International Journal of Pure and Applied Mathematics

Volume 99 No. 1 2015, 77-96

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu

doi: http://dx.doi.org/10.12732/ijpam.v99i1.7

(γ, eta) - P_S -IRRESOLUTE AND (γ, eta) - P_S -CONTINUOUS FUNCTIONS

Baravan A. Asaad¹ §, Nazihah Ahmad², Zurni Omar³

1,2,3School of Quantitative Sciences
College of Arts and Sciences
Universiti Utara Malaysia
06010, Sintok, Kedah, MALAYSIA

Abstract: This paper introduces some new types of functions called (γ, β) - P_S -irresolute and (γ, β) - P_S -continuous by using γ - P_S -open sets in topological spaces (X, τ) . From γ - P_S -open and γ - P_S -closed sets, some other types of γ - P_S -functions can also be defined. Moreover, some basic properties and preservation theorems of these functions are obtained. In addition, we investigate basic characterizations and properties of these γ - P_S - functions. Finally, some compositions of these γ - P_S - functions are given.

AMS Subject Classification: 54A05, 54C08, 54C10 Key Words: γ - P_S -open set, γ - P_S -closed set, (γ, β) - P_S -irresolute function, (γ, β) - P_S -continuous function

1. Introduction

Kasahara [7] defined the concept of α -closed graphs of an operation on τ . Later, Ogata [10] renamed the operation α as γ operation on τ . He defined γ -open sets and introduced the notion of τ_{γ} which is the class of all γ -open sets in a topological space (X, τ) . Further study by Krishnan and Balachandran ([8], [9]) defined two types of sets called γ -preopen and γ -semiopen sets. Recently, Asaad, Ahmad and Omar [1] introduced the notion of γ -regular-open sets. They

Received: October 1, 2014

© 2015 Academic Publications, Ltd. url: www.acadpubl.eu

[§]Correspondence author

also introduced the notion of γ - P_S -open sets [2] which lies strictly between the classes of γ -regular-open set and γ -preopen set. By using this set, they defined a new type of function called γ - P_S -continuous and studies some of its basic properties [3].

In the present paper, we define some new types of γ - P_S - functions called (γ, β) - P_S -irresolute and (γ, β) - P_S -continuous by using γ - P_S -open sets in topological spaces (X, τ) . In addition, we give some basic characterizations and properties of these γ - P_S - functions by using γ - P_S -open and γ - P_S -closed sets are introduced. Finally, some compositions of these γ - P_S - functions are given.

2. Preliminaries

Throughout this paper, spaces (X,τ) and (Y,σ) (or simply X and Y) will always means topological spaces on which no separation axioms are assumed unless explicitly stated. An operation γ on the topology τ on X is a mapping $\gamma\colon\tau\to P(X)$ such that $U\subseteq\gamma(U)$ for each $U\in\tau$, where P(X) is the power set of X and $\gamma(U)$ denotes the value of γ at U [10]. A nonempty subset A of a space (X,τ) with an operation γ on τ is said to be γ -open if for each $x\in A$, there exists an open set U such that $x\subseteq U$ and $\gamma(U)\subseteq A$ [10]. The complement of a γ -open set is called a γ -closed. The τ_{γ} -closure of a subset A of X with an operation γ on τ is defined as the intersection of all γ -closed sets of X containing A and it is denoted by τ_{γ} -Cl(A) [10], and the τ_{γ} -interior of a subset A of X with an operation γ on τ is defined as the union of all γ -open sets of X contained in A and it is denoted by τ_{γ} -Int(A) [9]. A topological space (X,τ) is said to be γ -regular if for each $x\in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $\gamma(U)\subseteq V$ [10]. Throughout of this paper, γ and β be operations on τ and σ respectively.

Now we begin to recall some known notions which are useful in the sequel.

Definition 2.1. A subset A of a topological space (X, τ) is said to be:

- 1. γ -regular-open if $A = \tau_{\gamma}$ - $Int(\tau_{\gamma}$ -Cl(A)) and γ -regular-closed if $A = \tau_{\gamma}$ - $Cl(\tau_{\gamma}$ -Int(A)) [1].
- 2. γ -preopen if $A \subseteq \tau_{\gamma}$ - $Int(\tau_{\gamma}$ -Cl(A)) and γ -preclosed if τ_{γ} - $Cl(\tau_{\gamma}$ - $Int(A)) \subseteq A$ [8].
- 3. γ -semiopen if $A \subseteq \tau_{\gamma}$ - $Cl(\tau_{\gamma}$ -Int(A)) and γ -semiclosed if τ_{γ} - $Int(\tau_{\gamma}$ - $Cl(A)) \subseteq A$ [9].

