Mobile Agent Routing for Query Retrieval Using Genetic Algorithm

A. Selamat™”, M. H. Selamat® and S. Omatu”

aFaculZy of Computer Science and Information Systems, Universiti Teknologi Malaysia,
81310 UTM Skudai, Johor, Malaysia.
Tel.: 6-07-5532070 Fax: 6-07-5565044
E-mail: aselamat@fsksm.utm.my, hafiz@fsksm.utm.my

bDivision of Computer and Systems Sciences, Graduate School of Engineering,
Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
Telephone: +81-722-54-9278,Fax: +81-722-57-1788
E-mail: omatu@cs.osakafu-u.ac.jp

ABSTRACT

Mobile agents often have a task to collect data from
several predefined sites. This should be done in an
efficient way by minimizing the elapsed time. Usually
these agents only know the list of sites but not the
distances between them. This paper proposes a method
to minimize a network routing time taken by the mobile
agents to collect information from different sites using
genetic algorithm (GA). The mobile agents repeat
travelling over short routes and avoid longer ones.
Mobile agents for query retrieval have used the GA to
select the best routes that minimize the query retrieval
time. The result shows that the proposed method
provides good time minimization in retrieving the query
results by the mobile agents based on different GA
parameters.

Keywords

Mobile agent, query retrieval, genetic algorithm,
network routing.

1.0 INTRODUCTION

The introduction of mobile agent in the field of
distributed computing has proven useful where the
mobile agents will roam the networks to search for
information requested by the users. The mobile agents
will also cooperate with other agents to accomplish the
assigned tasks. There are four main properties belonging
to mobile agents such as intelligence, communication,
autonomy, and mobility. Maes et al., (1997) have
described each of these properties. The biological insects
have inspired most of the research related to agent based
network routing and their colonies as described by
Schoonderwoerd et al., (1997). It relies on the principles
that individual insects will perform a simple behaviour
while the collective communities of these insects will
perform complex problem solving capabilities. A
research has been conducted in mapping the biological
insects to the network routing management by using
mobile agents. These agents are represented as artificial
agents that traverse the network to collect specific
information from the designated hosts. They will visit

these hosts and coordinate with other agents to
accomplish the assign tasks on behalf of users. They will
also make several decisions to adapt their behavior
according to the current environment in which they are
currently reside.

Many researchers have investigated the adaptations of
mobile agents for network routing. For example, Sum et
al., (2003) have proposed a method to reduce the number
of agents to be used to retrieve the information from the
Internet that will minimize the routing time taken by the
mobile agents. Kashiwazaki et al., (2002) have proposed
an adaptive routing algorithm for network routing by
using a rule-based method. Chen et al., (1997) have
proposed a method to reduce the cost and network traffic
used by mobile agents to retrieve information from the
internet, namely, the highest probability first search
(HPFS) algorithm. The HPSF has been used to locate the
agent that has been dispatched to the Internet to collect
the required information. However, there is a problem
with the HPSF where the control function of agents after
the target object has been located has not been discussed.
Park, (2003) has analyzed the performance migrations of
mobile agents from one host to another. However, the
mobile agent routing mechanism has not been
investigated.

In this paper, a network routing by mobile agents for
query retrieval using a genetic algorithm (GA) is
proposed. The agent repeats traveling over short routes
and avoids longer ones. The GA approach for selecting
the best routes has been applied to the mobile agents
technology. We have applied the route selection of query
retrieval by mobile agents in the Mobile Agent Search
System (MaSS) (Selamat et al., (2002)). The result
shows that the proposed method provides good time
minimization in retrieving the query results by the
mobile agents based on different GA parameters.

This paper is organized as follows: The query retrieval
using mobile agent is discussed in Section 2. The MaSS
architecture is described in Section 3. The network
routing using the GA applied to the MaSS search agent is
discussed in Section 4. The experiments and results of

proposed network routing method with different
parameters are discussed in Sections 5 and 6. The
conclusions are described in Section 7.

2.0. QUERY RETRIEVAL USING MOBILE
AGENTS

The mobile agent technology for prefetching the results
from the search engines in the MaSS is shown in Figure
1 and 2 (see Appendix). The term prefetching means that
our mobile agents were used to retrieve the URL datasets
that exist in the search engines databases and store them
in the local database servers. The process has been
executed during night-time by employing the activation
and deactivation functions that exist in our mobile agent
system. Activation is a process of activating the mobile
agent to start retrieving the search engine databases
based on specific queries. Also the activation time was
set to 1-hour where in each hour, the mobile agent will
retrieve the query results from the designated search
engines. If the search query result is new, then it will be
added to the local database, otherwise, it will be
discarded. A deactivation is a process to stop the mobile
agent from collecting the new search results, which will
be determined by the user. Further description on the
MaSS for query retrieval approach is described in the
next section.

