
Proceedings of International Conference on E-Commerce 2005

 22

The Agent Pattern Driven Business Engineering (APBDE) Approach
Enabled Business-Based Systems

Faiz M. Al-Shrouf1, Aman B.Jantan1, Walter.L.James2

1Software Engineering and Artificial Intelligence Research Group, School Of Computer Sciences, University Science of Malaysia,
USM, 11800, Penang, Malaysia

2 Computing and Mathematics Department, Nizwa College of Technology, NTIC, 00968-431020 Sultanate of Oman
E-mail: faiz_alshrouf@hotmail.com

ABSTRACT

Agent design patterns form a new methodology used to
improve the development of software agents. Agent design
patterns can help by capturing solutions to common
problems in agent design [Lange and Oshima, 1998].
Agent design patterns are applied in different systems such
as knowledge management systems, real-time systems, and
network management systems. Agent design patterns for
business-based systems, aim to support different e-
commerce paradigms business-to-business (B2B) and
business-to-consumer (B2C). In this paper, we developed
an approach for extracting agent-based design patterns for
B2C e-commerce to improve business-based processes.
This approach is called an Agent Pattern Driven Business
Engineering (APDBE). Based on this approach, we
derived two agent-based commerce design patterns namely,
the De-coupler Design Pattern (DecDP), and the Dynamic
Design Pattern (DynDP). These design patterns are used to
support selling/buying-based processes in e-commerce
domain.

1.0 INTRODUCTION

One of the most pervasive technologies used in e-
commerce is software agents. Software agents, also
called “Agent-Mediated e-commerce” [Guttman et
al., 1998] [He et al., 2003], have started a key role in
the e-commerce domain. Software agents are now
used to support virtual business processes and
facilitate them to enhance e-marketplaces.

Software agents have received their importance over
the last decade. Increasing work has been done in
which intelligent agents support e-commerce and
other Internet-based transactions. Agents are
developed and deployed to perform tasks such as
matchmaking, monitoring, negotiation, bidding,
auctioning, transfer of goods, and follow-up support.
The role of agent-based commerce is to aid the
comparison shopping process. These agents collect
information from multiple commercial sites, filter it
and provide appropriate responses for both sellers and
buyers.

The agent metaphor, due to its suitability for open
environments, has recently become popular with
distributed, large-scale, and dynamic applications
such as e-commerce and virtual enterprises. Agent
design methodologies are therefore evolving to re-
engineer business processes and several designs have
been introduced for agent designs. The Agent-Based
Role Modeling (ABRM) approach [Kendall, 1999]
[Wooldridge, 2000] is started to achieve better

designs in agent technology, but it has some
drawbacks including limited possibilities for reuse.

Another approach has been developed by [Farhoodi
and Fingar, 1997] namely, the Agent-Oriented
Business Engineering (AOBE). The AOBE is an
approach aimed at combining the maturing designs of
agent technology and business engineering to create a
new level in the research for the prize of enterprise-
level computing. This approach produces the
Business Object Model (BOM) based on Agent-
Based Domain model to achieve user tasks analysis,
and business-based requirements.

In this paper, we have developed an approach for
deriving agent commerce design patterns for business
based systems namely, the Agent Pattern Driven
Business Engineering (APDBE) based on agent and
object patterns to extract application business-based
patterns. These patterns are then used to re-engineer
business processes and to achieve better designs in
the field of software business re-engineering.

2.0 THE AGENT UNIFIED MODELING

LANGUAGE (AUML)

In order to represent agents, the Agent-Unified
Modeling Language (AUML) [Odell et al., 2000] is
suggested for further extensions to UML and is used
to design aspects of agents. However, according to
this suggestion, UML has to include role specification
in sequence diagrams and agent classes. In this
paper, we recommend the use of UML standards for
representing agent classes’ structures. This
methodology gives a powerful mechanism for
producing agent design patterns and it supports the
transformation of agent-oriented modeling problems
into object-oriented modeling problems [Yim et al.,
2000]. In the transformation process, relations
between agents are transformed to design pattern
[Bergenti and Poggi, 2000], and these patterns are
then used as relations between object classes. The
result of this method is that agent designers and
developers are able to use existing UML-based tools
in addition to knowledge and experience from
developing object-oriented systems.

