
 Application of Knowledge-Based System in Automated
Data Warehouse Design

Opim Salim Sitompul and Shahrul Azman Mohd. Noah

Faculty of Information Science & Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
Tel : 03-89216653

E-mails:{oss19877, samn} @ftsm.ukm.my

 ABSTRACT
Data warehouse has become more and more
popular for an enterprise as a data repository
system. Yet tools to appropriately design its
conceptual model are rarely available, even
though this model is known as a key for the
successful of the overall design. In this paper we
propose an approach and a tool to guide the
decision makers in designing data warehouse
conceptual model based on the Entity
Relationship (ER) model of the existing
operational database systems. Using this
approach, the ER model is automatically
transformed into the multidimensional model.

Keywords

Automated Tool, Data Warehouse Design

1.0 INTRODUCTION

Data maintained in the operational databases are
continually increasing as they are accumulated
from the day-to-day enterprise operation. The
enterprise executives eventually realize that they
need an appropriate tool to manage and access
those data in order to acquire useful information.
As decision makers, analyzing data trends and
correlations from different aspects of the business
are the most valuable business query requirements
(Gardner, 1998).

Data warehousing is a technology that allows
information to be easily and efficiently accessed
for decision-making activities (Bellatreche et al.,
1998). In a data warehouse system, different
operational data sources are collected into a data
repository to provide access for information
access tools such as OLAP (Online Analytical
Processing), data visualization, executive
information systems and decision support systems
(EIS/DSS), Spreadsheet, data mining, and other
development languages (Gardner, 1998; Gray and
Watson, 1998).

In its implementation, data warehouse system
relies on multidimensional model. By this model,
data to be analyzed is represented conceptually as
fact schemes, which consists of quantifying
values (facts) and qualifying context (dimensions)
specified by a lattice of dimension levels
(Hüsemann et al., 2000). At the center of a fact
scheme is the measurements of the business that
contain the numeric and additive fields, measured
at the intersection of all of the dimension values
(Lechtenbörger and Vossen. 2003). In addition,
dimension hierarchies are also created to indicate
all plausible aggregation among the dimension of
related measures (Letz et al., 2002).

The multidimensional model as a conceptual view
plays an important role in data warehouse design.
The model can be considered as a mediator
between system analysts and enterprise managers
as they work together in formulating the data
warehouse requirements. At this conceptual level,
analysts and managers could bring in their ideas
in terms that they understood, avoiding both
technical and theoretical jargons. In addition, the
conceptual design is the basic building block for
subsequent stages of data warehouse design. It is
considered as the most important phase for the
successful of the overall design where modeling
errors could be detected early and the schema
could be extended easily (Hüsemann et al., 2000;
Tryfona et al., 1999).

Even though the conceptual model is known as a
key for the successful of the overall design of data
warehouse, yet tools to help designing this model
are rarely available. In this research we propose
our approach in designing the conceptual model
of the data warehouse using a transformation-
oriented methodology whereby the ER model of
an operational database is transformed into the
multidimensional model. The description about
the knowledge base system used in the
architecture of the DWExpert to implement that
approach is also provided.

2.0 RELATED RESEARCH

The majority approaches taken for data
warehouse design are based on database design,
which consists of requirement analysis and
specification, conceptual design, logical design,
and physical design (Elmasri and Navathe, 2000).
As for the conceptual design, the existing
methodologies are mainly based on the entity-
relationship (ER) model in which the ER model is
gradually transformed into multidimensional
model. In performing the transformation,
however, there are variety of techniques being
used, such as attributes tree (Golfarelli et al.,
1998), one-to-one translation into star schema
(Ttryfona et al., 1999), multidimensional normal
form (Hüsemann et al., 2000), entity classification
(Moody and Kortink, 2000), and table data
structures (Phipps and Davis, 2002).