- 4. γ -dense if τ_{γ} -Cl(A) = X [6].
- **Definition 2.2.** [2] A γ -preopen subset A of a topological space (X, τ) is called γ - P_S -open if for each $x \in A$, there exists a γ -semiclosed set F such that $x \in F \subseteq A$. The complement of a γ - P_S -open set of X is called γ - P_S -closed.

The class of all γ - P_S -open and γ -preopen subsets of a topological space (X, τ) are denoted by τ_{γ} - $P_SO(X)$ and τ_{γ} -PO(X) respectively.

Lemma 2.3. [2] A subset A of X is γ -P_S-open if and only if A is γ -preopen set and it is a union of γ -semiclosed sets.

Definition 2.4. A subset N of a topological space (X, τ) is called a γ - P_S -neighbourhood of a point $x \in X$, if there exists a γ - P_S -open set U in X containing x such that $U \subseteq N$.

Definition 2.5. [2] For any subset A of a space X. Then:

- 1. the γ - P_S -boundary of A is defined as τ_{γ} - $P_SCl(A) \setminus \tau_{\gamma}$ - $P_SInt(A)$ and it is denoted by τ_{γ} - $P_SBd(A)$.
- 2. the γ - P_S -derived set of A is defined as $\{x : \text{for every } \gamma$ - P_S -open set U containing $x, U \cap A \setminus \{x\} \neq \emptyset\}$ and it is denoted by τ_{γ} - $P_SD(A)$.

Lemma 2.6. [2] For any subset A of a space X. Then the following statements are true:

- 1. τ_{γ} - $P_SCl(A)$ is the smallest γ - P_S -closed set of X containing A.
- 2. τ_{γ} - $P_SInt(A)$ is the largest γ - P_S -open set of X contained in A.
- 3. A is γ - P_S -closed if and only if τ_{γ} - $P_SCl(A) = A$, and A is γ - P_S -open if and only if τ_{γ} - $P_SInt(A) = A$.
- 4. τ_{γ} - $P_SCl(A) = X \setminus \tau_{\gamma}$ - $P_SInt(X \setminus A)$ and τ_{γ} - $P_SInt(A) = X \setminus \tau_{\gamma}$ - $P_SCl(X \setminus A)$.
- 5. A is γ - P_S -closed if and only if τ_{γ} - $P_SBd(A) \subseteq A$.
- 6. τ_{γ} - $P_SD(A) \subseteq \tau_{\gamma}$ - $P_SCl(A)$.
- 7. A is γ - P_S -closed if and only if τ_{γ} - $P_SD(A) \subseteq A$.

Definition 2.7. [4] A subset A of a space (X, τ) is said to be γ - P_S -generalized closed $(\gamma$ - P_S -g-closed) if τ_{γ} - P_S Cl $(A) \subseteq G$ whenever $A \subseteq G$ and G is a γ - P_S -open set in X.

Definition 2.8. A topological space (X, τ) is said to be:

- 1. γ -locally indiscrete if every γ -open subset of X is γ -closed, or every γ -closed subset of X is γ -open [1].
- 2. γ -hyperconnected if every nonempty γ -open subset of X is γ -dense [1].
- 3. γ - P_S - $T_{\frac{1}{2}}$ if every γ - P_S -g-closed set of X is γ - P_S -closed [4].
- 4. γ -semi T_1 if for each pair of distinct points x, y in X, there exist two γ -semiopen sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$ [9].

Theorem 2.9. The following statements are true for any space (X, τ) :

- 1. If X is γ -locally indiscrete, then τ_{γ} - $P_SO(X) = \tau_{\gamma}$ [2].
- 2. If X is γ -semi T_1 , then τ_{γ} - $P_SO(X) = \tau_{\gamma}$ -PO(X) [2].
- 3. If X is γ -hyperconnected if and only if τ_{γ} - $P_SO(X) = \{\phi, X\}$ [2].
- 4. X is γ - P_S - $T_{\frac{1}{2}}$ if and only if for each element $x \in X$, the set $\{x\}$ is γ - P_S -closed or γ - P_S -open [4].
- 5. X is γ -regular, then $\tau_{\gamma} = \tau$ [10].

Definition 2.10. Let (X,τ) and (Y,σ) be two topological spaces. A function $f:(X,\tau)\to (Y,\sigma)$ is called:

- 1. γ - P_S -continuous if for each P_S -open set V of Y containing f(x), there exists a γ - P_S -open set U of X containing x such that $f(U) \subseteq V$ [3].
- 2. (γ, β) -precontinuous if for each β -preopen set V of Y containing f(x), there exists a γ -preopen set U of X containing x such that $f(U) \subseteq V$ [8].
- 3. γ -continuous if for each open set V of Y containing f(x), there exists a γ -open set U of X containing x such that $f(U) \subseteq V$ [5].
- 4. β - P_S -open (resp., β -open and β - P_S -closed) if for every open (resp., open and closed) set V of X, f(V) is β - P_S -open (resp., β -open and β - P_S -closed) set in Y [3].

