Tool For Collaborative Temporal-Based Software
Version Management

Mohd Nordin Abdul Rahman®, Mohd Isa Awang®, Aziz Deraman”, Amir Ngah®

“Information Technology Center
Kolej Ugama Sultan Zainal Abidin, 21300 Kuala Terengganu, MALAYSIA
Tel : 609-6653214, Fax : 609-6662566, E-mail : mohdnabd@kusza.edu.my

bComputer Science Department
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, MALAYSIA
E-mail: ad@pknet.cc.ukm.my

‘Computer Science Department
Kolej Universiti Sains dan Teknologi Malaysia, 21030 Kuala Terengganu, MALAYSIA
Tel: 609-6683359, Fax : 609-6694660, Email: amirnma@kustem.edu.my

ABSTRACT

Software version management is the processes of
identifying and keeping track of different versions of a
software. Complexity level of this process would become
complicated should sofiware was distributed in many
places. This paper present a new dimension in sofiware
version management which based on temporal elements.
Temporal elements such as valid time and transaction time
are the main attributes considered, to be inserted into the
software version management database. By having these
two attributes, it would help the people involved in
software process to organize data and perform activity
monitoring with more efficient. For a practical
application of the model, therefore an automate tool has
been developed that could be applied under collaborative
software process called TEMVer.

Keywords

Software version management, temporal database, valid
time, transaction time

1.0 INTRODUCTION

Software evolution is concerned with modifying software
once it is delivered to a customer. Software managers
must devise a systematic procedure to ensure that different
versions of a software may be retrieved when required and
are not accidentally changed. Controlling the development
of different versions of a software can be a complex task,
even for a single author to handle. This task is likely to
become more complex as the number of software authors
increases, and more complex still if those software authors
are distributed geographically with only limited means of
communication, such as electronic mail, to connect them.

Temporal based data management has been a hot topic in
the database research community since the last couple of
decades. Due to this effort, a large insfrastructure such as
data models, query languages and index structures has been
developed for the management of data involving time

(Knight, 1994a). Presently, many information systems has
adopted the concepts of temporal database management
such as geographic information systems and artificial
intelligence systems. Temporal management aspects of
any objects transaction data could include:

e The capability to detect change such as the amount of
change in a specific project or object over a certain
period of time.

e The use of data to conduct analysis of past events e.g.,
the change of valid time for the project or version due
to any event.

e To keep track of all the transactions status on the
project or object life cycle.

In this paper, we will concentrate on the technique to
improve a version management and monitoring model by
using temporal elements such as valid time, transaction
time and temporal operators. Finally, we see how a web-
based software version management (TEMVer) fits within
the framework of our model.

1.1 Temporal Data Review

To date, two well-known of time that are usually
considered in the literature of temporal database are
transaction time and valid time (Knight and Ma, 1994a;
Jensen and Snodgrass, 1999; Ling and Bell, 1992;
Gregerson and Jensen, 1999). The valid time of a database
fact is the time when the fact is true in the miniworld
(Jensen and Snodgrass, 1999; Gregerson and Jensen,
1999). In other words, valid time concerns the evaluation
of data with respect to the application reality that data
describe. Valid time can be represented with single
chronon identifiers (e.g., event time-stamps), with intervals
(e.g., as interval time-stamps), or as valid time elements,
which are finite sets of intervals (Jensen and Snodgrass,
1999). Meanwhile, the transaction time of a database fact
is the time when the fact is current in the database and
may be retrieved (Jensen and Snodgrass, 1999; Gregerson
and Jensen, 1999). This means, that the transaction time is
the evaluation time of data with respect to the system

mailto:mohdnabd@kusza.edu.my
mailto:ad@pknet.cc.ukm.my
mailto:amirnma@kustem.edu.my

where data are stored. Supporting transaction time is
necessary when one would like to roll back the state of the
database to a previous point in the time. (Jensen and
Snodgrass, 1999) proposes four implicit times could be
taken out from valid time and transaction time:

e valid time — valid-from and valid-to
e transaction time — transaction-start and transaction-stop

Temporal information can be classified into two divisions;
absolute temporal and relative temporal (Jensen and
Snodgrass, 1999). Most of the research in temporal
databases concentrated on temporal models with absolute
temporal information (Koubarakis, 1993). To extend the
scope of temporal dimension, (Knight and Ma, 1994b;
Kaobarakis, 1993) have present a model which allows
relative temporal information e.g., “event A happened
before event B and after January 01, 2003”. (Knight and
Ma, 1994b; Kaobarakis, 1993) suggests several temporal
operators that could be used in describing the relative
temporal information: {equal, before, after, meets,
overlaps, starts, during, finishes, finished-by, contains,
started-by, overlapped-by, met-by and after}.