Basically, the methodology used in developing
the conceptual data warehouse design in the form
of multidimensional model consists of two major
tasks, namely determining facts/measures, and
setting up dimensions/hierarchies. In determining
facts and measures, the facts are obtained from
entities that have numeric attributes and the
measures are got from the numeric attributes. On
the other hand, in determining dimensions and
dimension hierarchies, the approaches are varies
from entity attributes (Golfarelli et al., 1998),
relationship sets (Tryfona et al., 1999),
component entities (Moody and Kortink, 2000),
to non-numeric, non-key, non-dates attributes,
and many relationships (Phipps and Davis, 2002).

Furthermore, some endeavors have also been
given on the development of automatic tool to
implement the conceptual design methodology. In
this case, we could find some research works such
as Golfarelli et al. (1998) who developed the
conceptual model semi-automatically and
presented algorithms in building attributes tree as
well as algorithms for pruning and grafting the
attribute trees. In addition, work by Phipps and
Davis (2002) have also proposed an automated
design methodology and presented an algorithm
to build the conceptual design.

Explicitly, some preliminary works on the
development of CASE tool for data warehouse
design could also be found on several research
works. In their CASE tool, Miller and Nilakanta
(1998) and Wu et al. (2001) focused on the
generation of SQL query from a set of operational
relational database in order to build a data

warehouse. The user interface facilitates the
creation of query in the form of command line by
choosing a list of attributes and conditions.
Franconi and Ng (2000) developed i●com, an
intelligent conceptual modeling equipped with a
very powerful description logics reasoning server
as its background inference engine. There are two
conceptual modeling scenarios for their tool,
namely source integration and multidimensional
aggregation. Another CASE tool to implement
data warehouse design methodology has also been
developed by Golfarelli et al. (2001, 2002). The
WAND (Warehouse Integrated Designer) was
developed to carry out data warehouse conceptual
design semi-automatically from relational
operational sources, defining a core workload on
the conceptual scheme, acquiring data volume,
and carry out logical and physical design to
produce a data mart scheme. The tool also
generates SQL statement for creating tables and
indexes as output.

3.0 METHODOLOGY

The methodology used in this research work is
called the transformation-oriented methodology
(Marotta and Ruggia, 2002), which progressively
transforms the ER model into multidimensional
model in five stages as depicted in Figure 1.

Figure 1: The transformation-oriented methodology

The ER language specification stage is a manual
process to translate the source input represented in
the form of ER model into a language
specification model. Each entity in the ER model
is configured in the language specification model
as a class structure with the name of the entity as
the class name and the entity properties as the
class properties. The entity properties that are

specified in the class structure are attribute,
identifier, subclass, aggregation, and relationship.
The translation of the ER model into the
specification language model is guided by a set of
syntax rules. The language specification model
that becomes the initial representation of the
application domain (the problem domain model)
is saved into a text file.

The initial problem domain creation stage is a
stage responsible for the transformation of the
language specification model created at the first
stage into the initial problem domain model. The
problem domain model is represented as a list of
compound terms (Luger and Stubblefield, 1998),
which are ordered in property-entity-value pairs.
The initial problem domain will include the non-
null value properties of each entity found in the
specification language model. In addition, this
stage is also responsible for the creation of a
database in which the problem domain is stored.

The third stage is the analysis of the problem
domain model in order to obtain new facts. The
analysis is performed by a set of inference and
translation rules using production and procedural
rules (Sitompul and Noah, 2003). Those analysis
will cause some new facts are added into the
database. The new added facts, however, may
cause redundancies and inconsistencies within the
database. Thus, in this stage some diagnostic tasks
will be performed in order to prevent the database
from such discrepancies. After the analysis-
synthesis tasks are completed, this stage also
performs an important task of classifying each
entity attributes into numeric, temporal, and other
categories as the basis for the creation of the
multidimensional model as suggested in Phipps
and Davis (2002).

