
Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

148

 350

RSA ALGORITHM PERFORMANCE IN SHORT MESSAGING

SYSTEM EXCHANGE ENVIRONMENT

Hatim Mohamad Tahir
1
, Tamer N. N. Madi, Mohd Zabidin Husin”

2
,

Nurnasran Puteh
3

 1,2,3University Utara Malaysia, {hatim, zabidin,nasran}@uum.edu.my

ABSTRACT. Short Message Service (SMS) is a widely service for brief

communication. With the rise of mobile usage it has become a popular tool

for transmitting sensitive information. This sensitive information should be

totally secure and reliable to exchange. This urgent need for secure SMS,

led to drive for RSA implementation, which is considered one of the

strongest algorithms in security since we are going to bring big security into

small device. Our main goal in this project is to design an experimental test-

bed application in order to use this application in evaluating the performance

of RSA. This report explains and documents the process of implementing an

RSA in Experimental SMS Exchange Environment using J2ME language

which is available in several mobile devices on the market today.

Keywords: short message service (SMS), RSA algorithm, J2ME

INTRODUCTION

Most mobile operators encrypt all mobile communication data, including SMS messages

but sometimes this is not the case. Even when encrypted, the data is readable for the operator.

Although Global System for Mobile communications (GSM) traffic is usually encrypted,

there is little or no security in some cases where the device is lost, stolen or otherwise

accessed by an adversary. Among others these needs give rise for the need to develop

additional encryption for SMS messages so that only accredited parties are able to engage

communication (Hassinen 2003)(Peersman 2000).

 Our approach to this problem is to develop a secure application that can be used in mobile

devices to encrypt messages that are about to be sent. Naturally decryption for encrypted

messages is also provided. The encryption and decryption are characterized by secret keys

that all legal parties have to process. This application will be use in testing the performance of

RSA algorithm in SMS exchange environment(Ratshinanga 2004). Several mobile device

manufacturers have adopted Java as their platform offered for software developers. To certain

extent Java applications are portable between devices of different vendors [3,4]. Some mobile

device manufacturers provide an application programming interface (API) for SMS services.

These facts make Java a natural choice for our application.

There are some security aspects related to secure SMS such as confidentiality, integrity

and availability. By default, there is no encryption applied for SMS messages during

transmission. Cyclic redundancy check is provided for SMS information passing across the

signaling channel to ensure that the short message does not get corrupted. Forward error

protection is incorporated using conventional encoding. Short message is assigned a lifetime

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

148

 351

or validity period. Failure to deliver the message within the period causes it to be marked for

purge. Some applications would allow secondary action to be taken when the lifetime expires

(Stallings 2006)(Hwu 2006).

RELATED WORKS

RSA is an algorithm for public-key cryptography (Stallings 2006). It was the first

algorithm known to be suitable for signing as well as encryption, and one of the first great

advances in public key cryptography. RSA is widely used in electronic commerce protocols,

and is believed to be secure given sufficiently long keys and the use of up-to-date

implementations (Ratshinanga 2005). Figure 1 demonstrate the main three processes and their

steps in RSA: key generation, encryption and decryption (Wagner 2001).

Figure 1. RSA Algorithm Mechanisms

Java 2 Micro Edition (J2ME) is a runtime environment designed for devices with very

limited resources such as mobile phones or handheld computers. J2ME is comprised of CLDC

(Connected Limited Device Configuration) and Mobile Information Device Profile

(MIDP)(Harkey 2002). A program developed for J2ME is called a MIDlet. MIDlets use

classes defined in Application programming interface (APIs) of CLDC and MIDP. There is

no straight interaction between a MIDlet and the device itself, since MIDlets are run by the

Java virtual machine (JVM) (Helal 2002)(Kolsi 2004). The architecture of J2ME is depicted

in Figure 2. This architecture limits the functionality a MIDlet (Liu 2003) can have into those

provided by the runtime environment.

T he linked im age cannot be display ed. T he file m ay hav e been m ov ed, renam ed, or deleted. V erify that the link points to the correct file and location.

Figure 2. J2ME Architecture Structure

J2ME do not have the crypto API of J2ME. Bouncy castle has Java implementations of

cryptographic algorithms. Bouncy castle also has a package designed for J2ME (Piroumian

2002). So it can be used in this application because it has many cryptographic algorithms but

the total size of an application will be very big. By Obfuscation way, Java applications are

compiled into byte code and can be decompiled into Java source. Obfuscation "scrambles" the

source code so that it is more difficult to decompile (Chun 1999). In obfuscation, classes and

variables are renamed (a, b, c, d ...). Unnecessary classes are removed eg. Bouncy castle and

the size of the MIDlet application decreases. Therefore, the total size of the application will

be small and compatible with the memory of mobile device (Lindquist 2004)(Chat 2003).