3. (γ, β) - P_S -Irresolute and (γ, β) - P_S -Continuous Functions

In this section, we introduce three types of γ - P_S - functions called (γ, β) - P_S irresolute and (γ, β) - P_S -continuous by using γ - P_S -open set. Also we give relations between these functions and γ - P_S -continuous function.

Definition 3.1. Let (X,τ) and (Y,σ) be two topological spaces. A function $f\colon (X,\tau)\to (Y,\sigma)$ is called (γ,β) - P_S -irresolute (resp., (γ,β) - P_S -continuous) at a point $x\in X$ if for each β - P_S -open (resp., β -open) set V of Y containing f(x), there exists a γ - P_S -open set U of X containing x such that $f(U)\subseteq V$. If f is (γ,β) - P_S -irresolute (resp., (γ,β) - P_S -continuous) at every point x in X, then f is said to be (γ,β) - P_S -irresolute (resp., (γ,β) - P_S -continuous).

Remark 3.2. It is clear from the Definition 2.10 (1) and Definition 3.1 that every γ - P_S -continuous function is (γ, β) - P_S -continuous since every β -open set is open, where β is an operation on σ . However, the converse is not true in general as it can be seen from the following example.

Example 3.3. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $Y = \{1, 2, 3\}$ with the topology $\sigma = \{\phi, Y, \{2\}, \{3\}, \{2, 3\}\}$. Define operations $\gamma \colon \tau \to P(X)$ and $\beta \colon \sigma \to P(Y)$ as follows: for every $A \in \tau$ and $B \in \sigma$

$$\gamma(A) = \begin{cases} A & \text{if } a \in A \\ Cl(A) & \text{if } a \notin A \end{cases}$$
$$\beta(B) = \begin{cases} B & \text{if } B = \{2\} \\ Cl(B) & \text{if } B \neq \{2\} \end{cases}$$

Then $\sigma_{\beta} = \{\phi, \{2\}, Y\}.$

Let $f:(X,\tau)\to (Y,\sigma)$ be a function defined as follows:

$$f(x) = \begin{cases} 2 & \text{if } x = a \\ 3 & \text{if } x = b \\ 1 & \text{if } x = c \end{cases}$$

Clearly, $\tau = \{\phi, X, \{a\}, \{a,b\}, \{b,c\}\}, \ \tau_{\gamma}\text{-}P_SO(X) = \{\phi, \{a\}, \{a,c\}, \{b,c\}, X\}$ and $\sigma_{\beta} = \{\phi, \{2\}, Y\}$. Let $f: (X, \tau) \to (X, \sigma)$ be a function defined as follows:

$$f(x) = \begin{cases} 2 & \text{if } x = a \\ 3 & \text{if } x = b \\ 1 & \text{if } x = c \end{cases}$$

Then f is (γ, β) - P_S -continuous, but it is not γ - P_S -continuous since $\{3\}$ is an open set in (Y, σ) containing f(b) = 3, but there exist no γ - P_S -open set U in (X, τ) containing b such that $f(U) \subseteq \{3\}$.

Remark 3.4. The relation between (γ, β) - P_S -irresolute function and (γ, β) - P_S -continuous function are independent. Similarly the relation between (γ, β) - P_S -irresolute function and γ - P_S -continuous function are independent, as shown from the following examples.

Example 3.5. Let (X, τ) be a topological space as in Example 3.3. Suppose that $Y = \{1, 2, 3\}$ and $\sigma = \{\phi, Y, \{2\}, \{2, 3\}\}$ be a topology on Y. Define an operation β on σ such that $\beta \colon \sigma \to P(Y)$ by $\beta(B) = B$ for all $B \in \sigma$. Then $\sigma_{\beta} - P_S O(Y) = \{\phi, Y\}$.

Let $f:(X,\tau)\to (Y,\sigma)$ be a function defined as follows:

$$f(x) = \begin{cases} 3 & \text{if } x = a \\ 2 & \text{if } x = b \\ 1 & \text{if } x = c \end{cases}$$

Then the function f is (γ, β) - P_S -irresolute, but f is not (γ, β) - P_S -continuous since $\{2\}$ is a β -open set in (Y, σ) containing f(b) = 2, but there exist no γ - P_S -open set U in (X, τ) containing b such that $f(U) \subseteq \{2\}$. By Remark 3.2, f is not γ - P_S -continuous.

