
 Parallel Strategy of Implementing Composite Newton-Cotes Rules
Using Message Passing on Parallel Computing Systems

Festus Omonigho Iyukea, Abdul Rahman Abdullahb and Bahari Idrusc

aFaculty of Information Science and Technology
Universiti Kebangsaan Malaysia, 43600, Bang, Selangor Darul Ehsan

Tel : 012-3893765, Fax : 03-89256732 , E-mail : fesiyuke@yahoo.com

bFaculty of Information Science and Technology
Universiti Kebangsaan Malaysia, 43600, Bang, Selangor Darul Ehsan
Tel : 03-89489900, Fax : 03-89458128 , E-mail : ara@mmsc.com.my

cFaculty of Information Science and Technology

Universiti Kebangsaan Malaysia, 43600, Bang, Selangor Darul Ehsan
Tel : 03-89216180, Fax : 03-89256732 , E-mail : bahari@ftsm.ukm.my

ABSTRACT

The paper describes the parallel implementation of
composite Newton-Cotes rules (Trapezoidal and
Simpson’s ⅓ rules) under PVM-based environment for
approximating one-dimensional definite integral on
parallel and distributed computing systems. The
parallelism is realized by master-slave relationship where
the master process decomposes the interval of integration
into n subintervals, then distribute to the slave processes.
Thereby initiating work pool technique to ensure perfect
workload balanced state to avoid unnecessary
communication overheads among the various contending
processors. The effectiveness of the approach used in
connection with the novel workload management scheme
is demonstrated in the good quality results and the global
load optimization for the tested applied application
problem.

Keywords

Newton-Cotes rules, Distributed, parallel computing
system, message passing, load balancing, and work pool.

1.0 INTRODUCTION

The composite Newton-Cotes integration formulas
are set of integration rules corresponding to the
varying degree of interpolating polynomials.
Newton-Cotes rules have been studied and
developed to increase the accuracy of integral
approximations in parallel computing environments.
These rules are some of the numerical integration
techniques for approximating definite integral in
one-dimension as in Equation (1), and/or in multiple
dimensions to give absolute accuracy.

 (1) ∫=
b

a
dx)x(fI

We restrict our discussion to one-dimensional case.
Its approximation of integral function I, takes the
form of a weighted sum of integrand evaluation as
specified in Equation (2),

∑∫
=

≈=
n

0i
ii

b

a
)x(fwdx)x(fI (2)

where wi i=0,1,…,n are called the weighting
coefficients, and xi, i=0,1,…,n nodes of the
composite rules. The evaluation of the integral
function is done by subdividing the integration
interval [a,b] into n subintervals a=x0<x1<x2<…<xn=
b. Then, the specified composite rule is applied
separately on each of these subintervals. The
accuracy of these rules depends largely on the range
of n equal subintervals used. For an accurate
approximation of a specified integral function will
required an infinite number of subintervals using
these composite rules (Cheney and Kincaid, 2002;
Steven and Raymond, 2002).

Parallelism is realized by approximating the integral
functions by p processors through domain
decomposition. Decomposition of the integral
interval into n subintervals involves master-slave
relationship. This process involves creating a pool of
tasks with the n subintervals in the master process.

mailto:zulie@uum.edu.my
mailto:ara@mmsc.com.my
mailto:bahari@ftsm.ukm.my

From this pool subintervals are distributed to the
various slave processors until completion. When a
slave processor completes its subinterval
computational process, the partially approximated
results are returned to the master processors, while
simultaneously requesting for further subintervals
from the master processor. When all subintervals
have been taken, the master processor sent a
completion signal to all slave processors indicating
end of the integral evaluation. So, it summed up all
partially approximated results to give the final
computed integral values. A vivid description of the
composite Newton-cotes rules is given in Section 2
of this paper. While the work pool technique
involving the master-slave relationship is described
in Section 3. Then, Section 4 discusses experimental
results of the parallel composite Newton-Cotes rules
on parallel and distributed network-based of PVM
Linux workstations.