3.0 ROLE OF AGENT DESIGN PATTERNS

Design patterns are widely used in modeling object
abstractions [Gramma et al., 1995]. These provide
descriptions of recurring themes with certain

Proceedings of International Conference on E-Commerce 2005

 23

contexts. Generally, design patterns allow software
reuse, automatic code generation, and have identified
schemes for refining the behavior of components
within systems. Deriving design patterns is a
methodology used to assist both the designers and the
developers to plan good scenarios.

Agent Design Patterns (ADP) are emerging to be one
of the most fruitful topics in Agent-Oriented Software
Engineering (AOSE). Agent Design Patterns (ADP)
can help by capturing solutions to common problems
in agent design [Lange and Oshima, 1998]. Agent
Design Patterns (ADP) have been extended to fill the
gap between high-level agent specific languages and
system-level programming languages such as Java.
Agent developers can select and combine multiple
patterns in a graphical environment based on a
standard for these patterns.

In e-commerce environments, Agent Design Patterns
(ADP) are useful to integrate business processes and
business components with agent technology. This
integration supports front-end and back-end business
components with business actors. It is our belief that
ADP for business-based systems aims to satisfy the
following roles:
• Document an easy approach to assist business

actors by integrating business scenarios with
agent software components.

• Improve the system business designs for
different potential members to support the
development of system business interoperability.

• Help agent developers to establish new
paradigms for agents that are similar to those in
the e-business environment.

• Distinguish new relationships among agents,
with common interests.

• Reduce the redundancy in system designs.
• Provide a reference template schema for agents.

The reference can be documented in catalog
pattern schemes.

• Assist agent developers to achieve pervasive
solutions to e-business disciplines including
elements of trust, security, and credentials.

• Support interoperability, flexibility, and
performance for an agent’s system design and its
commerce-based applications. Agent developers
can integrate several code designs to cope with
these patterns. Errors and bugs may be more
easily detected and corrected.

• Improve e-business transactions in which agents
play a key role. This involves agent negotiation
mechanisms, and agent-based brokering.

• Allow for the reuse of designs and automatic
code generation for agents in the development of
other business scenarios.

4.0 AGENT DESIGN PATTERNS (ADP)

Patterns are classified by the software community as
follows: [Gramma et al., 1995][Flower, 1997] [Lange

and Oshima, 1998] [Griver et al., 2000] [Schelfthout
et al., 2002] [Moose, 2002], 1) design patterns. These
patterns provide a scheme for refining the subsystems
or components of a software system and describe a
commonly recurring structure of communicating
components that solves a general design problem
with a particular context, 2) programming patterns.
These patterns describe how to implement particular
aspects of components or the relationships between
them using the features of a given language, 3)
analysis patterns. These patterns focus on
organizational, social, and economical aspects of the
system, and 4) implementation patterns. These deal
with problems and generic solutions for
implementing agents and multi-agent systems.

To explore agent-based commerce design patterns for
business-based systems, [Papazoglou, 2001] classifies
agents in multi-agent e-business environments as
follows: 1) application agents. These agents
collaborate as part of a distributed workflow
application that implements a typical range of cross-
organizational activities, 2) personal agents. These
agents work directly with users to help support the
management of user profiles, requests, and
information collection, 3) general business activity
agents. These agents address the needs of a business
partner. Such are search agents, negotiation agents,
billing agents, marketing agents, and business
transaction agents (seller agents, buyer agents), and
4) system level support agents. These agents provide
the security services required for the conduct of e-
business, such as authentication agents, security
agents, and authorization agents.

In our literature survey, we found a set of agent
design patterns for mobile agent systems and static
agents. The ongoing success of agent systems
depends on the development for them of appropriate
software engineering principles. Design patterns are
a recognized means that should be promoted. Agent
Design Patterns (ADP) are classified as given below:

• Architecture patterns: These patterns deal with
the architecture of agents and agent-based
applications [Kendall et al., 1998] [Aridor and Lange,
1998] [Lind, 2002]. Examples of agent architecture
patterns are: the Layered Agent Pattern, and the
InteRap Pattern.

