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ABSTRACT. Short Message Service (SMS) is a widely service for brief 

communication. With the rise of mobile usage it has become a popular tool 

for transmitting sensitive information. This sensitive information should be 

totally secure and reliable to exchange. This urgent need for secure SMS, 

led to drive for RSA implementation, which is considered one of the 

strongest algorithms in security since we are going to bring big security into 

small device. Our main goal in this project is to design an experimental test-

bed application in order to use this application in evaluating the performance 

of RSA. This report explains and documents the process of implementing an 

RSA in Experimental SMS Exchange Environment using J2ME language 

which is available in several mobile devices on the market today. 
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INTRODUCTION 

Most mobile operators encrypt all mobile communication data, including SMS messages 

but sometimes this is not the case. Even when encrypted, the data is readable for the operator. 

Although Global System for Mobile communications (GSM) traffic is usually encrypted, 

there is little or no security in some cases where the device is lost, stolen or otherwise 

accessed by an adversary. Among others these needs give rise for the need to develop 

additional encryption for SMS messages so that only accredited parties are able to engage 

communication (Hassinen 2003)(Peersman 2000). 

 Our approach to this problem is to develop a secure application that can be used in mobile 

devices to encrypt messages that are about to be sent. Naturally decryption for encrypted 

messages is also provided. The encryption and decryption are characterized by secret keys 

that all legal parties have to process. This application will be use in testing the performance of 

RSA algorithm in SMS exchange environment(Ratshinanga 2004). Several mobile device 

manufacturers have adopted Java as their platform offered for software developers. To certain 

extent Java applications are portable between devices of different vendors [3,4]. Some mobile 

device manufacturers provide an application programming interface (API) for SMS services. 

These facts make Java a natural choice for our application. 

There are some security aspects related to secure SMS such as confidentiality, integrity 

and availability. By default, there is no encryption applied for SMS messages during 

transmission. Cyclic redundancy check is provided for SMS information passing across the 

signaling channel to ensure that the short message does not get corrupted. Forward error 

protection is incorporated using conventional encoding. Short message is assigned a lifetime 
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or validity period. Failure to deliver the message within the period causes it to be marked for 

purge. Some applications would allow secondary action to be taken when the lifetime expires 

(Stallings 2006)(Hwu 2006). 

RELATED WORKS 

RSA is an algorithm for public-key cryptography (Stallings 2006). It was the first 

algorithm known to be suitable for signing as well as encryption, and one of the first great 

advances in public key cryptography. RSA is widely used in electronic commerce protocols, 

and is believed to be secure given sufficiently long keys and the use of up-to-date 

implementations (Ratshinanga 2005). Figure 1 demonstrate the main three processes and their 

steps in RSA: key generation, encryption and decryption (Wagner 2001). 

 

  

     

 

 

 

Figure 1. RSA Algorithm Mechanisms 

Java 2 Micro Edition (J2ME) is a runtime environment designed for devices with very 

limited resources such as mobile phones or handheld computers. J2ME is comprised of CLDC 

(Connected Limited Device Configuration) and Mobile Information Device Profile 

(MIDP)(Harkey 2002). A program developed for J2ME is called a MIDlet. MIDlets use 

classes defined in Application programming interface (APIs) of CLDC and MIDP. There is 

no straight interaction between a MIDlet and the device itself, since MIDlets are run by the 

Java virtual machine (JVM) (Helal 2002)(Kolsi 2004). The architecture of J2ME is depicted 

in Figure 2. This architecture limits the functionality a MIDlet (Liu 2003) can have into those 

provided by the runtime environment. 

T he linked im age cannot be display ed.  T he file m ay  hav e been m ov ed, renam ed, or deleted. V erify  that the link  points to the correct file and location.