2.0 DESCRIPTION OF THE COMPOSITE
 NEWTON-COTES METHODS

Newton-Cotes formulas are most commonly used
numerical integrations methods, but unstable over
large integration intervals due to oscillatory nature
of high degree polynomials. In its evaluation, the
integral function to be approximated is replaced by
straight-line and parabolic segments. The area under
these segments is then approximated as the
estimated integral values connecting both limits of
integration. The rules are derived by approximating
f(x) with Lagrange interpolating polynomials. For
example, given a set of nodes xi, i=0,1…n in [a,b],
the Lagrange interpolating could then be defined as

 ∏

≠
= −

−
=

n

ij
0j ji

j
i)xx(

)xx(
)x(l (0 ≤ i ≤ n) (3)

Therefore, Equation (3) becomes the fundamental
polynomial of interpolation for all numerical
integration techniques. While the polynomial of
degree at most n that interpolates f at the nodes is
defined as

 (4) ∑
=

=
n

i
ii)x()x(f)x(p

0
l

Therefore,

∫ ∫ ∑ ∫
=

=≈
b

a

b

a

n

0i

b

a
ii dx)x()x(fdx)x(pdx)x(f l (5)

We obtained a formula that can be used in
evaluating any integral function f as shown in
Equation (6)

 (6) ∑∫
=

≈
n

0i
ii

b

a
)x(fwdx)x(f

where

 ∫=
b

a
ii .dx)x(w l

So, a formula of the form in Equation (6) is called
closed Newton-Cotes formula (Trapezoidal and
Simpson’s ⅓ rules) if the nodes are equally spaced
(Burden and Faires, 2000).

For improved accuracy, the integration interval [a,b]
is subdivided into number of subintervals for
Trapezoidal rule and/or subintervals of equal width
for Simpson’s ⅓ rule. Thus, applying these rules
piecewise on the consecutive pair of the n
subintervals (xi-1, xi), i = 1,2,…,n, where a = x0 < x1
< x2 <… < xn = b. Gives the areas of the individual
subintervals, added to yield the approximated
integral values for the entire interval. The
application of the Newton-Cotes rules on each
subinterval with uniform spacing h = (b- a)/n and xi
= a + ih, for i = 0,1,…,n gave Equation(7) as the
composite Trapezoidal rule and Equation(8) as the
composite Simpson’s ⅓ rule with the associated
error terms (Rojiana, 1996) respectively:

)(fh
12

)ab()b(f)x(f2)a(f
2
hdx)x(f)2(2

1n

1i
i

b

a

ξ
−

−⎟
⎠
⎞

⎜
⎝
⎛ ++= ∑∫

−

=
 (7)

where ξ Є (b, a). The f(2) in the error term,
represents the average of f(2)(ξ) over the n
subintervals. So the global formula truncation error
is of the order O (h2), because the n local error terms
have been summed with n

)ab(h −= .

However, for the Composite Simpson’s ⅓ rule, an
even number of subintervals is usually used,

)(fh
180

)ab()b(f)x(f4)x(f2)a(f
3
hdx)x(f)4(4

2n

1i

1n

1i
ii

b

a

ξ
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++= ∑ ∑∫

=

−

=

 (8)
for some ξ Є (a, b). The f(4) in the error term,
represents the average of f(4) (ξ) over the 2

n pairs of
subintervals. Also, the global formula truncation
error is of the order O (h4), because the 2

n local
truncation error terms O (h4) means reducing h by a

factor of two reduces the error by a factor of 16
(Schilling and Harris, 2000).

3.0 DESCRIPTION OF THE WORK POOL

 TECHNIQUE

We discuss the implementation of the parallel
Composite Newton-Cotes algorithm with work pool
technique involving master-slave relationship. The
potential parallelism within the work pool algorithm
is entirely dependent on the nature of the particular
composite Newton-Cotes rule and the integral
functions being evaluated.

The work pool technique consists of two entities:
master processor and several slave processors. In the
work pool technique implementation, the master
identifies a set of interval, which could be profitably
decomposed to give enough new subinterval(s) to
keep p processors busy. The algorithm is applied on
each of these subintervals in the various processors
using the particular Composite rules. Every
subinterval is associated with a quantity of data, and
the work needed to process it, stored in a common
data structure, called the work pool or pool of task.
This centralized master uses some distributed
strategies (sender-initiated, receiver-initiated and
symmetrically-initiated) to transfer subintervals to
the various slave processors (Finkel and Manber,
1987; Luling and Monien, 1993). To ensure a
workload balanced system and equally allows the
master processor to make workload placement
decisions. The master processor also uses such
distributing strategies as workload measurements,
state information exchange, transfer initiation and
workload placement mechanism in the transfer of
subintervals (Chao-Yang et al., 2001; Zaki et al.,
1997).

