
1

DESIGNING STORY CARD IN EXTREME PROGRAMMING USING MACHINE

LEARNING TECHNIQUE

Azman Yasin
1
, Shamsan Gaber

2
, Mazni Omar

3
, Haslina Mohd

4
, Fauziah Baharom

5
, Marina Md Din

6

1,2,3,4,5Universiti Utara Malaysia, {yazman|mazni|haslina|fauziah}@uum.edu.my;

 6Universiti Tenaga Nasional, marina@uniten.edu.my
2shamsagel@gmail.com

ABSTRACT:

Story card is one of the software development

artifacts that can be used to gather requirements in

extreme programming (XP). It can assists developers

to translate and develop the system based on

activities and rules stated in the story card. However,

conventional XP story card framework or template is

not well defined and only supports requirements in

two or three sentences. It also does not states any

information rather than system functionality. This

may lead to conflicts, missing, and ambiguous

requirements. In order to overcome this problem,

Machine Learning is one of the techniques that can be

used to extract the content from the list of

requirements and produce the story cards based on

the priority and rules of requirements. Thus, this

study aims to to propose a new technique of

designing story cards based on user requirements.

The finding from the study is a conceptual model of

designing story cards using machine learning

technique. Future research will investigate how the

technique adapt with the iterative changes of the

requirements.

Keywords: agile, story card, parsing, text

classification, text simplification, Machine Learning,

Extreme Programming.

I. INTRODUCTION

Agile development methodology is one of the

software development methodology approaches.

This methodology implies on iterative and

incremental development. It is a lightweight

methodology utilizing specific techniques to deliver a

product on time, under budget and meet customer

satisfaction (Kavitha & Sunitha, 2011). Agile

development methodology focus on delivering the

system faster and at the same time able to cope with

the customer changing needs and expectation (Tuck,

France and Rumpe, 2003). The principles of agile

methodologies are individual and interactions over

process and tools, working software over

comprehensive documentation, customer

collaboration over contract negotiation and

responding to change over following a plan (Kavitha

& Sunitha, 2011). Agile development is not just as

simple by gathering all specification in the beginning

phase of development, the developer need to justify

only possible and suitable requirement for

implementation in the system from time to time until

in the end customer will satisfied with the system.

There are several popular examples of agile

methodologies one of them is extreme programming

(XP) (Beck, 2000).

II. EXTREME PROGRAMMING REVIEW

In XP, the requirement gathering technique is based

on user stories where the customer will narrate the

requirement for system development, thus

incorporate the customer need directly in the system

functionality. Since the requirement specification is

in the iterative process, it is easier for the developer

to react with the changes and adding new requirement

to enhance the quality of the system according to

what the customer want (Leffingwell, 2009).

The user story is seldom fully gaining all information

to develop the functionality. This denotes that a

framework is necessary to elaborate further on the

requirement specifications changes by the customer.

This is called elaboration phase or a stage at which

the requirement/Agile Story gets further detail. At

times, people may misinterpret that user stories are

similar to Use Case. Use Case need not be

comprehensive, but should have specification of

conditions defining interaction with the product. In an

mailto:marina@uniten.edu.my

2

Agile environment a user Story is a written tool used

in the requirements gathering process to describe the

specification of a software feature and portrays a

system’s behavior in understandable way to both

developers and users. Typically, a user story is brief

as it consists of only one or two sentences

(Naumovich, 2007). The user stories focus on user-

centered rather than a functional breakdown structure.

They provide a lightweight and effective approach to

managing requirements for a system (Kavitha &

Sunitha, 2011).

A user story is an informal statement of the

requirement instead of a large requirements

document. The story communicates to the design

team WHAT is needed and does not specifically

address anything about HOW to implement what is

needed because the HOW part is strictly in the

domain of the IT development team. The real

intention of a user story is to provide the team with

the ability respond quickly to user wants and needs

(Leffingwell, 2009) It creates less overhead in the

face of rapidly changing real world requirements or

discovery of new requirements based upon the work

in progress. It is not specifically a description of a

feature in a program, but the underlying real world

problem that the software component is designed to

solve for the user business.

In addition, it also contains relevant inspirations to be

explored with greater depth for later development.

During the development process, several

conversations between the customers and the

development team will be conducted. These

conversations are used to picture additional

information for requirement documentation. This

documentation will be attached to the card

corresponding to suitable acceptance test criteria.