 
Figure 2. J2ME Architecture Structure 

J2ME do not have the crypto API of J2ME. Bouncy castle has Java implementations of 

cryptographic algorithms. Bouncy castle also has a package designed for J2ME (Piroumian 

2002). So it can be used in this application because it has many cryptographic algorithms but 

the total size of an application will be very big. By Obfuscation way, Java applications are 

compiled into byte code and can be decompiled into Java source. Obfuscation "scrambles" the 

source code so that it is more difficult to decompile (Chun 1999). In obfuscation, classes and 

variables are renamed (a, b, c, d ...). Unnecessary classes are removed eg. Bouncy castle and 

the size of the MIDlet application decreases. Therefore, the total size of the application will 

be small and compatible with the memory of mobile device (Lindquist 2004)(Chat 2003). 

According to (Hassinen 2003) in their paper an application for sending encrypted SMS 

messages using cryptographic methods based on theory of quasigroups is proposed. The 

encryption algorithm is characterized by a secret key. The research on cryptographic strength 

of quasigroup encryption is still in early stages. The cryptosystem has not yet undergone 

much scrutiny from the cryptographic community. Several widely used cryptosystems today 

Key Generation 

Select  p, q                   p and q both prime, p≠q 

Calculate n = p X q 

Calculate Ø(n) = (p-1) (q-1) 

Select integer e           gcd (Ø(n), e) = 1,  1 < e < Ø(n) 

Calculate  d    d ≡ e¹ (mod Ø(n)) 

Public key       PU = {e, n} 

Private Key     PR = {d, n}  

 

Encryption 

Plaintext:  M < n 

Ciphertext: C = Me mod n 

 

Decryption 

Ciphertext:         C 

Plaintext:           M = C
d
 mod n 
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are conjectured to be safe. Hence, after extensive study by cryptographers they seem to be 

safe. This research has not yet been done to satisfactory extent on quasigroups. The 

application design itself doesn’t restrict using any suitable encryption algorithm. Quasigroup 

encryption seems to be well suited for applications such as SMS encryption. The algorithm is 

compact and needs quite a small amount of memory which is an important aspect on mobile 

devices.  

Another study was done by (Hassinen 2005). It showed how to send, receive, and store 

text messages securely with a mobile phone without any additional hardware. It also shows 

how to authenticate the sender of a message and how to ensure that the message has not been 

tampered with. The choice of Blowfish and Quasigroup encryption methods was motivated by 

his research interest (Hassinen 2005). His goal was not to find the fastest or the most secure 

algorithm, since additional algorithms can be implemented, if necessary, later on. One topic 

for future research is to implement and test other possibly suitable algorithms. According to 

our knowledge, several papers handle usage of SMS messages in different applications for 

industry, health care and personal communication but none of the articles address the security 

issues. 

We can say that our research will be adding an improved application in SMS exchange 

field using the RSA algorithm knowing that most previous studies of this field conducted 

using symmetric algorithms and not asymmetric algorithm such as RSA. (Hassinen 2005) 

mentioned that there is no paper talking about the security issues. This was an incentive for us 

to develop a new application for SMS security as well as contribute on this field. 

METHODOLOGY 

The methodology adopted from that the development process of this application is an 

experimental process. The methodology basically consists of five phases; i) Preparing test bed 

ii) Coding iii) Compiling and Running iv) Testing and v) Verifying and Validating. In the 

preparing test-bed phase, the blueprint of the test-bed is devised. This is followed by the 

coding phase whereby the Java files and classes are coded. When the classes are ready we 

will compile it in the compiling and running phase. Then we run our new application through 

the emulator. Upon that, the application now is ready to test its performance. Finally, in the 

verifying and validating phase, where at this phase all the necessary configurations has been 

done by checking if the application fulfills the requirements which we need or not.  

There are three main classes in this application with adding to another helping classes. The 

three main classes are: Send, Receive and RSAEncrypt. By using Send and Receive classes 

we can send SMS between sender and receiver without encryption. For encrypting the SMS 

we included the third class to the code which is RSAEncrypt. We can compile the classes by 

going to the next phase which is the compiling and running.  