3.0 THE MASS ARCHITECTURE

The Mobile Agent Search System (MaSS) was
developed to support retrieval query results from a few
numbers of search servers and its architecture is shown
in Figure 2. The architecture consists of a MaSS client, a
MaSS server, and a collection of the local prefetch (LP)
servers. The algorithm used to select the best routes that
minimizes the query retrieval time by mobile agents is
shown in Figure 3. Figure 2 represents the detail
architecture of the query retrieval using the MaSS.
Further description on each component of the MaSS is
described as follows:

Send the MaSS search agent to the
LP servers

Start timer for routing
algorithms

Choose best route from
routing candidates

Save this route as a
candidate

Route good
No enough?

Yes|
A

Accept connection ‘ ‘ Refused connection

Figure 3: The algorithm that has been used to select a suitable
route by the MaSS search agent in order to collect the query
results from the LP servers.

3.1. The MaSS client

The MaSS client comprises of the MaSS client agent
(W) and a simple user interface. A user interface is used
as a medium for a user to interact with the MaSS.

3.2. The MaSS client agent

A user will enter a search keyword on the query form in
the HTML browser. The MaSS client agent (W) will
send a request to the MaSS server agent (X) in order to
get the query search results.

3.3. The MaSS server

The MaSS server comprises of the MaSS server agent
(X) and the MaSS search agent (Y). Further descriptions
on each of them are as follows:

3.3.1. The MaSS server agent

The MaSS server agent (X) is a stationery agent. Upon
receiving request from the MaSS client agent (W), the
user's id will be checked at this stage. Then the MaSS
server agent will delegate the search tasks to the MaSS
search agent (Y). After receiving the search results from
the MaSS search agent, the MaSS server agent will rank
them. The ranked search results will be stored into the
MasSS server database (SD) before returning them to the
MasSS client agent to be presented to the user.

3.3.2. The MaSS search agent

When receiving a query request from the MaSS server
agent (X), the MaSS search agent (Y) will start to mobile
to a collection of local prefetch servers as shown in
Figure 2. Then it will communicate with the local agents
at each of the hosts at the collection of the LP servers A,
B, and C. At host 1, the MaSS search agent will ask the
local agent about the query that is requested by the MaSS
server agent. The query results will be given to the MaSS
search agent by a local agent. The same process will be
repeated at hosts 2, 3,...,14 with different local agents.
Once the tasks have been completed, the MaSS search
agent (Y) will return home and pass the search results to
the MaSS server agent (X).

3.4. A collection of LP servers

The operational architecture of the MaSS in retrieving
the search results from the collection of LP servers is
shown in Figure 2. The W, and W, are the time
taken to send and receive the query results from the
MaSS client agent (W) to the MaSS server agent (X).
The LP servers consist of a local Yahoo database server
(host 1), a local AltaVista database server (host 2), a
local HotBot database server (host 3), etc. The idea of LP

server is to store the query results locally instead of
searching them from the World Wide Web. They will
reduce the time of searching and retrieving the query
results by the MaSS search agent (Y). The LP servers
will send their local agents to roam the WWW and
collect the search results from designated search engines
and store the query results in a local database (LD) at
hosts 1, 2, ..., 14. The process of removing the broken
and duplicated links, stemming, and stopping will take
place before storing them into a local database. This is
performed in a night-time using activation and
deactivation function that exist in the local agents.

4.0 NETWORK ROUTING BY MOBILE
AGENTS USING GA

In order to retrieve the query results in an optimal time,
the MaSS search agent has applied the GA approach for
route selection in order to minimize the query retrieval
time as shown in Figure 4. Further formulation of the
route optimization is as follows:

Min Qrt(route) s.t. Delay(route) < MaxDelay)

where Qrt(route) is the query retrieval time taken to
retrieve the query results, route is the paths that have
been used by the MaSS search agent (Y) to send and
retrieve the results from the LP servers. Delay(route) is
the time constraint due to network bottleneck. The
operational process of the MaSS search agent in using
GA for selecting an optimal route is shown in Figure 4.
MaxDelay is the maximum time delay applied to the path
used by the MaSS search agent to retrieve the query
results.

Figure 4: The GA used to select a suitable route by the MaSS
search agent.