• Communication patterns: These patterns deal
with the way agents communicate with one another
[Deugo and Wiess, 1999] [Deugo et al., 1999] [Meira
et al., 2000]. Examples of communication patterns
are: the Receptionist Pattern, the Secretary Pattern,
the Session Pattern, the Antenna Pattern, the Direct-
Coupling Pattern, the Modified Proxy Pattern, the
Communication Sessions Pattern, Badges Pattern,
and the Event Dispatcher Pattern.

• Traveling Patterns: These patterns deal with the
management and movement of mobile agents, and the

Proceedings of International Conference on E-Commerce 2005

 24

quality of their service and routing [Lange and
Oshima, 1998]. Examples of traveling patterns are:
the Itinerary pattern, the Forwarding Pattern, and the
Ticket Pattern.

• Task Patterns: These patterns deal with the
breakdown of tasks and how these tasks are delegated
to one or more agents [Lange and Oshima, 1998].
Examples of task patterns are: the Master-Slave
Pattern, and the Plan Pattern.

• Interaction Patterns: These patterns deal with
the way agents locate one another and facilitate their
interactions [Lange and Oshima, 1998]. Examples of
interaction patterns are: the Meeting Pattern, the
Locker Pattern, the Messenger Pattern, the Finder
Pattern, and the Organized-Group Pattern.

• Coordination Patterns: These patterns deal
with managing dependencies between agent activities
[Tolksdorf, 1998]. Examples of coordination patterns
are: the Pull & Push Pattern, the Index Pattern, and
the Traveler Pattern.

• Commerce Patterns: These deal with agent-
based commerce for e-business processes [Silva and
Delgado, 1998] [Kostiadis et al., 1999] [Wiess, 2001,
2002][Faiz and Aman, 2003] [Faiz and James, 2004].
Examples of commerce patterns are: the Agent
Society Pattern, the Agent as Delegate Pattern, the
Common Vocabulary Pattern, the Mediator Pattern,
the De-coupler Pattern, and the Dynamic Pattern.

5.0 AGENT-BASED BUSINESS DESIGN

APPROACHES

In this section, we review the current agent design
methodologies used in Agent-Oriented Software
Engineering (AOSE). Some drawbacks found in the
Agent-Based Role Modeling approach (ABRM) in
agent design have led to the development of our
approach namely, the Agent Pattern Driven Business
Engineering (APDBE) approach.

5.1 THE AGENT-BASED ROLE MODELING

APROACH
In Multi-Agent Systems (MAS), design, the Agent-
Based Role Modeling (ABRM) approach is used as a
design methodology for agent development [Kendall,
1999] [Wooldridge, 2000] [Cabri, 2001] [Cabri et al.,
2002]. This methodology follows the traditional
topology, top-down approach which, starts by
identifying the system requirements and decomposing

these requirements at the analysis process into certain
activities.

At the design stage, activities are tasks that assigned
to a role which, performs without interacting with
other roles. A role is a set of capabilities, expected
behavior and knowledge that an agent exploits
according to its needs. Roles mapped to individual
agents. The role embeds all the information needed
by the agent to interact with the system. For
example, in e-business systems, customer information
is kept in databases. Suppose an agent in charge of
querying databases is sited on different hosts. Instead
of embedding the needed knowledge in this agent
such as the driver name and the query statements, a
solution is to use a role. This role is embedded in a
host and the agent assumes the use of it. Role
embedding allows simplified development as roles
allow logical separation of the different concerns of
the agent. In the Agent-Based Role Modeling
(ABRM) approach, the role system allows some
models to make the role utilization by agents easier
such models are [Wooldridge, 2000]: a service
model, an acquaintance model, and a security model.

ABRM approach has been proven as a good approach
for developing closed agent-systems and Internet
applications [Tveit, 2001]. On the other hand, such
an approach has some restrictions and possibly less
value in open e-commerce environments. Another
problematic issue is when the number of roles grows.
This leads to an increase in the number of agents
handled by the services of these roles [Cabri, et al.,
2002], therefore, this results in poor reusability in
code generation, inconsistency in design, and
unreliable systems.