Java Application Descriptor (JAD) file will also be created. After the JAD has been 

created we can adjust the setting. This setting is also the same settings of the application. 

Figure 3. explain these settings of JAD file. 

T he linked im age cannot be display ed.  T he file m ay  hav e been m ov ed, renam ed, or deleted. V erify  that the link  points to the correct file and location.

 
Figure 3. Settings of the JAD File (Project) 
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After adjusting the settings of the application, it now becomes ready to compile and run. 

The three main processes which are to enable bouncy castle and obfuscation, code compiling 

and application. We should notice that Sun's obfuscator has problems with projects that have 

more than 26 classes, so the following changes are necessary to ktool.properties file which is 

exist in this path: C:\WTK22\wtklib\Windows. Figure 4 illustrate the changes needed to 

enable obfuscation: 

T he linked im age cannot be display ed.  T he file m ay  hav e been m ov ed, renam ed, or deleted. V erify  that the link  points to the correct file and location.

 

Figure 4. Changes needed to Enable Obfuscation  

We compile the Java code classes by using J2ME Wireless Toolkit (WTK). There is a 

button which is called Build to compile and pre-verified the code. Figure 5 explain the output 

of code compiling process in the normal situation: 

T he linked im age cannot be display ed.  T he file m ay  hav e been m ov ed, renam ed, or deleted. V erify  that the link  points to the correct file and location.

 
Figure 5. Output of Code Compiling Process 

After successfully compiling, we need to run the application on the emulator device. Upon 

successfully running the emulator, we can launch our application to use it in sending and 

receiving encrypted SMS. Figure 6 illustrate how the application works: 

 

 

 

Figure 6. How MIDlet Works 

ANALYSIS AND FINDINGS 

We measure the effectiveness and the performance of RSA algorithm in the experimental 

SMS exchange environment. Our approach is to test Execution Time and Memory Usage. 

J2ME Wireless Toolkit (WTK) program support performance testing of the MIDlet 

application. We verify and validate our application by checking if the application fulfills the 

requirements.  

The objective of our testing is to measure the efficiency and speed of RSA algorithm by 

using Application Performance Testing. Application Performance Testing (RSA Testing) is 

the process of verifying that an implementation performs in accordance with a particular 

standard, specification, and environment. Execution Time, Memory Usage and Network 

Traffic are tested in order to find advantages of RSA. It is not intended to be exhaustive and 

successfully passed test suite does not imply a 100 percent guarantee of RSA. However, it 

does insure with a reasonable degree of confidence that the RSA is consistent with its strength 

and speed. 
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We can examine the method execution time with the Profiler utility. The Profiler collects 

data from an emulator during runtime. By seeing how much time the method of RSA or any 

another methods take to execute, we can see what potential problems might exist in the 

application. 

Profiling Data Display 

In the Call Graph tree, we see folders for top-level methods. Opening a method’s folder 

displays the methods called by it. By selecting a method in the tree shows the profiling 

information for it and all the methods called by it. For each method, we can see the following 

information: Name: The fully qualified name of the method, Count: The number of times the method 

was called during execution, Cycles: shows the amount of processor time spent in the method itself, 

%Cycles: is the percentage of the total execution time that is spent in the method itself, Cycles with 

Children (CWC): is the amount of time spent in the method and its called methods and %Cycles with 

Children (%CWC): shows the time spent in the method and its called methods as compared to the total 

execution time. 

In this kind of testing we choose four methods in our application and examined the 

average time of execution for each of these methods: Encrypt Method, SendMessage Method, 

Decrypt Method and ReceiveMessage Method. 