4.1. Encoding of the GA

The encoding of the GA that has been used by the
mobile agents to select the optimal route in retrieving the
query results is shown in Figure 4. The path
representation approach was chosen to encode a route
due to its easy implementation. There are 15 LP servers

including the web proxy server as shown in Figure 1.
The route from the MaSS Server to the web proxy server
can be represented as [1 234567891011 1213 14
15]. If the route does not exist then a value of 0 is
included to the route suchas[123456789100000
0].

4.2. Population initialization

We can randomly determine how many nodes the route
will pass through and randomly determine which node
will be in the route and the sequence of nodes of the
route. However, there will be some solutions that may
violate constraint of delay connectivity. A penalty
method was used to deal with these constraints. For those
routes that do not exist, a very large delay value was
assigned to them. For those routes that violate the delay
constraint, a penalty was added to their cost. The
following expression to evaluate the weighted cost of
those illegal routes was employed in the algorithm. It is
given by

Ort(route) = Cost(route) + (a + Delay(route)) 2)

where QOrt(route) is the weighted query retrieval time for
a selected route as described at the beginning of this
section, « is the penalty constraint if the route does not
exist, e.g., &=1,2.3,...,10, and Cost(route) is the function
that evaluates the total cost of the links that the route
may pass through. The details of Cost(route) and
Delay(route) are shown in Table 1 and 2 (in Appendix).

4.3. Fitness evaluation

Fitness of the solutions is proportional to the
chromosomes survivability during the GA operation
where the good values are selected and the bad values
are discarded. In this study, the fitness of solutions was
normalized to 0 < Fitness(route) < 1 by the following
expression:

Costs (route) 3)

Fitness (route) =
TotalCosts (route) + MaxDelay

where the Costs(routes) has been described in previous
paragraph and the TotalCosts(routes) is the sum of
Costs(routes) for all populations at generation k. The
TotalCosts is given by

i=k
TotalCosts(route) = ZCosts(route) . 4)

i=1

For the first 30 generations, the Fitness(route) value was
adjusted when the Fitness(route) < 0.005 to
Fitness(route) = 0.005 to prevent premature efficiency.

4.4. Selection operation

In order to keep the “good” solutions and discard the
“bad” solutions at the same time, two selection operators
have been used in the algorithm. First, the fitness of all
solutions was added by generating number randomly
between zero and the total value of fitness. Second, the
fitness value was added on each of the solutions until the
value is greater than the current fitness value of each
solution. Then the highest fitness value among the
solutions will be selected.

4.5. Crossover operation

In this paper, the traditional one-point crossover method
is used. Firstly, a certain point of the array was
determined and swap the part before and after the cross
point to generate two new solutions. However, because
the number of nodes the routes may pass through is not
fixed, it is difficult to determine a fixed crossover point.
So, a new dynamic crossover point method was assigned
such as [((A+B)/4)] where A and B are the number of
nodes that the two routes will pass through; respectively,
and the operator “[]” is the rounding function. For
example, two routes before the crossover operations are
[12345000000000]and[6780000000000
0]. According to this procedure [((A+B)/4)] after
crossover so that[12800000000000]and[67 3 4
500000000 0] were obtained. In the proposed
approach, only part of the population will exercise the
crossover operation.

4.6. Mutation operation

A solution has been randomly chosen among the
population and the solution was changed slightly to
generate a new solution. In this way, there are some
chances to find better solution that cannot be found by
only crossover operation.

4.7. Repair operation

During crossover and mutation operations, illegal
representation of route may be generated because
duplicated elements (node) may appear in the same route.
In the proposed algorithm, those duplicated nodes were
deleted that bring high cost to the route.

4.8. Finding route efficiently and dynamically

Although GA can be used to search in large solution
space and obtain an optimal solution, it may take a lot of
time to coverage to the optimal solution. In some cases,
GA can only find some other sub optimal solution. In
practice, usually a sub optimal solution is sought, which,
however, is close to the optimal one. So, in this approach,
a combination of conditions was used to determine when

to stop the algorithm's computation. The basic idea is as
follows:

After a minimum number of k generations (i.e., £ < 300),
if the algorithm has found a feasible solution and has
made no improvement for a specific period of time, then
stop. In the proposed algorithm, the “improvement” is
presented by the coverage cost rate of the best solution of
certain generation. This change rate is evaluated as
follows,

Costs(k—1)

ChangeRate (k) =
angeRate (k) == o (0

x 100 Q)

where the cost of the best solution of that generation
changes at k-th step and ChangeRate(k) is the average
change rate of cost at k-th step. Once this value is greater
than a certain value (i.e., ChangeRate(k) < 90%), then
stop the GA computation. The flow of the GA process
for a route selection by the MaSS search agent applied in
the MaSS is shown in Figure 3.