5.2 THE AGENT-ORIENTED BUSINESS

ENGINEERING (AOBE) APROACH
The Agent-Oriented Business Engineering (AOBE)
approach [Farhoodi and Fingar, 1997]is a an
approach that aims to combine the maturing design of
agent technology with business engineering to build a
new area of research for the prize of enterprise-level
computing. The AOBE approach has two models:

The agent-oriented lifecycle model.
This model addresses domain modeling for agent-
orientation by providing an active modeling metaphor
and better analysis models that enable re-use. Figure
1 shows the agent-oriented lifecycle model in AOBE.

Proceedings of International Conference on E-Commerce 2005

 25

Pro b lem D o m ain Object

Orie
n tat io

n

(O
O)

On to logy
Business

Pro
c ess

Re-

eng inee rin
g

(BPR)

In te llige nt

Agents (IA)

Domain
Modeling Ana lysis D esign C o d e

Reference
Requirements

Reference
Architecture

Figure 1: The Agent-Oriented Lifecycle

The Ontology-based domain models.
Ontology defines the basic concepts and entities that
are assumed to exist in some area of interest and the
relationships that hold among them. This is a critical
initial step in producing business-based systems.
There are three distinct approaches to business-
domain modeling: Business Process Re-engineering
(BPR), Object Oriented Technology (OO), and
Intelligent Agents (IA). All these approaches are
model-based and offer different techniques for
describing problem domains.

The BPR methods involve process, organization,
events, business rules, entities, and relationships.

The Object-Oriented Technology (OO) methods
involve classes, objects, attributes, associations,
operations, events, inheritance, polymorphism, and
categories. These are well suited for software
engineering modeling and have potential for reuse.
However, they are not inherently business oriented,
and provide premature commitments to design and
implementation strategies.

Intelligent Agent Technology (IA) can be leveraged
to enhance enterprise modeling as well as offering
new techniques for developing intelligent
applications and smart technical infrastructure
services. An agent oriented perspective allows us to
develop rich and expressive models of the enterprise
and provide foundation for adaptive and reusable
business software.

The convergence of OO, IA, and BPR results in a
significant breakthrough in building models of the
enterprise that is capable of end-to-end integration of
business analysis and software systems. Therefore,
the AOBE is a full-lifecycle approach. Figure 2
shows that agent-based domain modeling produces
the Business Object Model (BOM) in terms of
ontologies, and uses ideas and techniques from
traditional business analysis (Process Modeling), OO,
BPR, and IA. The Business Object Model (BOM) is
agent-based and is used to support user task analysis,
requirements modeling, and the specification and
design of the Software Object Model (SOM).

Agent-Based
Domain
Modeling

Requirements
Modeling

User Tasks
Analysis

Software Object
Model (SOM)

Business
Object Model

Traditional Business
Analysis

Business
Domain Ontologies

Figure 2: The Business Domain Process Model. Source [Farhoodi and Fingar, 1997]

6.0 THE AGENT PATTERN DRIVEN

BUSINESS ENGINEERING (APDBE)
APROACH

A more efficient approach is developed in this paper
namely, the Agent Pattern Driven Business
Engineering (APDBE) approach. It has its

advantages over the Agent-Based Role Modeling
(ABRM) approach and Agent-Oriented Business
Engineering (AOBE) approaches. The APDBE
approach focuses mainly on building application-
based business patterns by combining agent patterns,
object patterns and business patterns to re-engineer
business processes.

Proceedings of International Conference on E-Commerce 2005

 26

The main objective of agent-based commerce design
patterns for enterprises is to enhance communications
and facilitating organizational needs along with
partners. This can be achieved by establishing new
designs so that integration can be used to re-engineer
business processes and business components to work
with agent technology and software components
within the existing infrastructure.

Agent-based commerce design patterns for business-
based systems are being used to help developers and
designers to automate business transactions with
agent designs and facilitating processes related to
front-end-components. They involve interaction with
the customer and delegation of tasks, plus integration
of the back-end-components, that don’t involve direct
interaction with the customer. They instead provide
mechanisms for mediating between the agents that
represent customers.