Example 3.6. Consider the space $X = \{a, b, c\}$ with the topologies $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}\}$ and $\sigma = \{\phi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}\}$. Define the operations γ and β on τ and σ respectively as follows: For every $A \in \tau$, $\gamma(A) = A$ and for every $B \in \sigma$

$$\beta(B) = \begin{cases} B & \text{if } c \in B \\ Cl(B) & \text{if } c \notin B \end{cases}$$

Obviously, $\tau_{\gamma} = \tau = \tau_{\gamma} - P_S O(X)$, $\sigma_{\beta} = \{\phi, X, \{c\}, \{a, b\}, \{b, c\}\}\}$ and $\sigma_{\beta} - P_S O(X) = \{\phi, X, \{c\}, \{a, b\}, \{a, c\}\}.$

Define a function $f:(X,\tau)\to (X,\sigma)$ as follows:

$$f(x) = \begin{cases} b & \text{if } x \in \{a, c\} \\ a & \text{if } x = b \end{cases}$$

So, the function f is both (γ, β) - P_S -continuous and γ - P_S -continuous, but f is not (γ, β) - P_S -irresolute since $\{a, c\}$ is a β - P_S -open set in (X, σ) containing f(b) = a, there exist no γ - P_S -open set U in (X, τ) containing c such that $f(U) \subseteq \{a, c\}$.

4. Characterizations

We start with the most important characterizations of (γ, β) - P_S -irresolute functions.

Theorem 4.1. For any function $f:(X,\tau)\to (Y,\sigma)$. The following properties of f are equivalent:

- 1. f is (γ, β) - P_S -irresolute.
- 2. The inverse image of every β - P_S -open set of Y is γ - P_S -open set in X.
- 3. The inverse image of every β - P_S -closed set of Y is γ - P_S -closed set in X.
- 4. $f(\tau_{\gamma}-P_SCl(A)) \subseteq \sigma_{\beta}-P_SCl(f(A))$, for every subset A of X.
- 5. τ_{γ} - $P_SCl(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SCl(B))$, for every subset B of Y.
- 6. $f^{-1}(\sigma_{\beta}-P_SInt(B)) \subseteq \tau_{\gamma}-P_SInt(f^{-1}(B))$, for every subset B of Y.
- 7. σ_{β} - $P_SInt(f(A)) \subseteq f(\tau_{\gamma}$ - $P_SInt(A))$, for every subset A of X.
- Proof. (1) \Rightarrow (2) Let V be any β - P_S -open set in Y. We have to show that $f^{-1}(V)$ is γ - P_S -open set in X. Let $x \in f^{-1}(V)$. Then $f(x) \in V$. By (1), there exists a γ - P_S -open set U of X containing x such that $f(U) \subseteq V$. Which implies that $x \in U \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is γ - P_S -open set in X.
- $(2)\Rightarrow (3)$ Let F be any β - P_S -closed set of Y. Then $Y\backslash F$ is a β - P_S -open set of Y. By (2), $f^{-1}(Y\backslash F)=X\backslash f^{-1}(F)$ is γ - P_S -open set in X and hence $f^{-1}(F)$ is γ - P_S -closed set in X.
- (3) \Rightarrow (4) Let A be any subset of X. Then $f(A) \subseteq \sigma_{\beta}\text{-}P_SCl(f(A))$ and hence $A \subseteq f^{-1}(\sigma_{\beta}\text{-}P_SCl(f(A)))$. Since $\sigma_{\beta}\text{-}P_SCl(f(A))$ is $\beta\text{-}P_S\text{-}closed$ set in Y. Then by (3), we have $f^{-1}(\sigma_{\beta}\text{-}P_SCl(f(A)))$ is $\gamma\text{-}P_S\text{-}closed$ set in X. Therefore, $\tau_{\gamma}\text{-}P_SCl(A) \subseteq f^{-1}(\sigma_{\beta}\text{-}P_SCl(f(A)))$. Hence $f(\tau_{\gamma}\text{-}P_SCl(A)) \subseteq \sigma_{\beta}\text{-}P_SCl(f(A))$.
- $(4) \Rightarrow (5)$ Let B be any subset of Y. Then $f^{-1}(B)$ is a subset of X. By (4), we have $f(\tau_{\gamma}-P_SCl(f^{-1}(B))) \subseteq \sigma_{\beta}-P_SCl(f(f^{-1}(B))) = \sigma_{\beta}-P_SCl(B)$. Hence $\tau_{\gamma}-P_SCl(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}-P_SCl(B))$.
- (5) \Leftrightarrow (6) Let B be any subset of Y. Then apply (5) to $Y \setminus B$ we obtain τ_{γ} - $P_SCl(f^{-1}(Y \setminus B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SCl(Y \setminus B)) \Leftrightarrow \tau_{\gamma}$ - $P_SCl(X \setminus f^{-1}(B)) \subseteq f^{-1}(Y \setminus \sigma_{\beta}$ - $P_SInt(B)) \Leftrightarrow X \setminus \tau_{\gamma}$ - $P_SInt(f^{-1}(B)) \subseteq X \setminus f^{-1}(\sigma_{\beta}$ - $P_SInt(B)) \Leftrightarrow f^{-1}(\sigma_{\beta}$ - $P_SInt(B)) \subseteq \tau_{\gamma}$ - $P_SInt(f^{-1}(B))$. Therefore, $f^{-1}(\sigma_{\beta}$ - $P_SInt(B)) \subseteq \tau_{\gamma}$ - $P_SInt(f^{-1}(B))$.