Focusing on verbal communication is important to

performed automated tests to communicate

requirements. For acknowledgment, the customer

may schedule it in any iteration they wish.

The development plan for XP begins when customer

writes and elaborates user stories on story cards.

Story cards are one of the important aspects in XP. It

depicts the functionality of proposed system or

software will be helpful to client. Three aspects

included in user stories are (Cohn, 2000, 2003):

1) A written description of the story used

for planning and as a reminder

2) Conversation about the story that serves

to flush out the details of the story

3) Tests that convey and document details

and that can be used to determine when

a story is complete

These story cards are assessed by the developer to

build a time box of iteration for development process

based on the customer priory’s requirement.

Developers translate and develop the system

according the story cards. The activities involved in

this phase programming concurrently with test driven

development. In the end of the phase, the customer

will assess the functionality through acceptance test.

Story cards are written by the customer in XP to lucid

their business needs since they know their business

need very well compared to developer. However,

normally customers only have a general picture of the

requirement. Thus, conventional XP story card

framework or template is not well defined and only

supports requirements in two to three sentences. It

does not state any information rather than system

functionality. This will lead to conflicts, missing, and

ambiguous requirements. According to Cohn story

cards must be testable, definable, and valuable to the

customer, small and independent to overcome hardly

make a decision or predict wrong priority of the

requirements or story cards (Cohn, 2000, 2003).

III. PROBLEM BACKGROUND

Generally, software developers intend to extract story

cards from user requirements that have been collected

from the user. The requirements will be extract and

categorize manually. Therefore, it is a need to

propose a new technique to customize the

requirements so that it able to produce story cards

from user requirements instantly.

Therefore, the main objective of this research is to

propose a new technique of designing story cards

based on user requirements. The proposed technique

plays an important role in producing and categorizing

story cards from the user requirements.

IV. RESEARCH CONCEPTUAL MODEL

The proposed conceptual model composed of

Documents on User Requirements, Key-Words

Indexing Term generating from the User

Requirements Documentation. Then a Text Parser is

used to make a comparison between a key-word and

the requirement, then a Key-Point of the Story Card

will be generated using Machine Learning Technique.

3

Validation Parser is used to validate the scenario

constructed by student in the Story Card based on the

related Key-Point. The scenario will be validated by

the Validation Parser, if the Scenario is not valid then

the student has to re-construct the scenario until it is

valid. Figure 1 shows the research conceptual model

of this study.

Figure 1. Research Conceptual Model

V. TEXT SIMPLICATION ARCHITECTURE

This section will explain in details about the creation

of “Text Simplification” and the validation “Text

Classification” of the story card. The Text

simplification can be defined as any process that

reduce the syntactic complexity of a text while

attempting to preserve its meaning and information

content (refer to Figure 2). The aim of text

simplification in this research is to extract simple

sentences from a text that can be used as a story card.

The tasks of the Text simplification can be divided

into three stages analysis, transformation and

regeneration. The architecture uses one module from

each of these stages. The text analyzed the analysis

module and then passed to the transformation module

(Siddharthan, 2004). The transformation module

applies rules for syntactic simplification and calls the

regeneration module to address issues of text

cohesion. When there is no further simplification, the

transformation stage will generate the outputs of the

simplified text.

4

Figure 2.Text Simplification

VI. ANALYSIS AND RESULT

There are several modules should be achieved to

complete the analysis stages which discusses in the

following section.

A. Resolving Third-Person Pronouns

This model used Anaphora resolution algorithms.

The algorithm preprocesses the text by annotating

each noun phrase within formation about agreement

values and grammatical functions. It then considers

each noun phrase from left to right, forming a new

co-reference class for non-pronominal noun phrases

and adding pronouns to existing co-reference classes.

At sentence boundaries, the algorithm halves the

salience of each co-reference class and replaces each

pronoun by its noun.

B. Deciding Clause Boundaries

The aim of this model is to train a machine learning

system to identify the beginnings and ends of

functional clauses. This is similar to a chunking or

sentence boundary detection problem, but in this case

clauses may also be nested. A text must be segmented

into clauses before the detailed functional annotation

that describes the theory can be applied. Usually, a

clause consists of a verb phrase and its non-clause

arguments.