In various temporal research papers the theory of time-
element can be divided into two categories: intervals and
points (Knight and Ma, 1994a; Jensen and Snodgrass,
1999; Ling and Bell, 1992; Gregorson and Jensen, 1999).
If T is denoted a nonempty set of time-elements and d is
denoted a function from 7 to R+, the set of nonnegative
real numbers then:

interval, if d(t) > 0
time-element, t, =
point, otherwise

According to this classification, the set of time-elements,
T, may be expressed as 7= I U P, where [is the set of
intervals and P is the set of points.

1.2 Previous Work in Version Management

In distributed software process, a good version
management combines systematic procedures and
automate tools to manage different versions in many
locations. Most of the methods of version naming use a
numeric structure (Dix et. al., 1997). Identifying versions
of the system appears to be straightforward. The first
version and release of a system is simply called 1.0,
subsequent versions are 1.1, 1.2 and so on. Meanwhile,
(Clemm, 1989) suggests that every new version produced
should be placed in a different directory or location from
the old version. Therefore, the version accessing process
would be easier and effective. Besides that, should this
method be implemented using a suitable database
management system, the concept of lock access could be
used to prevent the occurrence of overlapping process.
Present, there are many software evolution management
tools available in market. Selected tools will be discribed
follows.

1.2.1 Software Release Manager (SRM)

SRM is a free software and supported on most UNIX and
LINUX platforms. It supports the version of a systems for
distributed organizations. In particular, SRM tracks
dependency information to automate and optimize the
retrieval of systems components as well as versions.

1.2.2 Revision Control System (RCS)

RCS using the concepts of tree structures. Each branch in
the tree represents a variant of the version. These branches
will be numbered by an entering sequence into a system
database. RCS records details of any transaction made
such as the author, date and reason for the updating.

1.2.3 Change and Configuration Control (CCC)

CCC is one of the complete tool for software configuration
management. It provides a good platform for an
identification, change control and status accounting. CCC
allows a simultaneously working for a same version via
virtual copies. This can be merged and changes can be
applied across configurations.

1.2.4 V-Web

V-Web, developed by (Dix et al., 1997) is a web-based
software version management tool. Each version to be
recorded will be identified based on certain characteristics
defined. This tool is a very simple and most suitable to
apply in a cooperatives software development.

1.2.5 Software Management System (SMS)

SMS allows all the aspects in software configuration
management such as version control, workspace
management, system modelling, derived object
management, change detection in the repository etc. SMS
possesses the desired characteristics, providing resources
of version control of systems and having a good user
interface.

1.2.6 Adele

This software configuration management tool has been
developed in University of Grenoble. It has a good basic
features in software configuration management such as
version hierarchical modelling, worksapce control and
change request management. The Adele database is an
Entity Relationship one that provides for the defining of
configuration items.

1.3 Problem and Issues in Version Management
From study done by the authors, several weaknesses has

been found in the several current version management
model. These weaknesses are as follows:

e Non systematic in the procedure of version
management and it is difficult to recognize the valid
time for each version.

e Many models do not consider the aspect of relative
temporal in representing the valid time for each
version.

e Most of the existing models maintain only the concept
of current view version of which an existing version
will be overwritten by a new incoming version during
the process of an update.

The World Wide Web provides a useful infrastructure for
collaborative software process, the main benefits being its
prevalence, platform independence and familiarity.
Besides, the savings in time and paper work can be
significant, when using the web as an version management
platform. Therefore, by means of these benefits we are
strongly believe that the development of temporal-based
software version management tool which is can be applied
under Internet environment could gain the following
benefits:

e To increase the effectiveness and efficiency of the
collaborative software version management process

e To support project and software managers in planning,
managing and evaluating version management.

e Assigning timestamps (absolute and relative) to each
transactions will provide transaction-time database
functionality, meaning to retain all previously current
database state and making them available for time-
based queries.