Despite using software agents as supporters of in the
e-commerce domain, there are still drawbacks in the
developing agents. Currently, agent software
developers construct their agents on one-to-one basis,
and according to business transactional requirements.

The APDBE architecture as shown in Figure 3 uses
new designs could be composed of several well-
documented design patterns. The APDBE approach
is relatively straightforward and easily develops new

design patterns for agent-based commerce in
execution environment such as e-business. The first
step of APDBE is the analysis stage which involves
identifying a business process in the business domain
that represents a business scenario plus the specifying
business components. Business actors then engage in
the business process. At the end of analysis stage, a
business pattern is established with user, services and
information domains. [Dodani, 2003] identified a
business pattern that involves four business
dimensions. These dimensions are (1) self service:
which facilitates users to access business process at
any time, (2) business actor: which uses the self
service and shares information with other business
partners, (3) information aggregation: which
facilitates data from multiple sources to be
aggregated and presented across multiple channels,
and (4) business components: which facilitate the
integration of data and processes across enterprise
and their partners.

At the design stage, agent and object design patterns
and business patterns are integrated to form new
design pattern along with a set of agent activities.
The agent developer should address the
corresponding business pattern along with the agent
design pattern to form application-based patterns.
These application patterns include a set of tasks that
transform to achieve the user requirements in a
business-based system.

A g e n t C o m p o n e n t s

S o f t w a r e
a n d
A g e n t
P a t t e r n s

P r o g r a m m i n g T o o l s

S o f tw a r e U M L D ia g r a m s
A p p lic a t io n
P a t t e r n s

B u s in e s s C o m p o n e n t s

B u s in e s s
P a t t e r n s

B u s in e s s - B a s e d
S y s te m s

S o f t w a r e C o m p o n e n t s

A g e n t
a n d
O b je c t
P a t t e r n s

O b je c t - O r ie n ta t io n

B u s in e s s D o m a in

Ontologies

Figure 3: The Agent Pattern Driven Business Engineering (APDBE) Development Environment

7.0 EXAMPLES OF BUSINESS-BASED

APPLICATION PATTERNS

In the following section, we present business-based
application patterns that we have developed based on
the Agent Pattern Driven Business Engineering
(APDBE) approach. These application patterns are
used to re-engineer business processes in B2C e-
Commerce and C2B e-commerce. We believe that
processes in these paradigms provide new steps
towards the automation of other business processes.
However, because agent commerce design patterns

for business-based systems are mature, further
improvements may be required to achieve scalable
and reliable applications.

7.1 THE DE-COUPLER DESIGN PATTERN

(DecDP)
The De-coupler design pattern was mentioned in the
work of [Faiz and Aman, 2003]. The main objective
of the DecDP is to decouple views of business-based
selling / buying process in an e-marketplace. The
DecDP applied for B2C e-commerce and uses the
Model-View-Controller (MVC) design pattern to

Proceedings of International Conference on E-Commerce 2005

 27

construct a new design when an agent acts as a
controller to separate views for sellers and buyers.

The structure of the DecDP design pattern is given in
Figure 4 using AUML notations.

Business service
(Model)+process()

+stop()
+run()

-buyer-name
Buyer's Agent

Buyer Seller

+process()
+stop()
+run()

Seller's Agent

+ProcessMessage()
+negotiate()

-name
Agent-Base

+Initialize()
+view()
+startup()
+shutdown()

Agent-Controller

Buyer Views Seller Views

Figure 4: Structure of the De-coupler Design Pattern

The De-coupler design pattern (DecDP) is to
facilitate the sellers and buyers processes, which are
represented by the buyer and the seller agent. The
design increases the cohesion and reduces the
coupling between business components.

7.2 THE DYNAMIC DESIGN PATTERN

(DynDP)

The Dynamic design pattern was mentioned in the
work of [Faiz and James, 2004]. The DynDP uses the
Master-Slave design pattern [Lange and Oshima,
1998]. The master-slave pattern defines a scheme
where a master agent can delegate a task to a slave
agent. The DynDP also developed a Facilitator agent
to manage the negotiation process between the buyer
agent and the sellers agents through the facilitator.
Figure 5 shows the structure of the DynDP.