- $(6) \Rightarrow (7)$ Let A be any subset of X. Then f(A) is a subset of Y. By (6), we have $f^{-1}(\sigma_{\beta}-P_SInt(f(A))) \subseteq \tau_{\gamma}-P_SInt(f^{-1}(f(A))) = \tau_{\gamma}-P_SInt(A)$. Therefore, $\sigma_{\beta}-P_SInt(f(A)) \subseteq f(\tau_{\gamma}-P_SInt(A))$.
- $(7) \Rightarrow (1)$ Let $x \in X$ and let V be any β - P_S -open set of Y containing f(x). Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is a subset of X. By (7), we have σ_{β} - $P_SInt(f(f^{-1}(V))) \subseteq f(\tau_{\gamma}$ - $P_SInt(f^{-1}(V)))$. Then σ_{β} - $P_SInt(V) \subseteq f(\tau_{\gamma}$ - $P_SInt(f^{-1}(V)))$. Since V is a β - P_S -open set. Then $V \subseteq f(\tau_{\gamma}$ - $P_SInt(f^{-1}(V)))$ implies that $f^{-1}(V) \subseteq \tau_{\gamma}$ - $P_SInt(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is γ - P_S -open set in X which contains x and clearly $f(f^{-1}(V)) \subseteq V$. Hence f is (γ, β) - P_S -irresolute function.

Theorem 4.2. Let $f:(X,\tau)\to (Y,\sigma)$ be any function. Then the following statements are equivalent:

- 1. f is (γ, β) - P_S -continuous.
- 2. $f^{-1}(V)$ is γ - P_S -open set in X, for every β -open set V in Y.
- 3. $f^{-1}(F)$ is γ - P_S -closed set in X, for every β -closed set F in Y.
- 4. $f(\tau_{\gamma}-P_SCl(A)) \subseteq \sigma_{\beta}-Cl(f(A))$, for every subset A of X.
- 5. σ_{β} -Int $(f(A)) \subseteq f(\tau_{\gamma}$ -P_SInt(A)), for every subset A of X.
- 6. $f^{-1}(\sigma_{\beta}\text{-}Int(B)) \subseteq \tau_{\gamma}\text{-}P_{S}Int(f^{-1}(B))$, for every subset B of Y.
- 7. τ_{γ} - $P_SCl(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ -Cl(B)), for every subset B of Y.

Proof. Similar to Theorem 4.1 and hence it is ommitted. \Box

Theorem 4.3. The following properties are equivalent for any function $f:(X,\tau)\to (Y,\sigma)$:

- 1. f is (γ, β) - P_S -irresolute.
- 2. For every $x \in X$ and for every β - P_S -neighbourhood N of Y such that $f(x) \in N$, there exists a γ - P_S -neighbourhood M of X such that $x \in M$ and $f(M) \subseteq N$.
- 3. The inverse image of every β - P_S -neighbourhood of f(x) is γ - P_S neighbourhood of $x \in X$.

Proof. It is clear and hence it is omitted.

Lemma 4.4. Let $f:(X,\tau)\to (Y,\sigma)$ be a γ -continuous and β -open function, then the following statements are true:

- 1. If V is β -preopen set of Y, then $f^{-1}(V)$ is γ -preopen set in X.
- 2. If F is β -semiclosed set of Y, then $f^{-1}(F)$ is γ -semiclosed set in X.

Lemma 4.5. If $f:(X,\tau)\to (Y,\sigma)$ is a γ -continuous and β -open function and V is β - P_S -open set of Y, then $f^{-1}(V)$ is γ - P_S -open set in X.

Proof. Let V be a β - P_S -open set of Y, then V is a β -preopen set of Y and $V = \bigcup_{i \in I} F_i$ where F_i is β -semiclosed set in Y for each i. Then $f^{-1}(V) = f^{-1}(\bigcup_{i \in I} F_i) = \bigcup_{i \in I} f^{-1}(F_i)$ where F_i is β -semiclosed set in Y for each i. Since f is a γ -continuous and β -open function. Then by Lemma 4.4 (1), $f^{-1}(V)$ is γ -preopen set of X and by Lemma 4.4 (2), $f^{-1}(F_i)$ is γ -semiclosed set of X for each i. Hence by Lemma 2.3, $f^{-1}(V)$ is γ - P_S -open set in X.