2.0 TEMVer MODEL

Great advances have been achieved in collaborative
software engineering process during the last decade. From
the application point of view, there is a growing demand
for web-based systems that can manage and coordinate the
dynamic information of software artifacts and its
hierarchical of change.

2.1 The Architecture

The tool architecture employs the concept of client-server
model with a central server and the user stations connected
by a network. It is an Internet application, open user
interface and can be accessed simply by a web browser
such as Microsoft Internet Explorer 5 (IES). All attributes
from version management processes are reported using a
simple dialogue, and after submission they are stored in a
centralized database, thus allowing their distribution to all
software development stakeholders as well as the software
users.

Regarding to the effective implementation of the
applications accessed via Internet, the tool architecture is
formed upon the two-tier distributed application concept
which is built in two levels: (1) database management
systems and (2) active server page (ASP) components and
interface. The general concept of the two-tier application

is presented in Figure 1. By using of this concept,
hopefully this collaborative temporal based software
version management tool led to the following features:

Encapsulation of data processing

Minimal software requirements for client workstations
Multi-access

Effective communication in distributed project team
or software users

e Open user interface

Microsoft IE 5 Tool Client
ASP web ASP web
page requests Pages

ASP components
Internet Information Server and
interface tier

Database Processed
queries data

Microsoft SQL Server (DBMS) } Database tier

Figure 1: Two-tier software architecture

2.2 Temporal Elements In Software Version
Management

Temporal elements involved in TEMVer model are
transaction time (tt), absolute valid time (avt) and relative
valid time (rvt) which can be denoted as, TE = {tt, avt,
rvt}. Transaction time is a date-stamping and it represent a
transaction when a new valid time for a version is recorded
into the TEMVer database. Absolute valid time is
represent by two different attributes known as valid-from
and valid-until and it also using an approach of date-
stamping. Meanwhile, relative valid time which involves a
time interval, will be represented by a combination of
temporal operators, OPERATORs = {op;, op,, op;, ...,
op,} and one or more defined event(s), signed as EVENTSs
= {event,, event,, event;, ..., event,}. In this model, only
five temporal operators will be considered, hence will be
denoted as OPERATORSs = {equal, before, after, meets,
met_by}. Figure 2 shows in general the insertion point of
valid time and transaction time into software version
management.

Therefore, if we have a software with a set of version
signed as, V = {v, v, V3, ..., V,} then the model is:

TEMPORAL(y; € V) < (tt M avt N rvt)

where, avt = [avt-from, avt-until],
rvt = [rvt-from, rvt-until],
rvt-from = {{op; € OPERATORs} n {event; €
EVENTSs}} and

rvt-until = {{op; € OPERATORs} n {event; €
EVENTSs}}.

Thus, if a software which has a set of feature attributes A;
then a complete scheme for a temporal based in software
version management can be signed as:

S ={A,, Ay, A;, ..., A, tt, avt-from, avt-until, rvt-from,
rvt-until}

where, A;= attribute name,
tt € P and
avt-from, avt-until, rvt-from and rvt-until € T.

For the process of queries to that scheme, we can use the
following convention to retrieve for any temporal attribute
in temporal database (Kaubarakis, 1993):

e Attribut name only = current time

e Attribute name followed by ALL = all history

e Attribute name followed by a time point or interval =
specific time period

e Attribute name followed by RESTRICT = specific
time period designated by the condition

Transaction time (tt)

Valid time (vt)

0 Da

Absolute Relative

' K

From Until | | From Until

Figure 2: Temporal elements in software version
management

3.0 TEMVer IMPLEMENTATION

To carry out experiments validating the concepts proposed
earlier, we have designed and implemented a client-server
software tool called TEMVer. There are 3 main modules
supported in TEMVer and could be denoted as
TEMVeroques = {register version, update the version
valid time, queries}. Meanwhile, the main roles recognized
as users of TEMVer could be signed as TEMVers =
{software manager, software engineer, programmer, end-
users}. In this section, we describe the details’
functionallity of these modules and several management
issues to be considered in order to make sure TEMVer will
be optimum utilized.