5.0 EXPERIMENTS

The experiments and the performance parameters of
mobile agent using the GA routing have been conducted
in a local area network (LAN) as shown in Figure 1 and
2. In this figure, only the nodes of interest (i.e., access
nodes or edge nodes) and their interconnections are
represented. In the following the cost and delay of links
between two nodes at certain period time are assumed
given. If there are no links exist between nodes or
bandwidth of the link cannot support the traffic request
between the MaSS server and the web proxy server, a
large delay value (i.e., 999) is assigned to that link.

The objective of the experiment is to find the route from
the MaSS server to the web proxy server that has the
lowest cost and the delay is less than the maximum delay
requirement. The cost matrix and the delay matrix are
given in Table 1 and 2 respectively. In these tables,
element (i,j, i #), is the Cost(delay) from node i to node
j where i, j € [1,2,,3,...,15], element (ii) is the
Cost(delay) from the MaSS server to node i, element (i,
15) is the Cost(delay) from node i to the web proxy
server. The upper-bound requirement of time delay
(MaxDelay) is assumed to be 25 times in this study. The
parameters of the GA are shown in Table 3.

Table 3: Genetic algorithm parameters.

Items Run-1 Run-2 Run-3
INo. of populations 320 320 320
No. of genomes 14 14 14
Crossover rate 0.85 0.85 0.85
Mutation rate 0.7 0.5 0.24
INo. of generations 420 420 420

6.0 EXPERIMENTAL RESULTS

The results based on three runs, which are shown in
Figure 5,6,7, and 8 respectively. The costs of Run-1 is
better than Run-2 and Run-3 as shown in Figure 8. Also,
the parameters that affect the populations’ size and
generations are analyzed and shown in Figure 5, and the
effect of mutation rate with the generations size as
shown in Figure 6. Furthermore, the effect of the cost
values and the generations are also shown in Figure 8.
The mutation rates of 0.1 and 0.7 reduce the routes costs
taken by the MaSS search agent when requesting and
retrieving the query results from the LP servers as shown
in Figure 6. However, when the effects of costs are
compared with the k generations as shown in Figure 8,
the mutation rate of 0.7 in Run-1 performs better
compared with the mutation rates of 0.5 and 0.24 in Run-
2 and Run-3, respectively. This is due to the network
bottleneck that occurs while the MaSS search agent is
retrieving the query results from the LP servers.

0.50

0.40 -
0.30 -

Cost

0.20 -
0.10

0.00 \ \ \
0 200 400 600 800

Population size

Figure 5: The effect of the size of chromosome pool on
the performance of the proposed algorithm.

0.350
0.300 -
0.250
0.200 A
0.150 A
0.100 -
0.050
0.000 ‘ ‘ ‘ ‘

0 0.2 0.4 0.6 0.8 1

Mutation rate (%)

Cost

Figure 6: The effect of the mutation rate on the performance of
the proposed algorithm.

The parameters used in Run-1 provide a good time
minimization in retrieving query results by mobile agents
as shown in Figure 7. As there are 15 hosts in the local
prefetch (LP) servers, the time used to retrieve query
results can be significantly long if some of the hosts
serves many agents at one time. In the experiments, the
minimum time to retrieve query results is 125 seconds by
using GA parameters in Run-1, 180 seconds in Run-2,
and 200 seconds in Run-3, respectively.

700
600
500
400
300 |
200 |
100

0

Time delay (seconds)

0 100 200 300 400 500

generation

=4—Run-3 =—#i—=Run-2 ==k=—Run-1

Figure 7: The optimal time to retrieve query results is 125s by
using GA parameters in Run-1

Cost

O T T T e e
1 6 11 16 21 26 31 36 41
Generation
| Run-1 Run-2 Run-3

Figure 8: The effect of the number of generations on the
performance of the proposed GA.

7.0 CONCLUSIONS

In this paper, a routing algorithm based on GA applied to
a mobile agent for query retrieval in the MaSS was
proposed. The proposed mobile agent for routing
algorithm tries to minimize the query retrieval cost while
maintaining a reasonable path delay. The number of
generations required to reach a good solution has been
reduced significantly by preferring shorter routes in
initializing the chromosome pool and reusing the past
solutions as the initial chromosomes for the new search.

