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ABSTRACT 
 
The paper describes the parallel implementation of 
composite Newton-Cotes rules (Trapezoidal and 
Simpson’s ⅓ rules) under PVM-based environment for 
approximating one-dimensional definite integral on 
parallel and distributed computing systems. The 
parallelism is realized by master-slave relationship where 
the master process decomposes the interval of integration 
into n subintervals, then distribute to the slave processes. 
Thereby initiating work pool technique to ensure perfect 
workload balanced state to avoid unnecessary 
communication overheads among the various contending 
processors.  The effectiveness of the approach used in 
connection with the novel workload management scheme 
is demonstrated in the good quality results and the global 
load optimization for the tested applied application 
problem. 
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1.0 INTRODUCTION 
 
The composite Newton-Cotes integration formulas 
are set of integration rules corresponding to the 
varying degree of interpolating polynomials. 
Newton-Cotes rules have been studied and 
developed to increase the accuracy of integral 
approximations in parallel computing environments. 
These rules are some of the numerical integration 
techniques for approximating  definite integral in 
one-dimension as in Equation (1), and/or in multiple 
dimensions to give absolute accuracy. 
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We restrict our discussion to one-dimensional case. 
Its approximation of integral function I, takes the 
form of a weighted sum of integrand evaluation as 
specified in Equation (2),  
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where wi i=0,1,…,n are called the weighting 
coefficients, and xi, i=0,1,…,n  nodes of the 
composite rules. The evaluation of the integral 
function is done by subdividing the integration 
interval [a,b] into n subintervals a=x0<x1<x2<…<xn= 
b. Then, the specified composite rule is applied 
separately on each of these subintervals. The 
accuracy of these rules depends largely on the range 
of n equal subintervals used. For an accurate 
approximation of a specified integral function will 
required an infinite number of subintervals using 
these composite rules (Cheney and Kincaid, 2002; 
Steven and Raymond, 2002). 
 
Parallelism is realized by approximating the integral 
functions by p processors through domain 
decomposition. Decomposition of the integral 
interval into n subintervals involves master-slave 
relationship. This process involves creating a pool of 
tasks with the n subintervals in the master process. 
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From this pool subintervals are distributed to the 
various slave processors until completion. When a 
slave processor completes its subinterval 
computational process, the partially approximated 
results are returned to the master processors, while 
simultaneously requesting for further subintervals 
from the master processor. When all subintervals 
have been taken, the master processor sent a 
completion signal to all slave processors indicating 
end of the integral evaluation. So, it summed up all 
partially approximated results to give the final 
computed integral values. A vivid description of the 
composite Newton-cotes rules is given in Section 2 
of this paper. While the work pool technique 
involving the master-slave relationship is described 
in Section 3. Then, Section 4 discusses experimental 
results of the parallel composite Newton-Cotes rules 
on parallel and distributed network-based of PVM 
Linux workstations. 
 
2.0 DESCRIPTION OF THE COMPOSITE   
       NEWTON-COTES METHODS 
 
Newton-Cotes formulas are most commonly used 
numerical integrations methods, but unstable over 
large integration intervals due to oscillatory nature 
of high degree polynomials. In its evaluation, the 
integral function to be approximated is replaced by 
straight-line and parabolic segments. The area under 
these segments is then approximated as the 
estimated integral values connecting both limits of 
integration. The rules are derived by approximating 
f(x) with Lagrange interpolating polynomials. For 
example, given a set of nodes xi, i=0,1…n in [a,b],  
the Lagrange interpolating could then  be defined as  
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Therefore, Equation (3) becomes the fundamental  
polynomial of interpolation for all numerical 
integration techniques. While the polynomial of 
degree at most n that interpolates f at the nodes is 
defined as 
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Therefore, 
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We obtained a formula that can be used in 
evaluating any integral function f as shown in 
Equation (6) 
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So, a formula of the form in Equation (6) is called 
closed Newton-Cotes formula (Trapezoidal and 
Simpson’s ⅓ rules) if the nodes are equally spaced 
(Burden and Faires, 2000). 
 
For improved accuracy, the integration interval [a,b] 
is subdivided into number of subintervals for 
Trapezoidal rule and/or subintervals of equal width  
for Simpson’s ⅓ rule. Thus, applying these rules 
piecewise on the consecutive pair of the n 
subintervals (xi-1, xi), i = 1,2,…,n, where a = x0 < x1 
< x2 <… < xn = b.  Gives the areas of the individual 
subintervals, added to yield the approximated 
integral values for the entire interval. The 
application of the Newton-Cotes rules on each 
subinterval with uniform spacing h = (b- a)/n and xi  
= a + ih, for i = 0,1,…,n gave  Equation(7) as the 
composite Trapezoidal rule and Equation(8) as the  
composite Simpson’s ⅓ rule with the  associated 
error terms (Rojiana, 1996) respectively: 
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where  ξ Є (b, a). The f(2) in the error term, 
represents the average of  f(2)(ξ) over the n 
subintervals. So the global formula truncation error 
is of the order O (h2), because the n local error terms 
have been summed with n

)ab(h −= . 
   