Table 1. Encrypt Method in Sender Side     Table 2. SendMessage Method in Sender Side 

Count Cycles (ms) %Cycles 
CWC 
(ms) %CWC 

 
Count 

Cycles 
(ms) %Cycles 

CWC 
(ms) %CWC 

1 1 1 23.15 0.6 61.49 1.6  1 88.9 2.4 152.4 4.1 

1 22.76 0.5 104.8 2.5  1 89.96 2.1 196.8 4.7 

1 22.24 0.8 61.09 2.3  1 88.59 3.4 151.6 5.9 

1 22.59 0.7 66.46 2.3  1 93.99 3.3 162.5 5.7 

1 21.54 0.8 62.73 2.5  1 88.6 3.5 153.6 6.1 

1 21.45 1 64.33 3.2  1 90.34 4.5 156.9 7.8 

1 21.36 0.9 61.8 2.6  1 88.72 3.8 152.7 6.6 

1 21.5 0.8 63.59 2.4  1 97.48 3.8 163.2 6.3 

1 21.49 0.7 65.15 2.3  1 93.6 3.3 161 5.7 

1 22.66 0.8 63.78 2.4  1 92.41 3.6 158.3 6.1 

Avg 

Count 

Avg Cycles 

(ms) 

Avg 

%Cycles 

Avg CWC 

(ms) 

Avg 

%CWC 

 
Avg 

Count 

Avg 

Cycles 
(ms) 

Avg 

%Cycles 

Avg 

CWC 
(ms) 

Avg 

%CWC 

1 22.07 0.76 67.52 2.41  1 91.26 3.37 160.9 5.9 

 

Tables 1 and 2, we can conclude that the number of times that Encrypt Method and 

SendMessage Method were called during execution is same and equal 1. The average 

execution times in seconds for Encrypt Method and SendMessage Method without children 

methods were 22.07 ms and 91.26 ms respectively. Also the percentage of time spent on a 

method’s execution in respect to the time the entire program ran without children methods for 

Encrypt Method and SendMessage Method were 0.76% and 3.37% respectively. The average 

execution time in seconds for Encrypt Method and SendMessage Method with children 

methods were 67.52 ms and 160.9 ms respectively. Also the percentage of time spent on a 

method’s execution in respect to the time the entire program ran with children methods for 

Encrypt Method and SendMessage Method were 2.41% and 5.9% respectively.      

Table 3. Decrypt Method in Receiver Side          Table 4. ReceiveMessage in Receiver Side 

Count Cycles %Cycles CWC %CWC 
 

Count Cycles %Cycles CWC %CWC 

1 21.07 1 63.82 3.1 
 

1 0.766 0 179.8 8.7 

1 21.22 1.3 67.09 4.2 
 

1 0.767 0 241.8 15.4 

1 21.01 1.4 63.73 4.5 
 

1 0.757 0 97.31 6.9 

1 22.18 1.6 66.02 4.9 
 

1 0.776 0 17.41 1.3 

1 31.93 2.5 80.59 6.4 
 

1 0.756 0 18.51 1.4 

1 22.16 1.6 65.78 5 
 

1 1.102 0 23.27 1.7 
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1 21.92 1.8 65.12 5.6 
 

1 0.75 0 16.66 1.4 

1 21.08 1.9 70.86 6.4 
 

1 0.759 0 18.25 1.6 

1 21.9 1.8 66.16 5.4 
 

1 0.758 0 21.2 1.7 

1 22.1 1.7 68.41 5.4 
 

1 0.76 0 17.76 1.4 

Avg 

Count 

Avg 

Cycles 

Avg 

%Cycles 

Avg 

CWC 

Avg 

%CWC 

 
Avg 

Count 

Avg 

Cycles 

Avg 

%Cycles 

Avg 

CWC 

Avg 

%CWC 

1 22.66      1.66 67.76 5.09  1 0.795 0 65.20 4.15 

 

Tables 3 and 4, we can conclude that the number of times that Decrypt Method and 

ReceiveMessage Method were called during execution is same and equal 1. And the average 

execution time in seconds, for Decrypt Method and ReceiveMessage Method without children 

methods were 22.66 ms and 0.795 ms respectively. Also the percentage of time spent on a 

method’s execution in respect to the time the entire program ran without children methods for 

Decrypt Method and ReceiveMessage Method were 1.66% and 0% respectively. The average 

execution time in seconds for Decrypt Method and ReceiveMessage Method with children 

methods were 67.76 ms and 65.20 ms respectively. Also the percentage of time spent on a 

method’s execution in respect to the time the entire program ran with children methods for 

Decrypt Method and ReceiveMessage Method were 5.09% and 4.15% respectively. 