The fourth stage is the creation of the
multidimensional model. The multidimensional
constructs are created from the three categories of
the attributes. Fact is created from an entity that
has numeric attribute and will be called the fact
entity. This fact will become a candidate fact
scheme, whereby the numeric attribute will
become the fact attribute (measure). The
dimensions of the multidimensional model are
created from the temporal attribute and other
attribute categories of the entity. The temporal
attribute will become the temporal dimension and
the other attribute will add other dimensions into
the fact scheme. In addition, the fact scheme will
also obtain dimensions from the relationship
property of the fact entity. In this case, each one-

to-many relationship between the fact entity and
another entity will create a new dimension.
Recursively, if there is a one-to-many relationship
between the other entity and yet another entity, a
new dimension level will be added, forming a
dimension hierarchy.

The last stage is a refinement of the
multidimensional model obtained from the
previous stages. As those previous stages are
automatic processes without any user
interventions, the resulted model will only portray
the basic multidimensional constructs similar to
how they are established in the application
domain model. Therefore, the refinement is
necessary to further integrate user’s requirements
into the model by modifying measures, temporal
dimension, and dimension hierarchies.

4.0 THE ARCHITECTURE

In order to implement the aforementioned
methodology, an automated tool called the
DWExpert has been developed. The architecture
of the tool as promoted in Noah and Williams
(2003b) consists of three layers, namely the user
interface, the inference engine, and the knowledge
base as depicted in Figure 2.

Figure 2: Architecture of the DWExpert

The user interface is made up of a main window
and a pop-up window. The main window is where
the interactions between the user and the tool
established during the transformation process,
while the pop-up window is for the interactions
during the refinement process. During the
transformation process, however, the interaction
is only minimal. The actions perform by the user
during this process are loading the application
domain file and running the transformation
process. After the transformation process is
completed, the results of the transformation are

displayed in four folders in the main window.
From these folders, the user could see the list of
each entity and its description, the problem
domain database, the list of each object and its
description, and the candidate fact schemes of the
multidimensional model. On the other hand,
during the refinement process the user
interactions are more intensive. During this
process the user interacts with the tool by a
sequence of simple question-answer dialogs,
whereby the user response only with one-
character option except for the construct being
modified. A screenshot of the DWExpert user
interface can be seen in Figure 3.

Figure 3: Screenshot of the DWExpert user interface

The inference engine is in charge of controlling
the interaction between the user and the tool, such
as loading the application domain into memory,
directing inputs to the appropriate processors, and
selecting which rules to fire during the
transformation process. These tasks are divided
into five modules corresponds to the five stages of
the transformation-oriented methodology, i.e. the
ER module, the database (DB) module, the object
module, the multidimensional (MD) module, and
the refinement module. In this case, the inference
engine is responsible for sequencing the
processing tasks and passing information from
one module to another module.

The knowledge base consists of the rules base and
the facts base. Rules in the rules base could be
divided into three categories, i.e. syntax rules,
production rules, and procedural rules. The syntax
rules implemented in the ER module are rules
used to translate the ER model of the application
domain into the specification language model.
These rules regulate the mapping between the
entity of the ER model and the class construct of
the specification language model. The production

rules implemented in the database module
functions as the inference mechanism in
inheriting indirect subclass, direct/indirect
superclass, and acquiring the aggregation parts. In
applying the production rules, the tool uses the
forward chaining technique in order to arrive at
conclusions (Luger and Stubblefield, 1998;
Negnevitsky, 2002). Lastly, the procedural rules
implemented in the object and multidimensional
modules are for the analysis and diagnosis of the
problem domain using procedural representations
(Barr and Feigenbaum, 1981).

The analysis rules are used in the object module
to perform several tasks, such as inheriting
attributes and identifiers from the superclass of an
entity (if it is a subclass of another entity);
converting numeric attributes of a relationship
into entities; modifying relationships as the result
of the numeric attribute conversions; and
classifying attributes into numeric, temporal, and
other categories. In the multidimensional
module, the analysis rules are responsible for
deriving measures and temporal dimension;
creating dimension hierarchies, and generating
attributes tree. Meanwhile, the diagnostic rules
are implemented in the database, object, and
multidimensional modules to ensure the integrity
of the database by removing redundancies and
inconsistencies as the result of augmenting new
facts into the database or modifying an existing
fact.