According to (Hassinen 2003) in their paper an application for sending encrypted SMS

messages using cryptographic methods based on theory of quasigroups is proposed. The

encryption algorithm is characterized by a secret key. The research on cryptographic strength

of quasigroup encryption is still in early stages. The cryptosystem has not yet undergone

much scrutiny from the cryptographic community. Several widely used cryptosystems today

Key Generation

Select p, q p and q both prime, p≠q

Calculate n = p X q

Calculate Ø(n) = (p-1) (q-1)

Select integer e gcd (Ø(n), e) = 1, 1 < e < Ø(n)

Calculate d d ≡ e¹ (mod Ø(n))

Public key PU = {e, n}

Private Key PR = {d, n}

Encryption

Plaintext: M < n

Ciphertext: C = Me mod n

Decryption

Ciphertext: C

Plaintext: M = C
d
 mod n

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

148

 352

are conjectured to be safe. Hence, after extensive study by cryptographers they seem to be

safe. This research has not yet been done to satisfactory extent on quasigroups. The

application design itself doesn’t restrict using any suitable encryption algorithm. Quasigroup

encryption seems to be well suited for applications such as SMS encryption. The algorithm is

compact and needs quite a small amount of memory which is an important aspect on mobile

devices.

Another study was done by (Hassinen 2005). It showed how to send, receive, and store

text messages securely with a mobile phone without any additional hardware. It also shows

how to authenticate the sender of a message and how to ensure that the message has not been

tampered with. The choice of Blowfish and Quasigroup encryption methods was motivated by

his research interest (Hassinen 2005). His goal was not to find the fastest or the most secure

algorithm, since additional algorithms can be implemented, if necessary, later on. One topic

for future research is to implement and test other possibly suitable algorithms. According to

our knowledge, several papers handle usage of SMS messages in different applications for

industry, health care and personal communication but none of the articles address the security

issues.

We can say that our research will be adding an improved application in SMS exchange

field using the RSA algorithm knowing that most previous studies of this field conducted

using symmetric algorithms and not asymmetric algorithm such as RSA. (Hassinen 2005)

mentioned that there is no paper talking about the security issues. This was an incentive for us

to develop a new application for SMS security as well as contribute on this field.

METHODOLOGY

The methodology adopted from that the development process of this application is an

experimental process. The methodology basically consists of five phases; i) Preparing test bed

ii) Coding iii) Compiling and Running iv) Testing and v) Verifying and Validating. In the

preparing test-bed phase, the blueprint of the test-bed is devised. This is followed by the

coding phase whereby the Java files and classes are coded. When the classes are ready we

will compile it in the compiling and running phase. Then we run our new application through

the emulator. Upon that, the application now is ready to test its performance. Finally, in the

verifying and validating phase, where at this phase all the necessary configurations has been

done by checking if the application fulfills the requirements which we need or not.

There are three main classes in this application with adding to another helping classes. The

three main classes are: Send, Receive and RSAEncrypt. By using Send and Receive classes

we can send SMS between sender and receiver without encryption. For encrypting the SMS

we included the third class to the code which is RSAEncrypt. We can compile the classes by

going to the next phase which is the compiling and running.

Java Application Descriptor (JAD) file will also be created. After the JAD has been

created we can adjust the setting. This setting is also the same settings of the application.

Figure 3. explain these settings of JAD file.

T he linked im age cannot be display ed. T he file m ay hav e been m ov ed, renam ed, or deleted. V erify that the link points to the correct file and location.

Figure 3. Settings of the JAD File (Project)

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

148

 353

After adjusting the settings of the application, it now becomes ready to compile and run.

The three main processes which are to enable bouncy castle and obfuscation, code compiling

and application. We should notice that Sun's obfuscator has problems with projects that have

more than 26 classes, so the following changes are necessary to ktool.properties file which is

exist in this path: C:\WTK22\wtklib\Windows. Figure 4 illustrate the changes needed to

enable obfuscation:

T he linked im age cannot be display ed. T he file m ay hav e been m ov ed, renam ed, or deleted. V erify that the link points to the correct file and location.