+ cre a te ()
+ re m o ve ()
+ s ta rtu p ()
+ sh u td o w n ()

B u s in e s s A g e n t

C o n c re te S la v e

M a s te r 1

1

* *

se n d M e ssa g e R e su lt

c re a te A g le t
S e lle rIn fo

B u ye rIn fo

+ se tP rice ()
+ se tC o n s tra in ts ()
+ re q u e s tIte m ()

-n a m e
-d e s tin a tio n

B u y e rA g e n t

+ re co m m e n d ()
+ re g is te r()
+ in it ia lize ()
+ s ta rtu p ()

F a c ilita to r

+ g e tU R L ()
+ m a ke O ffe r()

-item d e s
-p rice
-U R L

S e lle rA g e n t

+ in it ia lizeT a sk ()
+ d o T a sk()

S la v e

Figure 5: Structure Diagram of the Dynamic Design Pattern (DynDP)

The main objective of the DynDP is to find a
mechanism for coordinating agents in the
selling/buying-based business process. In a virtual
marketplace, both sellers and buyers need to interact
permanently to achieve the best deal. This process is
a repetitive process. Several sellers need multiple
interactions to achieve the final process to accept or
reject the offer of a particular buyer. Direct
communication with the seller would result in big
network traffic. The use of the DynDP allows slave
agents to carry out this communication locally. This
will reduce the network traffic. Thus, the interaction
takes place locally at the seller’s location and the

master agent directs those perspective sellers engaged
in the negotiation process.

8.0 CONCLUSIONS AND FUTURE

DIRECTIONS

In this paper, we have presented a methodology for
deriving agent-based business engineering based on a
pattern scheme. The agent Pattern Driven Business
Engineering (APDBE) is an approach for identifying,
specifying, and designing agent patterns for business-
based systems. We believe that the ongoing success
of pattern-oriented engineering methodology is

Proceedings of International Conference on E-Commerce 2005

 28

leading to the development of better approaches to
agent system engineering and better designs in large
environments like e-business. The APDBE allows
the re-engineering of business-based processes and
greater benefits to come from existing agent and
object design patterns. The approach also provides a
methodology for the re-use of these designs and
integrates them with business and software
components. We have used this approach to develop
two agent-based commerce design patterns for
business-based systems namely, the De-coupler
design pattern (DecDP) and the Dynamic design
pattern (DynDP). These design patterns support
selling/buying-based business processes.

The development of new agent-based design patterns
is still in the infancy stage. Future directions may
require the development of new designs in B2C, and
C2B e-commerce. Processes among these paradigms
will need to be classified and re-engineered based on
the agent-pattern scheme. Furthermore, an
implementation platform will have to be supported to
capture agent-based design pattern solutions in
accordance with FIPA standards.

REFERENCES

Aridor Y., Lange D. Agent Design Patterns. IBM Tokyo

Research Laboratory. Proc of the 2nd International
Conference on Autonomous Agents. ACM Press.
(1998).

Bergenti F., Poggi A. Exploiting UML in the Design of
Multi-Agent Systems. Proc. of the ECOOP-Workshop
on Engineering Societies in the Agents’ world 2000.
(ESAW’00). Pp 96-103(2000).

Cabri G. Role-based infrastructure for Agents. 8th IEEE
Workshop on Future Trends of Distributed Computing
Systems, Bologna (I), (2001).

Cabri G., Leonardi L., Zambonelli F. Modeling Role-
Based Interactions for Agents. Workshop on Agent-
Oriented Methodologies at OOPSLA, USA. (2002).

Deugo D., Oppacher F., Kuester J., Vontte I. Patterns as
Means for Intelligent Software Engineering. Carleton
University, KIS5B6, Ottaw, Canda. (1999).

Deugo D., Weiss M. A case for Mobile Agent Patterns.
Technical Report. Business Communication Systems.
Canada.(1999).

Dodani M. Pattern Driven Solution Engineering. Journal
Of Object Technology JOT. Vol. 2, no.2, pp.27-33,
ETH Zurich. (2003).

Faiz A., Aman. J. An Agent-Based Design Pattern For
Decoupling Views Of e-Business Systems. 3rd
International Conference on Information Technology
in Asia. CITA’03. pp. 93-100. Sarawak, Malaysia.
(2003).