The simulation results show that, with properly setting of
the GA's parameters, such as the size of chromosome
pool and the number of generations, the proposed routing
algorithm is able to obtain a better solution with different
running parameters. A comparison with the Dijkstra’s
algorithm will be carried out in future.

8.0 REFERENCES

Chen, W.-S.E., Leng, C.-W.R. Lien Yao-Nan, (1997). 4
Novel Mobile Agent Search Algorithm, In the Sixth
International Conference on Computer Communications
and Networks (ICCCN '97).

Di Caro, G. and Dorigo, M. (1998). AntNet: Distributed
Stigmergetic Control for Communication Networks,
Journal of Artificial Intelligence Research, pp. 317-365.

Kashiwazaki, H. and Takai, H. (2002). Adaptive Network
Routing by Using the Multiagent, Proc. of IASTED
International Conference Networks, Parallel and
Distributed Processing, and Applications.

Maes, P., Lashkari, Y. and Metral, M. (1997).
Collaborative interface agents, Readings in Agents,
edited by Michael N. Huhns & Munidar P. Singh,
Morgan Kaufmann Publishers, Inc.

Park, H-S (2003). Agent Migration Information System
for the Efficient Migration of the Mobile Agent, In V.
Kumar et. al. (Eds.): ICCSA2003, LNCS 2668, pp. 607-
613, Springer-Verlag Berlin Heidelberg.

Schoonderwoerd, R., Holland, O. and Bruten, J. (1997).
Ant-like agents for load balancing in telecommunication
networks, In Proceedings of the First Int. Conf. on
Autonomous Agents, pages 209-216, ACM Press.

Selamat, A, Omatu, S., Yanagimoto, H., Fujinaka, T. and
Michifumi, Y. (2002). Effectiveness of Mobile Agent for
Query Retrieval, IEEJ Transactions on Electronic and
Information Systems, 122 (8): 1367-1373.

Sum, J., Shen, H., and Leung, C-S, Young, G., (2003).
Analysis on a Mobile Agent-Based Algorithm for
Network Routing and Management, 14:3, 2003, pp. 193-
202

Appendix

MasSsS client

Local area network

LP Server A

AltaVista Web
server

LP Server C

-my

Web Proxy
Server

Yahoo Web
server

Figure 1: The Mobile Agent Search System (MaSS) architecture.

Local area network

A

MaSS client

-

Wrecv !

[

\4

—— - Y

server A

Wsend
'sen Lp

server B

R

Server

x

MaSS server

server C

Notes:

W : the MaSS client agent

X : the MaSS server agent

Y : the MaSS search agent
21,22,23,Z14: the prefetch
server's stationery agent

SD : the MaSS server
database

LD : the local prefetch server's
database

Wsend , Wrecv:

The time taken to send and
receive the query results from
the agent W to the agent X

Represents one mobile
agent

U

-

Represents the flow of
information by the MaSS
search agent (Y)

Figure 2: The detail of the MaSS architecture.

* LP: local prefetch

Table 1: Cost matrix of simulation.

Host'sID | 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 | 14 | 15
1 99 | 15 | 99 | 99 | 99 | 23 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99
2 15 | 18 | 99 | 99 | 23 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99
3 99 | 99 | 16 | 99 | 99 | 99 | 99 | 300 | 99 | 99 | 99 | 99 | 99 | 99 | 99
4 99 | 283 | 99 | 99 | 99 | 60 | 30 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99
5 99 | 283 | 99 | 99 | 99 | 50 | 30 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99
6 23 |99 | 99 | 99 | 50 | 99 | 20 | 99 | 18 | 99 | 99 | 99 | 99 | 99 | 99
7 99 | 99 | 99 | 99 | 30 | 20 | 99 | 10 | 99 | 30 | 30 | 99 | 99 | 99 | 99
8 99 | 99 | 300 | 99 | 99 | 99 | 10 | 99 | 99 | 99 | 15 | 99 | 99 | 99 | 99
9 99 | 99 | 99 | 99 | 18 | 99 | 99 | 99 | 99 | 25 5 99 | 99 | 99 | 99
10 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 25 | 99 | 99 | 99 | 99 | 99 | 99
11 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 25 | 99 | 99 | 99 | 99 | 99 | 99
12 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 25 | 99 | 99 | 99 | 99 | 99 | 99
13 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 25 | 99 | 99 | 99 | 99 | 99 | 99
14 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 25 | 99 | 99 | 99 | 99 | 99 | 99

999

	A. Selamata, b, M. H. Selamata and S. Omatub
	Tel.: 6-07-5532070 Fax: 6-07-5565044
	ABSTRACT