The facts base maintains the initial application
domain representation (the problem domain
model) in the form of compound terms within a
database. During the transformation process, the
database would be progressively analyzed and
synthesized in order to transform the problem
domain into the multidimensional model. In the
facts base, the multidimensional model is
represented in the form of fact schemes.

5.0 A UNIVERSITY EXAMPLE

To illustrate the whole process of the
transformation-oriented methodology, we will
look at one example from a university domain
adapted from Elmasri and Navathe (2000). For
this illustration, we only take a portion of the ER
diagram for a Student entity as depicted in Figure
4. The transformation process will be described
following the five stages of the methodology.

Figure 4: Portion of ER diagram for Student entity

5.1 The ER Language Specification

The objective of this stage is to translate the ER
model into the language specification model, so
we will look at each entity in the ER model to
examine the properties that will be translated into
the language specification model, i.e. attribute,
identifier, subclass, aggregation, and relationship.
The top-level syntax rule for translating the
diagram into the specification language model is
shown in figure 5.

Figure 5: Top-level Syntax Rule for the Class Contruct

From the ER model in Figure 4, the Student entity
has several properties, namely: an attribute Class,
a subclass Grad_Student and some relationships
Minor, Major, Registered, and Transcript. In the
language specification model, only the non-null
properties will be recorded, while those that are

unavailable will be set to NIL. Referring to the
syntax rule, the Student entity will be recorded as
the following:

CLASS "STUDENT"
ATTRIBUTE (("Class": Integer))
IDENTIFIER NIL
SUBCLASS ("GRAD_STUDENT")
AGGREGATION NIL
RELATIONSHIP (("Minor" "DEPARTMENT" "NIL" "(1 1)" "(1 n)")\
 ("Major" "DEPARTMENT" "NIL" "(1 1)" "(1 n)")\
 ("Registered" "CURRENT_SECTION" "(("Count": Integer))"
 "(1 n)" "(1 m)")\
 ("Transcript" "SECTION" "(("Grade": Float))" "(1 n)" "(1 m)"))
End-Class

The class construct formulated above is a direct
mapping of the ER constructs. One thing that the
user should consider is the type of each attribute,
which is not shown in the ER model. The
relationship component of the language syntax is
a little bit complex, where it is composed of five
parts: the name of the relationship, the
participating entity, the relationship attribute, first
(min, max) relationship constraint, and second
(min, max) relationship constraint.

5.2 Initial Problem Domain Creation

In this stage, the tool will automatically transform
the language specification model into the initial
problem domain model, which is represented in
the form of property-entity-value pairs. The result
of this transformation would be:

Has-Attribute “STUDENT” ((“Class”: Integer))
Has-Subclass “STUDENT” (“GRAD_STUDENT”)
Has-Relationship “STUDENT”
 ((“Minor”, “DEPARTMENT” “NIL” “(1 1)” “(1 n)”)
 (“Major”, “DEPARTMENT” “NIL” “(1 1)” “(1 n)”)
 (“Registered”, “CURRENT_SECTION” “((“Count”: Integer))”
 “(1 n)” “(1 m)”)
 (“Transcript”, “SECTION” “((“Grade”: Float))” “(1 n)” “(1 m)”)

Subsequently, the initial problem domain is stored
into the database.

The next step is the inference step, inferring
indirect subclass, direct/indirect superclass, and
deriving the aggregation objects using the forward
chaining method. From this process, the subclass
fact is modified and new fact related to superclass
is added to the database, namely:

Has-Subclass “STUDENT” ((“GRAD_STUDENT”)
 (“MASTERS_STUDENT” “PHD_STUDENT”))
Has-Superclass “STUDENT” (“PERSON”]

5.3 Analyzing/Adding Facts

This stage is the core of the transformation
process where each fact within the database is
progressively analyzed. In this stage there are four
steps that are performed. The first step is
examining if the entity has a superclass and
inheriting attributes and identifiers from the
superclass if one exists. Next the tool will
examine the existence of numeric relationship
attribute among the available relationships. If one
exists, it is converted into an entity. As a
consequence, the exiting relationships should be
modified to reflect the changes. Lastly, the tool
will classify the attributes of the entity into
numeric, temporal, and other categories. As the
result of this stage, the database is modified and
new facts are augmented as follows:

(Has-Attribute "STUDENT"
 (((Numeric-Att (Class . Integer)) (Date-Att) (Other-Att))
 (Inherited-Attribute
 ((Numeric-Att) (Date-Att (Bdate . Date))
 (Other-Att (Composite . Name) (Fname . String[15])
 (MInit . String[3]) (Lname . String[20]) (Composite . End)
 (Ssn . String[12]) (Sex . String[1]) (Composite . Address)
 (No . String[4]) (Street . String[20]) (AptNo . String[4])
 (City . String[15]) (State . String[2]) (Zip . String[5])
 (Composite . End))))))
(Has-Identifier "STUDENT" (Inherited ("Ssn")))
(Has-Subclass "STUDENT" (("GRAD_STUDENT")
 ("PHD_STUDENT" "MASTERS_STUDENT")))
(Has-Superclass "STUDENT" ("PERSON"))
(Has-Relationship "STUDENT"
 (((Name . of) (Participating-obj . TRANSCRIPT) (Rel-Attribute . NIL)
 (First-constraint . (1 n)) (Second-constraint . (1 1)))
 ((Name . of) (Participating-obj . REGISTERED) (Rel-Attribute . NIL)
 (First-constraint . (1 n)) (Second-constraint . (1 1)))
 ((Name . Major) (Participating-obj . DEPARTMENT)
 (Rel-Attribute . NIL) (First-constraint . (1 1))
 (Second-constraint . (1 n)))
 ((Name . Minor) (Participating-obj . DEPARTMENT)
 (Rel-Attribute . NIL) (First-constraint . (1 1))
 (Second-constraint . (1 n)))))

5.4 Creating Multidimensional Model

This step is a process to generate the
multidimensional model constructs based on the
categories of attributes obtained in the previous
stage. In this case, the Student entity is eligible to
be a fact scheme because the entity has a numeric
attribute, namely Class. This attribute is then
specified as the measure of the fact scheme. The
temporal dimension is created from the temporal
attribute of the Student entity, which is BDate.
The other attribute together with the one-to-many
relationships of the Student entity are then
converted into dimension hierarchies. As a result,
the following facts are added into the database:

(Has-Measure "STUDENT" ((Class . Integer)))
(Has-Dimension "STUDENT"

 ((Temporal Dimension ((Bdate . Date)))
 (Other Dimension
 ((Composite . Name) (Fname . String[15]) (MInit . String[3])
 (Lname . String[20]) (Composite . End) (Ssn . String[12])
 (Sex . String[1]) (Composite . Address) (No . String[4])
 (Street . String[20]) (AptNo . String[4]) (City . String[15])
 (State . String[2]) (Zip . String[5]) (Composite . End)))))
(Has-Hierarchy "STUDENT"
 (("PERSON" . 0) ("DEPARTMENT" . 0) ("COLLEGE" . 1)
("DEPARTMENT" . 0) ("COLLEGE" . 1)))

In order to identify each dimension level in a
dimension hierarchy, the tool uses an integer
number to denote its position. The diagnosis task
could detect any redundancy that may exist in a
dimension hierarchy by examining whether each
entity has the same position number in a
particular hierarchy. In the above example, the
dimension hierarchy created for the Department
and College entities are recorded twice because
there are two one-to-many relationships with the
same participating entities, namely the Major and
Minor relationships. To remove such redundancy,
the multidimensional constructs are refined
accordingly.

The next step performed in this stage is the
creation of attributes tree from the other attribute
of the fact entity and the attributes of each entity
specified in dimension hierarchies. From the
above example, those entities are Person,
Department, and College. The attributes tree
created from this process can be illustrated as in
Figure 6.

