phases; the first two phases are generating a static and dynamic analysis.

Altova Umodel 2010 is used in the first two phase to extract class diagrams and sequence

diagrams of the design patterns respectively. Then, the third phase combines the static and

dynamic furthermore the tool automatic generate an XMI file. In addition in this phase the

tool verify the design pattern candidates that found during the static and dynamic analysis.

The fourth phase is design pattern detection and classification using automated software tool

called LAMBDES. In this phase the XMI file which contains the class and the sequence is

used to process the necessary information for detecting the design pattern. The design pattern

is used during understanding a legacy system requirement. The fifth phase is integrated result

with legacy requirement which supported maintenance phase. In addition, the fifth phase

recovers requirements from the reversed design patterns and integrating the patterns in

requirements phase.

The result of the static analysis and dynamic analysis is merged and stored as XMI file, to

be input in the detection phase, design pattern detected using LAMBDES. The tool build a

pattern based on descriptive semantics a number of generators and a repository of design

pattern specifications. It takes XMI file produced by Altova Umodel 2010 as input to perform

logical analysis of the model and/or Metamodels. LAMBDES system translates the UML

diagrams into their descriptive semantics and to decide whether the design conforms to a

pattern. In addition facilitates reasoning about models through logical inference.

When the results of detect pattern is fully detected, we classify it according to GoF

classification to creational patterns, behavioral patterns, and structural patterns as shown in

figure 1. The classification output allows maintainer to add any new requirements easily by

insert the code content into a class model. The enhancement based on the new requirements.

For example, the new requirements concern on enhancing the graphical user interface, then,

the requirements engineer must do his/her modification in the structural patterns.

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

008

132

The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

Figure 1: D

2
Pattern approach

RESULT AND DISCUSSION

To evaluate the proposed approach we build a prototype system as shown in figure 1. the

proposed system integrated Altova Umodel 2010 and LAMBDES tools in one system. The

prototype firstly read the source code, also it perform a static and dynamic analysis; the result

is used in detecting design patterns. The new system helps in understanding the legacy

requirements.

The adapter design pattern used to demonstrate each stage of our approach. As a case

study the new approach reads the a java code as a first step then generate class and sequence

diagrams using Altova Umodel 2010 LAMBDES tools. During static analysis the source code

is analyzed. Then the system extracts a class diagram and its relationships among the

components were visually represented by a dependency relationship between them. Major

packages were also identified in these diagrams; furthermore the graphical view is represented

for simplify the viewer’s time and effort to understand the architectural layout of the software.

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

008

133

The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

Figure 2: System Prototype

The proposed approach recovers requirements from the reversed design patterns. This

done by integrated the new modification and enhancement requirement with the legacy code.

Integration process is automatically done by this approach. The classification result by the

prototype shown in figure 2. The result helps maintainer to answer question such as: what is

redundant, what must be retained and what can be re-used. The new approach shows rationale

of the necessity of eliciting requirements and proposed a modified model of existing model.

REFERENCES

Erdos K., H.M. Sneed, (1998), Partial Comprehension of Complex Programs (enough to perform

maintenance)," IEEE Proceedings - Sixth International Workshop on Program Comprehension,

June 24 – 26,.

Sneed H.M., T. Donbovari, (1999), Comprehending a Complex, Distributed, Object oriented, IWPC '99

Proceedings of the 7th International Workshop on Program Comprehension IEEE Computer

Society Washington, DC, USA

Mayrhauser, A. M. Vans, (1998), Program Understanding Behavior During the Adaptation of Large

Scale Software, IEEE Proceedings - Sixth International Workshop on Program Comprehension,

pp. 164-172, June 24 – 26,.

Antoniol G, R. Fiutem, L. Cristoforetti, (1998), Design Pattern Recovery in Object Oriented Software,

IEEE Proceedings - Sixth International Workshop on Program Comprehension, June 24 – 26,

pp. 153-160,.

Abd-El-Hafiz S.K., (1996), Evaluation of a Knowledge based approach to Program Understanding,

IEEE Proceedings – Working Conference in Reverse Engineering, '96," pp. 259 – 269,.

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

008

134

Burnstein I., F. Saner, (1999), An Application of Fuzzy Reasoning to Support Automated Program

Comprehension, IEEE Proceedings - Seventh International Workshop on Program

Comprehension, pp. 66-73, 5-7 May.

DeBaud J.M., B. Moopen, S. Rugaber, Domain Analysis and ReverseEngineering,"

http://www.cc.gatech.edu/reverse/papers.html, College of Computing, Georgia Institute of

Technology.

Gamma E, R. Helm, R. Johnson, and J. Vlissides, (1994), Design Patterns: Elements of Reusable

Object-Oriented Software, Addison Wesley, 1st editions

Brown W. J., R. C. Malveau, H. W. McCormick III, T. J. Mowbray: (1998), AntiPatterns: Refactoring

Software, Architectures, and Projects in Crisis", New York,John Wiley and Sons, Inc.,

Beyer D., C. Lewerentz: CrocoPat, (2003), Efficient pattern analysis in object-oriented programs, In

Proceedings of the 11th IEEE International Workshop on Program Comprehension (IWPC

2003), pp. 294-295, IEEE Computer Society,

Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël Guéhéneuc, Narendra Jussien, (2001), Instantiating and

Detecting Design Patterns: Putting Bits and Pieces Together, 16th IEEE conference on

Automated Software Engineering (ASE'01),

Keller R. K., R. Schauer, S. Robitaille, P. Page, (1999), Pattern-based Reverse-Engineering of Design

Components, In Proc. ICSE, pp. 226-235, ACM.

Nija Shi, Ronald A. Olsson, (2006), Reverse Engineering of Design Patterns from Java Source Code,

ase, pp. 123-134, 21st IEEE International Conference on Automated Software Engineering

(ASE'06).

Hakjin Lee, Hyunsang Youn, Eunseok Lee, (2008), A Design Pattern Detection Technique that Aids

Reverse Engineering, International Journal of Security and its Applications Vol. 2, No. 1,

January, 2008

Altova UModel (2010), UML tool for software modeling and application development

http://www.altova.com/umodel.html

Hong Zhu Bayley, I. Lijun Shan Amphlett, R., (2009), tool support for design pattern recognition at

model level, 33rd Annual IEEE International Computer Software and Applications Conference,

Volume: 1,

Jing Dong, Dushyant S. Lad, Yajing Zhao], (2007), DP-Miner: Design Pattern Discovery Using

Matrix, Proceedings of the 14th Annual IEEE International Conference and Workshops on the

Engineering of Computer-Based Systems (ECBS'07) 0-7695-2772-8/07.

Hakjin Lee, Hyunsang Youn, Eunseok Lee,(2008), A Design Pattern Detection Technique that Aids

Reverse Engineering, International Journal of Security and its Applications Vol. 2, No. 1,

Dirk Heuzeroth,Thomas Holl,Gustav Hogstrom, Welf Lowe, (2003), Automatic Design Pattern

Detection, Proceedings of the 11 th IEEE International Workshop on Program Comprehension

(IWPC’03)1092-8138/03,2003