However, for the Composite Simpson’s ⅓ rule, an 
even number of subintervals is usually used, 
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for some ξ Є (a, b). The f(4) in the error term, 
represents the average of  f(4) (ξ) over the 2

n  pairs of 
subintervals. Also, the global formula truncation 
error is of the order O (h4), because the 2

n  local 
truncation error terms O (h4) means reducing h by a 



factor of two reduces the error by a factor of 16 
(Schilling and Harris, 2000). 
 
3.0   DESCRIPTION OF THE WORK POOL    

  TECHNIQUE 
 
We discuss the implementation of the parallel 
Composite Newton-Cotes algorithm with work pool 
technique involving master-slave relationship. The 
potential parallelism within the work pool algorithm 
is entirely dependent on the nature of the particular 
composite Newton-Cotes rule and the integral 
functions being evaluated. 
 
The work pool technique consists of two entities: 
master processor and several slave processors. In the 
work pool technique implementation, the master 
identifies a set of interval, which could be profitably 
decomposed to give enough new subinterval(s) to 
keep p processors busy.  The algorithm is applied on 
each of these subintervals in the various processors 
using the particular Composite rules. Every 
subinterval is associated with a quantity of data, and 
the work needed to process it, stored in a common 
data structure, called the work pool or pool of task. 
This centralized master uses some distributed 
strategies (sender-initiated, receiver-initiated and 
symmetrically-initiated) to transfer subintervals to 
the various slave processors (Finkel and Manber, 
1987; Luling and Monien, 1993). To ensure a 
workload balanced system and equally allows the 
master processor to make workload placement 
decisions. The master processor also uses such 
distributing strategies as workload measurements, 
state information exchange, transfer initiation and 
workload placement mechanism in the transfer of 
subintervals (Chao-Yang et al., 2001; Zaki et al., 
1997).  
 
Then the parallelism is realized by the distribution 
these n subintervals on the available slave processors 
in the virtual configuration. The slave processors 
perform integration evaluation in a cyclical format: 
request a subinterval, process it, and returned the 
partially approximated result to master processor. 
While simultaneously requesting further task from 
the master processor in order to reduce the 
communication overhead involved. The slave 
processors receive subintervals on a continual basis 
from the work pool in the master processor until the 
termination is reached.  
 
When all subintervals have been taken, the master 
send a completion signal to all slave processors 
indicating end of the computation. The master 

processor summed up the partially approximated 
results from the dedicated slave processors to give 
the final approximated result of the integral 
computation.  
 
Basically, the communication is between the master 
and the various slave processors in the Virtual 
Machine (host of computers) as depicted in Figure 1, 
(Wilkinson and Allien, 1999; Foster, 1994). A 
perfectly workload balanced is attained, when the 
master processor have processed all of the 
subintervals and no processors remained idle during 
the integral function approximation. 
 
  

 Subinterval 
 

                                        
Send subinterval                                                                 
Request subinterval 
                                                           Slave processes
 
                                                          
Figure 1:  Work Pool Technique 
 
3.1   Work Pool Technique Algorithm   
 
In the algorithm implementation, there is no need to 
distinguish between Composite Trapezoidal rule and 
Composite Simpson’s rule – the algorithm is 
applicable to either case, though, one may work 
better than other.  However, the structure of the 
problem permits a data parallelism. Suppose the 
number of processor is given by nproc that 
computes one subinterval at a time. Therefore, the 
work pool holds the subintervals rather than the 
individual intervals (nodes) as explained in Section 
3. The program code of the work pool technique 
algorithm is given below. 
 