Figure 6: Attributes tree for the Student fact scheme

5.5 Refining Multidimensional Model

Refining the multidimensional model means
modifying its dimensional constructs in order to
suit user’s requirements. For this purpose, the user
could modify the measure, temporal dimension,
and dimension hierarchy that is generated by the

automated tool. The refinement process is done
interactively between the user and the tool
through a simple question-answer dialogs.

Measure as the focus of interest in data warehouse
design is the first thing that the user would
consider refining. Since the tool automatically
derived this measure from the numeric attribute of
the fact entity, it might be inappropriate to what
the user needs. Supposing the user need to count
the number of undergraduate and graduate
students instead of counting the student on each
class, then the Class measure should be modified,
for instance, into the appropriate measures such as
Number_of_Undergraduate and Number_of_
Graduate. The most important thing to consider
in modifying measure is the additive nature of this
construct, whereby the user should ensure that
operations such as sum, count, average,
maximum, and minimum could be performed.

As for the temporal dimension, the user almost
always modifies this dimension because this
construct is rarely available in the initial problem
domain model or unsuitable with user’s
requirements. Continuing with the above
example, since the measure is the count of the
student, then the existing temporal dimension,
which is BDate, may be modified into year1,
year5, and year10 to enable the analysis of the
number of student on five-year basis.

Lastly, by referring to the attributes tree, the user
could modify the dimension hierarchies by
pruning, grafting, and aggregating the attributes
tree. Pruning the attributes tree is intended to
remove a dimension node and all its descendants,
while grafting means removing only the specified
dimension node but still maintaining all it’s
descendant. Moreover, aggregating the attributes
tree is a way of combining one or more nodes or
adding new nodes into an existing dimension in
order to create a new aggregate dimension. For
example, the user might need to analyze to
number of students based on their sex, place of
origin, and department in five-year interval. The
refinement process conducted by the user could
generate the fact scheme as depicted in Figure 7.

Figure 7: Refined fact scheme for the Student entity

6.0 CONCLUSIONS

In this paper we have described our approach to
the conceptual data warehouse design using the
transformation-oriented methodology. The
approach employed has shown a preliminary step
in applying the artificial intelligence (AI)
technique to the field of data warehouse design as
has been achieved within the context of database
analysis and design (Noah and Williams, 2003a;
2003b).

In order to implement the aforementioned design
approach, a tool called DWExpert has been
developed. For the time being, the tool could only
provide the multidimensional model in the form
of plain text. It is our intention to further enhances
the capability as well as the functionality of the
tool in our future research.

7.0 REFERENCES

Barr, A. and Feigenbaum, E. A., (1981). The
Handbook of Artificial Intelligence, Volume I,
Los Altos, CA: William Kaufmann.

Bellatreche, L., Karlapalem, K., and Mohania, M,
(1998). Some Issues in Design of Data
Warehousing Systems. In Developing Quality
Complex Database Systems: Practices,
Techniques, and Technologies, Dr. Shirley A.
Becker (Eds.). 125-172. Ideas Group Publishing.

Elmasri, R. and Navathe, S. B., (2000).
Fundamentals of Database Systems, 3rd Edition,
Reading, Mass.: Addison-Wesley.

Franconi, E. and Ng, G., (2000). The i.com Tool
for Intelligent Conceptual Modeling. In

Proceedings of 7th International Workshop on
Knowledge Representation meets Databases
(KRDB-2000). 42-53. Berlin, Germany.

Gardner, S. R. (1998). Building the data
warehouse. Communication of the ACM, 41(9):
52-60.

Golfarelli, M., Maio, D. and Rizzi, S., (1998).
Conceptual Design of Data Warehouses from E/R
Schemes. In Proceedings of 31st Hawaii
International Conference on System Sciences.
334-343. Kona, Hawaii.

Golfarelli, M. and Rizzi, S., (2001). WAND: A
CASE Tool for Data Warehouse Design. In Demo
Proceedings of 17th International Conference on
Data Engineering (ICDE’2001). 7-9. Heidelberg,
Germany.