Corollary 4.6. If $f:(X,\tau)\to (Y,\sigma)$ is a γ -continuous and β -open function and F is β - P_S -closed set of Y, then $f^{-1}(F)$ is γ - P_S -closed set in X.

Lemma 4.7. If a function $f:(X,\tau)\to (Y,\sigma)$ is both γ -continuous and β -open, then f is (γ,β) - P_S -irresolute.

Proof. The proof follows directly from Lemma 4.5 and Theorem 4.1. \Box

Some other characterizations of (γ, β) - P_S -irresolute functions are mentioned in the following.

Theorem 4.8. Let $f:(X,\tau)\to (Y,\sigma)$ be any function. Then the following properties are equivalent:

- 1. f is (γ, β) - P_S -irresolute.
- 2. τ_{γ} - $P_SBd(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SBd(B))$, for each subset B of Y.
- 3. $f(\tau_{\gamma}-P_SBd(A)) \subseteq \sigma_{\beta}-P_SBd(f(A))$, for each subset A of X.

Proof. (1) \Rightarrow (2). Let f be a (γ, β) - P_S -irresolute function and B be any subset of (Y, σ) . Then by Theorem 4.1 (2) and (5), we have τ_{γ} - $P_SBd(f^{-1}(B)) = \tau_{\gamma}$ - $P_SCl(f^{-1}(B)) \setminus \tau_{\gamma}$ - $P_SInt(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SCl(B)) \setminus \tau_{\gamma}$ - $P_SInt(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SCl(B)) \setminus \tau_{\gamma}$ - $P_SInt(f^{-1}(\sigma_{\beta}$ - $P_SInt(B)) = f^{-1}(\sigma_{\beta}$ - $P_SCl(B) \setminus \sigma_{\beta}$ - $P_SInt(B) = f^{-1}(\sigma_{\beta}$ - $P_SBd(B)$. Therefore, τ_{γ} - $P_SBd(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SBd(B)$.

 $(2) \Rightarrow (3)$. Let A be any subset of X. Then f(A) is a subset of Y. Then by (2), we have τ_{γ} - $P_SBd(f^{-1}(f(A))) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SBd(f(A)))$ implies

that τ_{γ} - $P_SBd(A) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SBd(f(A)))$ and hence $f(\tau_{\gamma}$ - $P_SBd(A)) \subseteq \sigma_{\beta}$ - $P_SBd(f(A))$. This completes the proof.

(3) \Rightarrow (1). Let E be any β - P_S -closed set in Y. Then $f^{-1}(E)$ is a subset of X. So by using part (3), we have $f(\tau_{\gamma}$ - $P_SBd(f^{-1}(E))) \subseteq \sigma_{\beta}$ - $P_SBd(f(f^{-1}(E))) = \sigma_{\beta}$ - $P_SBd(E)$ implies that $f(\tau_{\gamma}$ - $P_SBd(f^{-1}(E))) \subseteq \sigma_{\beta}$ - $P_SBd(E) \subseteq \sigma_{\beta}$ - $P_SCl(E) = E$ and hence $f(\tau_{\gamma}$ - $P_SBd(f^{-1}(E))) \subseteq E$. This implies that τ_{γ} - $P_SBd(f^{-1}(E)) \subseteq f^{-1}(E)$. Thus, by Lemma 2.6 (5), $f^{-1}(E)$ is γ - P_S -closed set in X. Consequently by Theorem 4.1, f is (γ, β) - P_S -irresolute function.

Theorem 4.9. Let $f:(X,\tau)\to (Y,\sigma)$ be any function. Then the following properties are equivalent:

- 1. f is (γ, β) - P_S -continuous.
- 2. For each subset A in X, $f(\tau_{\gamma}-P_SBd(A)) \subseteq \sigma_{\beta}-Bd(f(A))$.
- 3. For each subset B in Y, τ_{γ} - $P_SBd(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ -Bd(B)).