Time of Encryption and Decryption 

Another test conducted was the time of Encryption and Decryption. We fix the size of 

SMS and then take 10 readings for the encryption and decryption time. We calculate the 

average time of encryption and decryption to use it in table 4.5, then we fix another size and 

so on, we start from size 12 until 84 and take 10 readings of average time of encryption and 

decryption. From able 5 we can calculate the encryption average time (EAT) which is equal 

19ms and the decryption average time (DAT) which is equal 21ms. 

Table 5. Encryption and Decryption Average 

Times 

SMS Size 

(Byte) 

Encryption Avg 

Time (ms) 

Decryption Avg 

Time (ms) 

12 28.1 28.2 

20 7.8 7.7 

28 17.4 17.3 

36 9.4 12.5 

44 12.6 9.4 

52 6.2 15.5 

60 21.9 26.6 

68 23.1 25 

76 31.1 33.1 

84 34.1 38.2 

Avg  19.17 ms 21.35 ms 

Memory Usage Testing 

We also conducted test for optimization of memory usage. The Memory Monitor 

Extension feature enables us to see how much memory is used by application during runtime 

and to see a breakdown of the amount of memory usage per object. The Memory Monitor 

displays usage information in Graph. The Memory Usage graph displays the following 

information namely the amount of memory used, the amount of unused memory available and 

the total amount of memory available at startup. 

In Tables 6 and Table 7, we took five readings for the used and free memory at the sender 

and the receiver sides. After that we calculate the percentage of used and free memory to 

identify how much the application used the memory. 
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Table 6. Memory Usage in Sender Side                  Table 7. Memory Usage in Receiver Side 

Used (byte) Free (byte) Total (byte) 
 

Used (byte) Free (byte) Total (byte) 

48444 451556 500000  42020 457980 500000 

46336 453664 500000  43244 456756 500000 

47528 452472 500000  44340 455660 500000 

46272 453728 500000  43244 456756 500000 

46336 453664 500000 
 

43244 456756 500000 

Avg Used (byte) Avg Free (byte) Avg Total (byte)  Avg Used (byte) Avg Free (byte) Avg Total (byte) 

46983.2 453016.8 500000  43218.4 456781.6 500000 

% Used % Free    % Used % Free   

9.39664 90.60336    8.64368 91.35632   

Obfuscation Testing 

In this test, two cases were experiment, the first one if we apply the obfuscation the total 

size of 40 bytes and the second case if we do not apply the obfuscation the total size of 584 

bytes. Figure 7 illustrate the effects of obfuscation. 

 

 

 

 

 

                         

 

 

Figure 7. i) without Obfuscation                            ii) with Obfuscation 

CONCLUSION 

We have conducted several simple testing to make sure that RSA algorithm is operational 

in our experimental SMS exchange environment. The purpose of performance testing is to 

evaluate the RSA algorithm performance. The main factor that affect the performance of the 

testing is using of bouncy castle and obfuscation which allow RSA to be more efficient in this 

environment. We have successfully delivered a Secure SMS MIDlet application using RSA 

algorithm. All the designing, configuration and testing of the application with RSA algorithm 

have proven that it is possible to implement RSA in experimental SMS exchange 

environment. The process of designing, configuration, and testing described in the report 

shows the implementation of experimental RSA in Secure SMS application. This research can 

be further expanded in the future to incorporate other public key algorithms and comparing 

with them to identify the best public key algorithm for secure SMS. 
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