3.1 TEMVer Functionality

During the register version process the software manager
needs to record the foundations information of the
software version. Attributes that needed to be key-in by
software manager can be signed as, A, = {version code,
date release, version description, origin version code,
version id}. Figure 3 illustrates the screen sample used to
register the basic information of the software version.

2 TEMVes 1.1 - Wacausad Intwennt Exphoms

fle Bt Yww Fpeosies Jook Heo

e » .9 [N AR T2 SO B I
Dack Slop Pefrach Home Semch Favorles History Mal Pairt. Cde Drocuss
Fy Y T —TyT =] @G | |Links *
Register The Software Version u
Version Code
Date Release
Home
[Bom Eat Local rianmt —

Figure 3: Register the software version

On completion of new software version registration, then
the software manager needs to update its valid time and
this can be done by using the module update the version
valid time, illustrated in Figure 4. The attributes for this
module formed as At = {version code, transaction date,
description, date start, date end, time start, time end,
update by, position}. Attribute transaction date is the
current date and will be auto-generated by the server. Any
changes of a software version valid time, software
manager needs to update by using this form. TEMVer also
allows the user to make a query to the database. The roles
of the TEMVer can browse the version valid time and
status for any registered software (Figure 5). Meanwhile,
Figure 6 shows the output form of query for all histories of
valid time and status for a software version.

2 TEMVe 1.0 - Wiciisull Indmiresd E plosm

Bl B Ve Fpetes Jook el =
S A A - e [(N2) - =
Dack Sip Peheh Home | Sewch Favoies Moy | W P Ede Discuss

T T ———T] 0o | |Liks ™

Updating The Soltware Version Valid Time

Catr Start
Date Endl

[Equar =]
Bofore
\pdate by e
Me-ets i
Pesition Met by bager =

Rese

(7 Bl I Fau Lowad rteart

Figure 4: Update the software version valid time

2 TEMVes 1.1 - Wacausad Intwennt Exphoms

e Edt Mww Fgeoins Jook Helo -
r - = -

e s R s I S~ TR R T2 S I I
Dack Slop Pefvech Home Semch Favorles History Mal Part Cde Drocuss

At [@] it okl errsee U0 mp =] @G | |Links *

Software Version Valid Time |

Version Code © SISMAKZD

Trarmaction Date: 17,00,/2003

Absolute Valid Time

Date Sart; 16,06,/2001

Diate Bt 1708003

Reslative Valid Time

Tima Start Fual 16067003

Tirne Erd Moeas 17 B0

wecerd by Mok Nerdin Abdul Rahiman

Dk

[v T

Figure 5: Software version valid time report

2 TEMVes 1.0 - Wacousad Intwsnnt Exphom

fle Bt Yww Fpeosies Jook Heo

=
3 O @ B .=

- W E £
Dack Slop Pefrach Home Semch Favorles History Mal Pairt. Cde Drocuss
At [@7 it okl e ap =] @G | |Links *

Record Transsctions of A Software Version

Viersion Code : SISMAKZ.0

Mo Trams. Date Dote Starl Date End i Slart i Evel

1 0052001 (0052000 26062000 Equal 30,05/2003 Before rew release of SISMAKZ. 1
2 16062001 (|16/05/2000 26/06,2001 Dqual 16 duwe 2000 Before rew relesss of SITMAKZ.L
3 2606200 16052003 17/06/2000 Equal 16,06/2003 Betore 17/08/2000

4 IToeco0 16062003 17ARE000 Fgusl 16062000 Mees 17/06/2000

Back

[v T

7Figure 6: Transaction records of a software version
3.2 TEMVer Execution Management Issues

Distributed software evolution management is a new
approach in getting a quality software process. Its does not
necessarily happen automatically besides it required co-
ordination, especially a large-scale project. Participants on
a large-scale project found it helpful to have a strong,
highly organised, proactive co-ordinator to solicit
suggestions for improvements, receive opinions, draw
conclusions and present them for discussion. Therefore, it
is good to have at least one person from information
steering committee to overseeing all processes and
activities in a software evolution management in order to
resolve conflicts, work flow as well as to enforce the using
of the tool. An additional role in distributed software
evolution management that should to be considered is
Trainee. No one seems to have a clear idea how to create
embedded developers. One technique is to include new
folks (only one or two) into the software process
management. The Trainee(s) can help the software
manager to updating any software version transaction into
TEMVer database.