Figure 4. Changes needed to Enable Obfuscation

We compile the Java code classes by using J2ME Wireless Toolkit (WTK). There is a

button which is called Build to compile and pre-verified the code. Figure 5 explain the output

of code compiling process in the normal situation:

T he linked im age cannot be display ed. T he file m ay hav e been m ov ed, renam ed, or deleted. V erify that the link points to the correct file and location.

Figure 5. Output of Code Compiling Process

After successfully compiling, we need to run the application on the emulator device. Upon

successfully running the emulator, we can launch our application to use it in sending and

receiving encrypted SMS. Figure 6 illustrate how the application works:

Figure 6. How MIDlet Works

ANALYSIS AND FINDINGS

We measure the effectiveness and the performance of RSA algorithm in the experimental

SMS exchange environment. Our approach is to test Execution Time and Memory Usage.

J2ME Wireless Toolkit (WTK) program support performance testing of the MIDlet

application. We verify and validate our application by checking if the application fulfills the

requirements.

The objective of our testing is to measure the efficiency and speed of RSA algorithm by

using Application Performance Testing. Application Performance Testing (RSA Testing) is

the process of verifying that an implementation performs in accordance with a particular

standard, specification, and environment. Execution Time, Memory Usage and Network

Traffic are tested in order to find advantages of RSA. It is not intended to be exhaustive and

successfully passed test suite does not imply a 100 percent guarantee of RSA. However, it

does insure with a reasonable degree of confidence that the RSA is consistent with its strength

and speed.

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

148

 354

We can examine the method execution time with the Profiler utility. The Profiler collects

data from an emulator during runtime. By seeing how much time the method of RSA or any

another methods take to execute, we can see what potential problems might exist in the

application.

Profiling Data Display

In the Call Graph tree, we see folders for top-level methods. Opening a method’s folder

displays the methods called by it. By selecting a method in the tree shows the profiling

information for it and all the methods called by it. For each method, we can see the following

information: Name: The fully qualified name of the method, Count: The number of times the method

was called during execution, Cycles: shows the amount of processor time spent in the method itself,

%Cycles: is the percentage of the total execution time that is spent in the method itself, Cycles with

Children (CWC): is the amount of time spent in the method and its called methods and %Cycles with

Children (%CWC): shows the time spent in the method and its called methods as compared to the total

execution time.

In this kind of testing we choose four methods in our application and examined the

average time of execution for each of these methods: Encrypt Method, SendMessage Method,

Decrypt Method and ReceiveMessage Method.

Table 1. Encrypt Method in Sender Side Table 2. SendMessage Method in Sender Side

Count Cycles (ms) %Cycles
CWC
(ms) %CWC

Count

Cycles
(ms) %Cycles

CWC
(ms) %CWC

1 1 1 23.15 0.6 61.49 1.6 1 88.9 2.4 152.4 4.1

1 22.76 0.5 104.8 2.5 1 89.96 2.1 196.8 4.7

1 22.24 0.8 61.09 2.3 1 88.59 3.4 151.6 5.9

1 22.59 0.7 66.46 2.3 1 93.99 3.3 162.5 5.7

1 21.54 0.8 62.73 2.5 1 88.6 3.5 153.6 6.1

1 21.45 1 64.33 3.2 1 90.34 4.5 156.9 7.8

1 21.36 0.9 61.8 2.6 1 88.72 3.8 152.7 6.6

1 21.5 0.8 63.59 2.4 1 97.48 3.8 163.2 6.3

1 21.49 0.7 65.15 2.3 1 93.6 3.3 161 5.7

1 22.66 0.8 63.78 2.4 1 92.41 3.6 158.3 6.1

Avg

Count

Avg Cycles

(ms)

Avg

%Cycles

Avg CWC

(ms)

Avg

%CWC

Avg

Count

Avg

Cycles
(ms)

Avg

%Cycles

Avg

CWC
(ms)

Avg

%CWC

1 22.07 0.76 67.52 2.41 1 91.26 3.37 160.9 5.9

Tables 1 and 2, we can conclude that the number of times that Encrypt Method and

SendMessage Method were called during execution is same and equal 1. The average

execution times in seconds for Encrypt Method and SendMessage Method without children

methods were 22.07 ms and 91.26 ms respectively. Also the percentage of time spent on a

method’s execution in respect to the time the entire program ran without children methods for

Encrypt Method and SendMessage Method were 0.76% and 3.37% respectively. The average

execution time in seconds for Encrypt Method and SendMessage Method with children

methods were 67.52 ms and 160.9 ms respectively. Also the percentage of time spent on a

method’s execution in respect to the time the entire program ran with children methods for

Encrypt Method and SendMessage Method were 2.41% and 5.9% respectively.