Master 

     count=0;                                                        
     subinterval = 0;                                             
     for (i=0,i<nproc;i++)  
        { 
           send(&subinterval, Pi ,msg_tag);            
           count++;                                                 
           subinterval++;                                                               
         } 
     do { 
             recv (&integral, Pany result_tag);  
             count--;                                              
             if(subinterval < count) 
               { 



                 send (subinterval, Pslave, msg_tag);        
                 subinterval++;                                      

From the results obtained for the Composite 
Newton-Cotes techniques, both gave an impressive 
sublinear speedups and high efficiencies of (91% for 
Composite Trapezoidal rule and 96% for Simpson’s 
⅓ rule) with the same interval of integration. 
However, this competitiveness in terms of the 
performance evaluation or accuracy was due to 
subdivision of integration interval into number of 
segments of equal widths. One can generalized that 
the Composite Simpson’s ⅓ rule gave a better 

accuracy than the composite Trapezoidal rule under 
the same condition of evaluation. 

                 count++;                                                       
                }else   
             send(subinterval, Pslave, terminator_tag); 
             integral_recv++; 
             display(integration summation);                           
       } 
     }while(subinterval >count); 
 
Slave 
     recv(subinterval, Pmaster, msg_tag);                  
     for(i=0,i<nproc;i++)  
       { 
        integral = 0.0; 
        send(integral, Pmaster, result_tag);                     
       } 
     recv(subinterval, m, Pmaster, msg_tag);           
    } 
 
4.0 RESULTS AND DISCUSSIONS 
 
The performance of an algorithm on parallel 
computing systems is dependent not only on the 
problem characteristics and the number of 
processors. It does depend on how processors 
interact with each other, as determined both by a 
physical architecture in hardware and virtual 
architecture in software. 
 
So the physical architecture used in the experiment 
described is a completely connected network-based 
system (topology). In a completely connected 
network-based system, each processor has a direct 
communication link to every other processor in the 
network. This network is ideal because a processor 
can send a message to other processor in a single 
step. So our architecture consists of 17 
homogeneous Red Hat Linux 7.2 workstations, Intel 
Pentium IV processors, 20 GB HDD, CPU speed of 
1.6 MHz, 256Mbytes of memory connected by a 
Ethernet (10/100 Mbps) network on PVM-based 
parallel programming software.   
 

 
These performances obtained indicate the usefulness 
of PVM-based application in approximating integral 
functions problems. It also showed the degree of 
utilization of individual workstations (processors) in 
the parallel computing systems. However, these 
results were achieved because each processor gets 
equal number of subintervals to compute, showing 
the workload was evenly distributed on the available 
processors (workload balanced). If the workloads 
among the processors were not balanced, poor 
speedup and efficiency values would have be 
obtained. This is because some processors gets less 
workload (underloaded) than other processors with 
much workload (overloaded), as a result the 
underloaded processors were held at synchronizing 
points waiting for the other processors to get done. 
Thus, the load management system would not be 
capable of balancing the workload among processors 
to achieve a high quality results because it adds an 
almost constant overhead to all scheduling or 
mapping strategies.  
 
As a result, this Centralized technique using master-
slave relationship creditably exhibits sublinear 
speedup and parallel efficiency curves, as shown in 
Figures 1 and 2. It tends to decrease as the number 
of processors increases due to Amdahl’s law analogy 
(Foster, 1994). Centralized algorithm using work 
pool technique should be preferred in the evaluation 
of load management schemes in parallel applications 
in network of workstations. 
 
Besides, the Newton-Cotes numerical techniques  
have  some useful industrial applications in the areas 
of science and Engineering. These techniques are 
used  in the evaluation of a force exerted on a dam 
constructed across a river to generate hydroelectic 
power by a water as successfully applied in 
(Schilling and Harris, 2000). Also, the techniques 
could equally be used in the approximation of flow 
rate/seconds of fluid through a circular pipe with 
some mathematical simplifications as in (Rojiani, 
1999). 
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Figure 2:  Comparison of Composite Trapezoidal 
and Simpson’s ⅓ rules: speedup vs. number of 
processors 

Figure 3: Comparison of Composite Trapezoidal 
and Simpson’s ⅓ rules: efficiency vs. number of 
processors 
 
5.0 CONCLUSION 
 
We described how efficient PVM-based parallel 
application involving load management techniques 
could be used to effectively solve the integral 
functions problems on the network of workstations. 
However, the applications running this approach is 
essentially master-slave structured, which has been 
described as a valid cooperation paradigm for 
parallel and distributed applications. The centralized 
technique operates on global subintervals, which is 
distributed among the processing units. The overlap 
communication and computation by the use of 
synchronous and asynchronous blocking 
communication functions provided by PVM.  
Enables the load-adjusting scheme to substantially 
reduce out-of-work idle states in the various 
processors while reducing the communication needs 
in the integral evaluation. Also helps achieve an 
even workload balance, thereby obtaining a high 
speedup and efficiency for the composite rules 
considered. 

It also works towards maintaining non-empty local 
processor and evenly balanced global workload 
distribution. As such the centralized technique 
provides a large reduction in network 
communication requirements, thus reducing 
communication bottlenecks and load imbalances that 
would have be apparent in the evaluation approach.  
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