Faiz A., James W. Agent-Based Dynamic Design Pattern
For E-Business Systems. Proceedings of the
International Conference on Applied Computing.
IADIS’04. Lisbon, Portugal. (2004).

Farhoodi F., Fingar P. Developing Enterprise Systems with
Intelligent Agent Technology. [online][Accessed
22,11,2003]. Available from World Wide Web:
http://home1.gte.net/pfingar/docmag_part2.htm. 1997.

Flower M. Analysis Patterns: Reusable Object Models.
Addison Wesley. USA. (1997).

Gramma E., Helm R., Johnson R., Vlissides J. Design
Patterns Elements Of Reusable Object-Oriented
Software. Person Education Singapore, 10th edition.
(1995).

Griver Y., Arnheiter M., Gellis M. Visual Basic
Developer’s Guide To UML and Design Patterns.
SYBEX Publisher, USA. (2000).

Guttman R., Moukas A., Maes P. (1998). Agent-Mediated
Electronic Commerce: A survey. Knowledge
Engineering Review Journal, 42(3). Vol. 13, no.2.
(1998).

He M., Jennings N., Leung H. (2003). On Agent-Mediated
Electronic Commerce. IEEE Transactions on
knowledge and data engineering, vol. 15, no. 4. pp.
985-1003. (2003).

Kendall E. Role Modeling for Agent System Analysis,
Design, and Implementation. (ASA/MA-99), ACM.
(1999).

Kostiadis K., Hunter M., Hu H. The Use Of Design
Patterns For The Development Of Multi-Agent
Systems. Department Of Computer Science,
University Of ESSEX, UK. (1999).

Lange D., Oshima M. Programming and Deploying Java
Mobile Agents With Aglets. Addison Wesley, USA.
(1998).

Lind J. Patterns in Agent-Oriented Software Engineering.
GmbH. D-82008, agentLab, Germany. (2002).

Miera N., Silva I., Silva . A set Of A gent Patterns For
More Expressive Approach. INESC-ID&IST. RUA
Alves, vol., 12, no., 9, pp. 44-50. (2000).

Mosse F. Modeling Roles. A Practical Series Of Analysis
Patterns. Journal Of Object Technology JOT, vol., 1,
no., 4, pp/. 27-37. (2002).

Odell J., Van Dyke Paruna H., Fleisher M., Brueckner S.
Modeling Agents and their Environment: The Physical
Environment. Journal Of Object Technology JOT,
vol., 2, no., 2, pp. 43-51. (2003).

Papazoglou M. Agent-Oriented Technology in Support Of
E-Business, Communications of the ACM, vol.,
44,no., 44, pp.71-77. (2001).

Schelfthout K., Coninx T., Hellboogh A. Agent
Implementation Patterns. Kuleuven, 200A, Belgium.
(2002).

Silva A., Delgado J. The Agent Patterns. A perspective
from the Mobile Agent System Point Of View.
EuroPLoP’98. (1998).

Tolksdorf R. Coordination Patterns of Mobile Information
Agents. Proceedings of Cooperative Information
Agents II, second International Workshop, CIA’98,
Springer, pp.246-261. (1998).

Tveit A. A Survey of Agent-Oriented Software
Engineering. NTNU, Norway, (2001).

Weiss M. Pattern-Driven Design of Agent Systems:
Approach and Case Study. Proceedings of the
Conference Pattern Languages of Programming
(PloP’02). (2002).

Weiss M. Patterns for e-commerce Agent Architectures:
Using Agents as Delegates. Proc. Of the PLoP’01
Conference. (2001).

Wooldridge M., Jennings N., Kinny D. The Gaia
Methodology for Agent-Oriented Analysis and design.
Autonomous Agents and Multi-Agent Systems, 3,
285-312. Kluwer Academic Publishers. Netherlands.
(2000).

Yim H., Cho K., Jongwoo K., Park S. Architecture-Centric
Object-Oriented Design Method for Multi-Agent
Systems. Proc. Of the fourth International Conference
on MultiAgent Systems (ICMAS-2000). (2000)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