Table 3. Decrypt Method in Receiver Side Table 4. ReceiveMessage in Receiver Side

Count Cycles %Cycles CWC %CWC

Count Cycles %Cycles CWC %CWC

1 21.07 1 63.82 3.1

1 0.766 0 179.8 8.7

1 21.22 1.3 67.09 4.2

1 0.767 0 241.8 15.4

1 21.01 1.4 63.73 4.5

1 0.757 0 97.31 6.9

1 22.18 1.6 66.02 4.9

1 0.776 0 17.41 1.3

1 31.93 2.5 80.59 6.4

1 0.756 0 18.51 1.4

1 22.16 1.6 65.78 5

1 1.102 0 23.27 1.7

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

148

 355

1 21.92 1.8 65.12 5.6

1 0.75 0 16.66 1.4

1 21.08 1.9 70.86 6.4

1 0.759 0 18.25 1.6

1 21.9 1.8 66.16 5.4

1 0.758 0 21.2 1.7

1 22.1 1.7 68.41 5.4

1 0.76 0 17.76 1.4

Avg

Count

Avg

Cycles

Avg

%Cycles

Avg

CWC

Avg

%CWC

Avg

Count

Avg

Cycles

Avg

%Cycles

Avg

CWC

Avg

%CWC

1 22.66 1.66 67.76 5.09 1 0.795 0 65.20 4.15

Tables 3 and 4, we can conclude that the number of times that Decrypt Method and

ReceiveMessage Method were called during execution is same and equal 1. And the average

execution time in seconds, for Decrypt Method and ReceiveMessage Method without children

methods were 22.66 ms and 0.795 ms respectively. Also the percentage of time spent on a

method’s execution in respect to the time the entire program ran without children methods for

Decrypt Method and ReceiveMessage Method were 1.66% and 0% respectively. The average

execution time in seconds for Decrypt Method and ReceiveMessage Method with children

methods were 67.76 ms and 65.20 ms respectively. Also the percentage of time spent on a

method’s execution in respect to the time the entire program ran with children methods for

Decrypt Method and ReceiveMessage Method were 5.09% and 4.15% respectively.

Time of Encryption and Decryption

Another test conducted was the time of Encryption and Decryption. We fix the size of

SMS and then take 10 readings for the encryption and decryption time. We calculate the

average time of encryption and decryption to use it in table 4.5, then we fix another size and

so on, we start from size 12 until 84 and take 10 readings of average time of encryption and

decryption. From able 5 we can calculate the encryption average time (EAT) which is equal

19ms and the decryption average time (DAT) which is equal 21ms.

Table 5. Encryption and Decryption Average

Times

SMS Size

(Byte)

Encryption Avg

Time (ms)

Decryption Avg

Time (ms)

12 28.1 28.2

20 7.8 7.7

28 17.4 17.3

36 9.4 12.5

44 12.6 9.4

52 6.2 15.5

60 21.9 26.6

68 23.1 25

76 31.1 33.1

84 34.1 38.2

Avg 19.17 ms 21.35 ms

Memory Usage Testing

We also conducted test for optimization of memory usage. The Memory Monitor

Extension feature enables us to see how much memory is used by application during runtime

and to see a breakdown of the amount of memory usage per object. The Memory Monitor

displays usage information in Graph. The Memory Usage graph displays the following

information namely the amount of memory used, the amount of unused memory available and

the total amount of memory available at startup.

In Tables 6 and Table 7, we took five readings for the used and free memory at the sender

and the receiver sides. After that we calculate the percentage of used and free memory to

identify how much the application used the memory.

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

148

 356

Table 6. Memory Usage in Sender Side Table 7. Memory Usage in Receiver Side

Used (byte) Free (byte) Total (byte)

Used (byte) Free (byte) Total (byte)

48444 451556 500000 42020 457980 500000

46336 453664 500000 43244 456756 500000

47528 452472 500000 44340 455660 500000

46272 453728 500000 43244 456756 500000

46336 453664 500000

43244 456756 500000

Avg Used (byte) Avg Free (byte) Avg Total (byte) Avg Used (byte) Avg Free (byte) Avg Total (byte)

46983.2 453016.8 500000 43218.4 456781.6 500000

% Used % Free % Used % Free

9.39664 90.60336 8.64368 91.35632

Obfuscation Testing

In this test, two cases were experiment, the first one if we apply the obfuscation the total

size of 40 bytes and the second case if we do not apply the obfuscation the total size of 584

bytes. Figure 7 illustrate the effects of obfuscation.