C. Deciding Relative Clause Attachment

Relative clause attachment is a problem which has

traditionally been approached in a parsing

framework. However, determining what a relative

pronoun refers to is not a problem that can always be

solved in a syntactic framework. In particular, parser

like Stanford typed parser (Marie-Catherine de

Marneffe and Manning, 2008) .can easily detect the

relation between the relative clauses. The following

example can show how the parser identifies the

relative clause:

Sentence: Ali, who was the CEO of the company,

played golf.

By using the Stanford typed parser

nsubj(CEO-6, Ali-1)

nsubj(played-11, Ali-1)

cop(CEO-6, was-4)

det(CEO-6, the-5)

rcmod(Ali-1, CEO-6)

det(company-9, a-8)

prep_of(CEO-6, company-9)

root(ROOT-0, played-11)

dobj(played-11, golf-12)

The tags which attached to the words represented the

grammatical structure of the sentences. For example,

nsubj is represented the Nominal Subject which is

consider as the relative clause of the sub sentences

from the main text (Marie-Catherine de Marneffe and

Manning, 2008).

D. Detecting the Preposition Words

Stanford provides another parser which is able to

detect the preposition words and its location in the

text. This parser called basic parser. Following

example shows how this parser works

Sentences: Ali, who was the CEO of the company,

played golf.

nsubj(played-11, Ali-1)

nsubj(CEO-6, who-3)

cop(CEO-6, was-4)

det(CEO-6, the-5)

rcmod(Ali-1, CEO-6)

prep(CEO-6, of-7)

det(company-9, a-8)

pobj(of-7, company-9)

root(ROOT-0, played-11)

dobj(played-11, golf-12)

The tag prep is representing the preposition words in

the text. From the basic parser we will only take the

preposition tag continents (Marie-Catherine de

Marneffe & Manning, 2008).

E. Constructing a story card

Simple sentences from the text can easily be

reconstructed after retrieving the relative clauses

from the parser.

5

If the first relative clause nsubj(CEO-6, Ali-1) is

taken and traversing the words which are in the tag “

CEO-6, Ali-1” with the output from the typed parser.

The result will be as followed:

cop(CEO-6, was-4)

det(CEO-6, the-5)

rcmod(Ali-1, CEO-6)

det(company-9, a-8)

prep_of(CEO-6, company-9)

From the basic parser we take the prep tag only

prep(CEO-6, of-7). The number which attached to the

words is representing the location of the word in the

text. Arranging the words between the brackets based

on the numbers will generate the result as following:

Ali-1 was-4 the-5 CEO-6 of-7 a-8 company-9

Ali was the CEO of a company

Taking the other relative clause it will produce

Ali-1played-11golf-12

Ali played golf

The results show that the proposed model and the

Machine Learning technique adapted in the model

can be used to generate the story card with priority

and rules of requirements.

VII. CONCLUSION

This paper discusses about agile methodology and

Extreme Programming and their use in software

developments. It also illustrates some basic

knowledge about Machine Learning and its usage in

this research especially in text classification. The

outcome of the research is a conceptual model of

designing story cards using machine learning

technique and a proposed architecture for text

simplification in English. This paper also discusses

about third person pronoun, deciding clause

boundaries, detecting relative clauses from Stanford

parser and constructing the sentences based on the

Stanford parser

REFERENCES
Siddharthan, A. (2004), “Syntactic simplifaction and text

 cohesion”. University Of Cambridge Computer Laboratory , [E-

 Book] Available: netLibrary e-book.

Beck, K. (2000). “Extreme programming Explained Embraced

 Change”. Addison Wesley

Cohn, M. (2000). “User Stories Applied”. Boston, Pearson.

Cohn, M. (2003). “User Stories Applied for Agile Software

 Development”. Addison Wesley.

Kavitha, C. R. and Sunitha, M. T.(2011). “Requirement Gathering

 for small Projects using Agile Methods”. IJCA Special Issue on

 Computational Science - New Dimensions & Perspectives (3),

 pp. 122–128.

Leffingwell, D. (2009). “Scaling Software Agility: Best Practices

 for Large Enterprises”, Agile Chicago, IL.

Marie-Catherine de Marneffe and Manning C. D. (2008).

 “Standford typed Dependencies manual”. Stanford University,

 September 2008. [E-Book] Available: netLibrary e-book.

Naumovich N .(2007). “User Stories for Requirements Elicitation”.

 2007. Plano, TX.

Tuck, D. France, R. and Rumpe, B. (2003). “Assumptions

 Underlying Agile Software Developmen”. Journal of Database

 Management.

http://en.wikipedia.org/wiki/Bracket