Then the parallelism is realized by the distribution
these n subintervals on the available slave processors
in the virtual configuration. The slave processors
perform integration evaluation in a cyclical format:
request a subinterval, process it, and returned the
partially approximated result to master processor.
While simultaneously requesting further task from
the master processor in order to reduce the
communication overhead involved. The slave
processors receive subintervals on a continual basis
from the work pool in the master processor until the
termination is reached.

When all subintervals have been taken, the master
send a completion signal to all slave processors
indicating end of the computation. The master

processor summed up the partially approximated
results from the dedicated slave processors to give
the final approximated result of the integral
computation.

Basically, the communication is between the master
and the various slave processors in the Virtual
Machine (host of computers) as depicted in Figure 1,
(Wilkinson and Allien, 1999; Foster, 1994). A
perfectly workload balanced is attained, when the
master processor have processed all of the
subintervals and no processors remained idle during
the integral function approximation.

 Subinterval

Send subinterval
Request subinterval
 Slave processes

Figure 1: Work Pool Technique

3.1 Work Pool Technique Algorithm

In the algorithm implementation, there is no need to
distinguish between Composite Trapezoidal rule and
Composite Simpson’s rule – the algorithm is
applicable to either case, though, one may work
better than other. However, the structure of the
problem permits a data parallelism. Suppose the
number of processor is given by nproc that
computes one subinterval at a time. Therefore, the
work pool holds the subintervals rather than the
individual intervals (nodes) as explained in Section
3. The program code of the work pool technique
algorithm is given below.

Master

 count=0;
 subinterval = 0;
 for (i=0,i<nproc;i++)
 {
 send(&subinterval, Pi ,msg_tag);
 count++;
 subinterval++;
 }
 do {
 recv (&integral, Pany result_tag);
 count--;
 if(subinterval < count)
 {

 send (subinterval, Pslave, msg_tag);
 subinterval++;

From the results obtained for the Composite
Newton-Cotes techniques, both gave an impressive
sublinear speedups and high efficiencies of (91% for
Composite Trapezoidal rule and 96% for Simpson’s
⅓ rule) with the same interval of integration.
However, this competitiveness in terms of the
performance evaluation or accuracy was due to
subdivision of integration interval into number of
segments of equal widths. One can generalized that
the Composite Simpson’s ⅓ rule gave a better

accuracy than the composite Trapezoidal rule under
the same condition of evaluation.

 count++;
 }else
 send(subinterval, Pslave, terminator_tag);
 integral_recv++;
 display(integration summation);
 }
 }while(subinterval >count);

Slave
 recv(subinterval, Pmaster, msg_tag);
 for(i=0,i<nproc;i++)
 {
 integral = 0.0;
 send(integral, Pmaster, result_tag);
 }
 recv(subinterval, m, Pmaster, msg_tag);
 }

4.0 RESULTS AND DISCUSSIONS

The performance of an algorithm on parallel
computing systems is dependent not only on the
problem characteristics and the number of
processors. It does depend on how processors
interact with each other, as determined both by a
physical architecture in hardware and virtual
architecture in software.

So the physical architecture used in the experiment
described is a completely connected network-based
system (topology). In a completely connected
network-based system, each processor has a direct
communication link to every other processor in the
network. This network is ideal because a processor
can send a message to other processor in a single
step. So our architecture consists of 17
homogeneous Red Hat Linux 7.2 workstations, Intel
Pentium IV processors, 20 GB HDD, CPU speed of
1.6 MHz, 256Mbytes of memory connected by a
Ethernet (10/100 Mbps) network on PVM-based
parallel programming software.

These performances obtained indicate the usefulness
of PVM-based application in approximating integral
functions problems. It also showed the degree of
utilization of individual workstations (processors) in
the parallel computing systems. However, these
results were achieved because each processor gets
equal number of subintervals to compute, showing
the workload was evenly distributed on the available
processors (workload balanced). If the workloads
among the processors were not balanced, poor
speedup and efficiency values would have be
obtained. This is because some processors gets less
workload (underloaded) than other processors with
much workload (overloaded), as a result the
underloaded processors were held at synchronizing
points waiting for the other processors to get done.
Thus, the load management system would not be
capable of balancing the workload among processors
to achieve a high quality results because it adds an
almost constant overhead to all scheduling or
mapping strategies.

As a result, this Centralized technique using master-
slave relationship creditably exhibits sublinear
speedup and parallel efficiency curves, as shown in
Figures 1 and 2. It tends to decrease as the number
of processors increases due to Amdahl’s law analogy
(Foster, 1994). Centralized algorithm using work
pool technique should be preferred in the evaluation
of load management schemes in parallel applications
in network of workstations.