Proof. The proof is similar to Theorem 4.8, and hence it is omitted. \Box

Theorem 4.10. Let $f:(X,\tau)\to (Y,\sigma)$ be any function. Then the following properties are equivalent:

- 1. f is (γ, β) - P_S -irresolute.
- 2. $f(\tau_{\gamma}-P_SD(A)) \subseteq \sigma_{\beta}-P_SCl(f(A))$, for each subset A of X.
- 3. τ_{γ} - $P_SD(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SCl(B))$, for each subset B of Y.
- Proof. (1) \Rightarrow (2). Let f be a (γ, β) - P_S -continuous function and A be any subset of X. Then by Theorem 4.1 (4), we have $f(\tau_{\gamma}-P_SCl(A)) \subseteq \sigma_{\beta}-P_SCl(f(A))$. Then by Lemma 2.6 (6), we obtain $f(\tau_{\gamma}-P_SD(A)) \subseteq f(\tau_{\gamma}-P_SCl(A))$ which implies that $f(\tau_{\gamma}-P_SD(A)) \subseteq \sigma_{\beta}-P_SCl(f(A))$.
- $(2) \Rightarrow (3)$. Let B be any subset of Y. Then $f^{-1}(B)$ is a subset of X. Then by hypothesis, we get $f(\tau_{\gamma}-P_SD(f^{-1}(B))) \subseteq \sigma_{\beta}-P_SCl(f(f^{-1}(B))) = \sigma_{\beta}-P_SCl(B)$ and hence $\tau_{\gamma}-P_SD(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}-P_SCl(B))$. This completes the proof.
- (3) \Rightarrow (1). Let F be any β - P_S -closed set in Y. Then by (3), we have τ_{γ} - $P_SD(f^{-1}(F)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SCl(F)) = f^{-1}(F)$ and hence τ_{γ} - $P_SD(f^{-1}(F)) \subseteq f^{-1}(F)$. So by Lemma 2.6 (7), we get $f^{-1}(F)$ is γ - P_S -closed set in X. Therefore, by Theorem 4.1, f is (γ, β) - P_S -irresolute function.

Theorem 4.11. Let $f:(X,\tau)\to (Y,\sigma)$ be any function. Then the following properties are equivalent:

- 1. f is (γ, β) - P_S -continuous.
- 2. $f(\tau_{\gamma}-P_SD(A)) \subseteq \sigma_{\beta}-Cl(f(A))$, for each subset A of X.
- 3. τ_{γ} - $P_SD(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ -Cl(B)), for each subset B of Y.

Proof. The proof is similar to Theorem 4.10, and hence it is omitted. \Box

Proposition 4.12. If a function $f: (X, \tau) \to (Y, \sigma)$ is (γ, β) - P_S -irresolute, then for each $x \in X$ and each β - P_S -open set V of Y containing f(x), there exists a γ -semiclosed set F in X such that $x \in F$ and $f(F) \subseteq V$. Furthermore, if f is (γ, β) -precontinuous, then the converse also holds.

Proof. Suppose f be a (γ, β) - P_S -irresolute function and let V be any β - P_S -open set of Y such that $f(x) \in V$, for each $x \in X$. Then there exists a γ - P_S -open set U of X such that $x \in U$ and $f(U) \subseteq V$. Since U is γ - P_S -open set. Then for each $x \in U$, there exists a γ -semiclosed set F of X such that $x \in F \subseteq U$. Therefore, we have $f(F) \subseteq V$.

Now suppose that f is (γ, β) -precontinuous function. Let V be any β - P_S -open set of Y. We have to show that $f^{-1}(V)$ is γ - P_S -open set in X. Since every β - P_S -open set is β -preopen, then $f^{-1}(V)$ is γ -preopen set in X. Let $x \in f^{-1}(V)$. Then $f(x) \in V$. By hypothesis, there exists a γ -semiclosed set F of X containing x such that $f(F) \subseteq V$. Which implies that $x \in F \subseteq f^{-1}(V)$. Therefore, by Definition 2.2, $f^{-1}(V)$ is γ - P_S -open set in X. Hence by Theorem 4.1, f is (γ, β) - P_S -irresolute. This completes the proof.

5. Properties

Theorem 5.1. Let (X, τ) be γ -semi T_1 space and (Y, σ) be β -semi T_1 space. A function $f: (X, \tau) \to (Y, \sigma)$ is (γ, β) -P_S-irresolute if and only if f is (γ, β) -precontinuous.

Proof. This is an immediate consequence of Theorem 2.9 (2).

Theorem 5.2. Let (Y, σ) be β -locally indiscrete space. A function $f: (X, \tau) \to (Y, \sigma)$ is (γ, β) - P_S -irresolute if and only if f is (γ, β) - P_S -continuous.

Proof. Follows directly from Theorem 2.9 (1). □

Theorem 5.3. Let (Y, σ) be β -regular space. A function $f: (X, \tau) \to (Y, \sigma)$ is γ - P_S -continuous if and only if f is (γ, β) - P_S -continuous.

Proof. Follows directly from Theorem 2.9 (5).

Theorem 5.4. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. If (Y, σ) is β -hyperconnected space, then f is (γ, β) - P_S -irresolute.