4.0 CONCLUSIONS

In practical software version management, it is frequently
important to retain a perfect record of past and current

valid time for a version states. We cannot replace or
overwritten the record of old valid time of a software
version during the updating process. Hence, this paper
introduces a new model in software version management
based on temporal elements. Here, an important issue
discussed is temporal aspects such as valid time and
transaction time which have been stamped on each
software version so that the monitoring and conflict
management processes can be easily made. We hope that
the material, model and web-based tool (TEMVer)
presented in this paper will be useful to support future
work on.

To validate of our model, TEMVer is being experimented
in Kolej Ugama Sultan Zainal Abidin (KUSZA). It is used
to keep track the evolution of the software version,
systems module and software documents in KUSZA
Information Systems (SISMAK). For further
improvements, currently, we are investigating related
issues including combining the model with change request
management, considering more temporal operators and
developing a standard temporal model for all configuration
items in software configuration managements.

5.0 REFERENCES

Bertino, E., Bettini, C., Ferrari, E. and Samarati, P. (1996).
A Temporal Access Control Mechanism for database
Systems, IEEE Trans. On Knowledge And Data Eng. 8&:
67-79.

Clemm, G. M. (1989). Replacing Version Control With
Job Control, ACM — Proc. 2™ Intl. Workshop On Software
Configuration Management. 162-169.

Dix, A., Rodden, T., and Sommerville, 1. (1997).
Modelling Versions in Collaborative Work. IEE — Proc.
Software Engineering. 195 — 206.

Gregerson, H. and Jensen, C. S. (1999). Temporal Entity-
Relationship Models — A Survey, IEEE Trans. On
Knowledge And Data Eng. 11: 464-497.

Gustavsson, A. (1989). Maintaining the Evaluation of
Software Objects in an Integrated Environment, ACM —
Proc. 2™ Intl. Workshop On Software Configuration
Management. 114-117.

Havewala, A. (1999). The Version Control Process: How
and Why it can save your project, Dr. Dobb’s Journal. 24:
100-111.

Jensen, C. S. and Snodgrass, R. T. (1999). Temporal Data
Management, IEEE Trans. On Knowledge And Data Eng.
11: 36-44.

Knight, B. and Ma, J. (1994). A General Temporal Theory,
The Computer Journal. 37: 114-123.

Knight, B. and Ma, J. (1994). A Temporal Database Model
Supporting Relative and Absolute Time, The Computer
Journal. 37: 588-597.

Koubarakis, M. (1993). Representation and Querying in
Temporal Databases: the Power of Temporal Constraints,
IEEE. 1063-6383/93. 327-334.

Lie, A. (1989). Change Oriented Versioning in a Software
Engineering Database, ACM — Proc. 2" Intl. Workshop
on Software Configuration Management. 56-65.

Ling, D.H.O. and Bell, D. A. (1992). Modelling and
Managing Time in Database Systems, The Computer
Journal. 35:332-342.

Mary, H. (1996). Beyond Version Control, Software
Magazine. 16: 45-47.

Rahman, M. N. A., Awang, M. K., Rose, A. N. M. and
Deraman, A. (2003). A4 Framework for Temporal Based
Version Management, Proc. Engineering and Technology
Conference.

Sarda, N. L. (1990). Algebra and Query Language for A
Historical Data Model, The Computer Journal. 33:
11-19.

	Mohd Nordin Abdul Rahmana, Mohd Isa Awanga, Aziz Deramanb, Amir Ngahc
	Kolej Ugama Sultan Zainal Abidin, 21300 Kuala Terengganu, MALAYSIA
	Tel : 609-6653214, Fax : 609-6662566, E-mail : mohdnabd@kusza.edu.my
	bComputer Science Department

	ABSTRACT
	Keywords