Figure 7. i) without Obfuscation ii) with Obfuscation

CONCLUSION

We have conducted several simple testing to make sure that RSA algorithm is operational

in our experimental SMS exchange environment. The purpose of performance testing is to

evaluate the RSA algorithm performance. The main factor that affect the performance of the

testing is using of bouncy castle and obfuscation which allow RSA to be more efficient in this

environment. We have successfully delivered a Secure SMS MIDlet application using RSA

algorithm. All the designing, configuration and testing of the application with RSA algorithm

have proven that it is possible to implement RSA in experimental SMS exchange

environment. The process of designing, configuration, and testing described in the report

shows the implementation of experimental RSA in Secure SMS application. This research can

be further expanded in the future to incorporate other public key algorithms and comparing

with them to identify the best public key algorithm for secure SMS.

REFERENCES

Hassinen M. and S. Markovski (2003). Secure SMS messaging using Quasigroup encryption and Java

SMS API. 187 - 200.

Peersman G., P. Griffiths, H. Spear, S. Cvetkovic, and C. Smythe (2000). A tutorial overview of the

short message service within GSM. Computing & Control Engineering Journal, vol. 11, 79-

89.

Harkey D., S. Appajodu, and M. Larkin (2002). Wireless Java Programming for Enterprise

Applications: Mobile Devices Go Corporate. John Wiley.

Hassinen M. (2005). SafeSMS-end-to-end encryption for SMS.. ConTEL 2005- Proceedings of the 8th

International Conference on Telecommunications, vol. 2.

RSAEncrypt without obfuscation:

The total size 584 kbyte

4096

184 MANIFEST.MF

239 RSAEncrypt.jad

570520 RSAEncrypt.jar

4096 ..

152 RSAEncrypt.html

RSAEncrypt with obfuscation:

The total size 40 kbyte

4096

184 MANIFEST.MF

238 RSAEncrypt.jad

19806 RSAEncrypt.jar

4096 ..

152 RSAEncrypt.html

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

148

 357

Ratshinanga H., J. Lo, and J. Bishop (2004). A Security Mechanism for Secure SMS Communication.

Proceedings of SAICSIT. pp. 1-6.

Li G., Y. Liu, X. Cai, C. Wang, and D. Zhou (2003). A Distributed and Adaptive Data flow System for

SMS. vol. 2, pp. 1350 -1355.

Stallings W., (2006). Cryptography and Network Security. 4th Ed: Prentice Hall.

Hwu J.S., S.F. Hsu, Y.B. Lin, and R.J. Chen (2006). End-to-end Security Mechanisms for SMS.

Department of Computer Science & Information Engineering, National Chiao Tung

University,.

Ratshinanga H., J. Lo, and J. Bishop (2005), A Security Mechanism for Secure SMS Communication.

Computer Science Department, University of Pretoria, South Africa.

Wagner N.,(2001). The Laws of Cryptography: The RSA Cryptosystem.

Helal S., (2002). Pervasive Java. Pervasive Computing, IEEE. vol. 1, pp. 82-85.

Kolsi O. and T. Virtanen (2004). MIDP 2.0 security enhancements. Proceedings of the 37th Annual

Hawaii International Conference on System Sciences, pp. 287-294.

Piroumian V., (2002). Wireless J2ME Platform Programming.

Lindquist T. E., M. Diarra, and B. R. Millard (2004). A Java Cryptography Service Provider

Implementing One-Time Pad. Proceedings of the 37th Annual Hawaii International

Conference on System Sciences, pp. 189-194.

Chat A., (2003), MIDlet Example Using the Wireless Messaging API and the Nokia SMS API: Chat.

Forum Nokia. Retrieved from http://www.nokia.com

Chun H. L. W., (1999). Interworking Of SMS Between GSM Based GMPCS System And IS-41 Based

Cellular System Using I-SMC. vol. 3, pp. 1432 - 1436.

Jiang H., (1998). Reliability, Costs and Delay Performance of Sending Short Message Service in
Wireless. vol. 2, pp. 1073 – 1077.