Besides, the Newton-Cotes numerical techniques
have some useful industrial applications in the areas
of science and Engineering. These techniques are
used in the evaluation of a force exerted on a dam
constructed across a river to generate hydroelectic
power by a water as successfully applied in
(Schilling and Harris, 2000). Also, the techniques
could equally be used in the approximation of flow
rate/seconds of fluid through a circular pipe with
some mathematical simplifications as in (Rojiani,
1999).

0
2
4
6
8

10
12
14

0 2 4 6 8 10 12 14 16 18
Number of Processors

Sp
ee

du
p

CTrap
CSimp

Figure 2: Comparison of Composite Trapezoidal
and Simpson’s ⅓ rules: speedup vs. number of
processors

Figure 3: Comparison of Composite Trapezoidal
and Simpson’s ⅓ rules: efficiency vs. number of
processors

5.0 CONCLUSION

We described how efficient PVM-based parallel
application involving load management techniques
could be used to effectively solve the integral
functions problems on the network of workstations.
However, the applications running this approach is
essentially master-slave structured, which has been
described as a valid cooperation paradigm for
parallel and distributed applications. The centralized
technique operates on global subintervals, which is
distributed among the processing units. The overlap
communication and computation by the use of
synchronous and asynchronous blocking
communication functions provided by PVM.
Enables the load-adjusting scheme to substantially
reduce out-of-work idle states in the various
processors while reducing the communication needs
in the integral evaluation. Also helps achieve an
even workload balance, thereby obtaining a high
speedup and efficiency for the composite rules
considered.

It also works towards maintaining non-empty local
processor and evenly balanced global workload
distribution. As such the centralized technique
provides a large reduction in network
communication requirements, thus reducing
communication bottlenecks and load imbalances that
would have be apparent in the evaluation approach.

Acknowledgements

The research paper is supported by the Universiti
Kebangsaan Malaysia under Project Grant IRPA 04-
02-02-0009-EA009.

6.0 REFERENCES

Burden, R.L. and Faires, D.J. (2001). Numerical
Analysis, California.: Brooks/Cole.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18
Number of Processors

Ef
fic

ie
nc

y

CTrap
CSimp

Chao-Yang, Gua and Mark, A. Stadtherr (2001).
Parallel Interval-Newton using Message
Passing: Dynamic Load Balancing Strategies.

Cheney, W. and Kincaid, D. (2002). Numerical
Analysis: Mathematics of Scientific Computing,
USA.: Brooks/Cole.

Finkel, Raphael and Udi, Manber (1987). A
Distributed Implementation of Backtracking. ACM
Transactions On Programming Languages and
Systems 9(2): 235-256.

Foster, I. (1994). Designing and Building Parallel
Programs: Concepts and Tools for Parallel Software
Engineering, U.S.A.: Addison Wesley.

Lüling, R. and Monien, B. (1993). A Dynamic
Distributed Load Sharing Algorithm with Provable
Good Performance. In Proceedings of the 5th Annual
ACM Symposium on Parallel Algorithms and
Architectures. 164-172. Velen, German.

Rojiani, K.B. (1996). Programming in C with
Numerical Methods for Engineers, New Jersey.:
Prentice-Hall.

Schilling, R. and Harris, S. (2000). Applied
Numerical Methods for Engineers Using Matlab and
C, California.: Brooks/Cole.

Steve, C.C. and Raymond, P.C. (2002). Numerical
Methods for Engineers with Software programming
Applications, New York.: McGraw-Hill.

Wilkinson, B. and Alien, M. (1999). Parallel
Programming: Techniques and Applications using
Networked Workstations and Parallel Computers,
New Jersey.: Prentice Hall.

Zaki, Mohammed Javeed, Li, Wei and
Parthasarathy, Srinivasan. (1997). Customized
Dynamic Load Balancing for a Network of
Workstations. Journal of Parallel and Distributed
Computing 43(2): 156-162.

	Universiti Kebangsaan Malaysia, 43600, Bang, Selangor Darul
	Universiti Kebangsaan Malaysia, 43600, Bang, Selangor Darul
	Universiti Kebangsaan Malaysia, 43600, Bang, Selangor Darul
	ABSTRACT
	Keywords
	INTRODUCTION
	3.1 Work Pool Technique Algorithm
	Slave

	Acknowledgements