Golfarelli, M., Rizzi, S. and Saltarelli, E., (2002).
WAND: A CASE Tool for Workload-Based
Design of a Data Mart. In Proceedings Decimo
Convegno Nazionale su Sistemi Evoluti Per Basi
Di Dati. 422-426. Portoferraio, Italy.

Gray, P. and Watson, H. J., (1998). Present and
future directions in data warehousing. DATA
BASE. 29(3): 83-90.

Hüsemann, B., Lechtenbörger, J. and Vossen, G.,
(2000). Conceptual data warehouse design. In
Proceedings of the International Workshop on
Design and Management of Data Warehouse
(DMDW ‘2000). 6:1-11. Stockholm, Sweden.

Lechtenbörger, J., and Vossen, G., (2003).
Multidimensional Normal Forms for Data
Warehouse Design. Information Systems. 28(5):
415-434.

Letz, C., Henn, E. T., and Vossen, G., (2002).
Consistency in Data Warehouse Dimensions. In
Proceedings of the International Database
Engineering and Applications Symposium
(IDEAS’02). 224-232. Edmonton, Canada.

Luger, G. F. and Stubblefield, W. A., (1998).
Artificial Intelligence: Structures and Strategies
for Complex Problem Solving, 3rd Edition,
London: Addison-Wesley.

Marotta, A. and Ruggia, R, (2002). Data
Warehouse Design: A Schema-Transformation
Approach. In Proceedings of the XXII
International Conference of the Chilean Computer

Science Society (SCCC’02). 153-161.
Montevideo, Uruguay.

Miller, L. and Nilakanta, S., (1998). Data
Warehouse Modeler: a CASE Tool for Data
Warehouse Design. In Proceedings of 31st
Annual Hawaii International Conference on
System Sciences. : 42-48. Kona, Hawaii.

Moody, D. and Kortink, M.A.R., (2000). From
Enterprise Models to Dimensional Models: A
Methodology for Data Warehouse and Data Mart
Design. In Proceedings of the International
Workshop on Design and Management of Data
Warehouses (DMDW’2000). 5-1 – 5-12.
Stockholm, Sweden.

Negnevitsky, M., (2002). Artificial Intelligence: A
Guide to Intelligent Systems, London: Addison-
Wesley.

Noah, S. A. and Williams, M., (2003a).
Enhancing the Diagnostic Performance of
Intelligence Database Design Tools - An
Evaluation of the Thesaurus Technique. Chiang
Mai J. of Science. 30(1): 7-17.

Noah, S. A. and Williams, M., (2003b).
Intelligent Object Analyser for Conceptual
Database Design Model. (To Appear in Jurnal
Teknologi).

Phipps, C. and Davis, K. C., (2002). Automating
Data Warehouse Conceptual Schema Design and
Evaluation. In Proceedings of the 4th
International Workshop on Design and
Management of Data Warehouses
(DMDW'2002). 23-32. Toronto, Canada.

Sitompul, O. S. and Noah, S. A. M, (2003). Rules
for the Automatic Translation of ER Model into
Multidimensional Model. In Proceedings of the
Conference on Intelligent Systems & Robotics
(CISAR 2003). Putrajaya, Malaysia: Advanced
Technology Congress 2003 (ATC’2003). (To
appear).

Tryfona, N., Busborg, F. and Christiansen, J. G.
B., (1999). starER: A Conceptual Model for Data
Warehouse Design. In Proceedings of the ACM
2nd International Workshop on Data
Warehousing and OLAP. 3-8. New York, N.Y.

Wu, L., Miller, L. and Nilakanta, S., (2001).
Design of Data Warehouse Using Metadata.
Information & Software Technology. 43:109-119.

	Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
	
	Keywords
	
	
	
	Automated Tool, Data Warehouse Design

	INTRODUCTION
	RELATED RESEARCH
	Explicitly, some preliminary works on the development of CASE tool for data warehouse design could also be found on several research works. In their CASE tool, Miller and Nilakanta (1998) and Wu et al. (2001) focused on the generation of SQL query fr