Proof. This is an immediate consequence of Theorem 2.9 (3). \Box

Proposition 5.5. If a function $f:(X,\tau)\to (Y,\sigma)$ is (γ,β) - P_S -irresolute (resp. (γ,β) - P_S -continuous), then the following properties are true:

- 1. for each $x \in X$ and each β - P_S -open (resp. β -open) set V of Y such that $f(x) \in V$, there exists a γ -preopen set U of X such that $x \in U$ and $f(U) \subseteq V$.
- 2. for each $x \in X$ and each β -regular-open set V of Y containing f(x), there exists a γ - P_S -open set U of X containing x such that $f(U) \subseteq V$.
- *Proof.* 1) Since every γ - P_S -open set of X is γ -preopen, then by using this in Definition 3.1 we get the proof.
- 2) Since every β -regular-open set of Y is both β -open and β - P_S -open, then the proof follows directly from Definition 3.1.

Proposition 5.6. A function $f:(X,\tau)\to (Y,\sigma)$ is (γ,β) - P_S -irresolute (resp. (γ,β) - P_S -continuous), if the following properties are true:

- 1. for each $x \in X$ and each β -preopen set V of Y such that $f(x) \in V$, there exists a γ - P_S -open set U of X such that $x \in U$ and $f(U) \subseteq V$.
- 2. for each $x \in X$ and each β - P_S -open (resp. β -open) set V of Y containing f(x), there exists a γ -regular-open set U of X containing x such that $f(U) \subseteq V$.

Proof. 1) The proof is clear since every β - P_S -open (resp. β -open) set of Y is β -preopen.

2) Obvious since every γ -regular-open set of X is γ - P_S -open and hence it is omitted.

Theorem 5.7. Let $f:(X,\tau) \to (Y,\sigma)$ be any function, then: $X \setminus \tau_{\gamma}$ - $P_SC(f) = \bigcup \{\tau_{\gamma}-P_SBd(f^{-1}(V)): V \text{ is a } \beta\text{-}P_S\text{-open in } (Y,\sigma) \text{ such that } f(x) \in V \text{ for each } x \in X\}$, where τ_{γ} - $P_SC(f)$ denotes the set of points at which f is (γ,β) - P_S -irresolute function.

Proof. Let $x \in \tau_{\gamma}$ - $P_SC(f)$. Then there exists β - P_S -open set V in (Y, σ) containing f(x) such that $f(U) \not\subseteq V$ for every γ - P_S -open set U of (X, τ) containing x. Hence $U \cap X \setminus f^{-1}(V) \neq \phi$ for every γ - P_S -open set U of (X, τ) containing x. Therefore, $x \in \tau_{\gamma}$ - $P_SCl(X \setminus f^{-1}(V))$. Then $x \in f^{-1}(V) \cap \tau_{\gamma}$ - $P_SCl(X \setminus f^{-1}(V)) \subseteq \tau_{\gamma}$ - $P_SCl(f^{-1}(V)) \cap \tau_{\gamma}$ - $P_SCl(X \setminus f^{-1}(V)) = \tau_{\gamma}$ - $P_SBd(f^{-1}(V))$. Then $X \setminus \tau_{\gamma}$ - $P_SC(f) \subseteq \cup \{\tau_{\gamma}$ - $P_SBd(f^{-1}(V)) : V \text{ is } \beta$ - P_S -open in (Y, σ) such that $f(x) \in V$ for each $x \in X$ }.

Conversely, let $x \notin X \setminus \tau_{\gamma} - P_S C(f)$. Then for each β - P_S -open set V in (Y, σ) containing f(x), $f^{-1}(V)$ is γ - P_S -open set of (X, τ) containing x. So $x \in \tau_{\gamma}$ - $P_S Int(f^{-1}(V))$ and hence $x \notin \tau_{\gamma} - P_S Bd(f^{-1}(V))$ for every β - P_S -open set V in (Y, σ) containing f(x). Therefore, $X \setminus \tau_{\gamma} - P_S C(f) \supseteq \bigcup \{\tau_{\gamma} - P_S Bd(f^{-1}(V)) : V \text{ is } \beta$ - P_S -open in (Y, σ) such that $f(x) \in V$ for each $x \in X$.

The proof of the following theorem is similar to Theorem 5.7 and is thus omitted.

Theorem 5.8. Let $f:(X,\tau) \to (Y,\sigma)$ be any function, then: $X \setminus \tau_{\gamma}$ - $P_SC(f) = \bigcup \{\tau_{\gamma}-P_SBd(f^{-1}(V)) : V \text{ is a } \beta\text{-open in } (Y,\sigma) \text{ such that } f(x) \in V \text{ for each } x \in X\}$, where $\tau_{\gamma}-P_SC(f)$ denotes the set of points at which f is $(\gamma,\beta)-P_S$ -continuous function.

Now, we will define more types of γ - P_S - functions by using γ - P_S -open set which are defined as follows.

Definition 5.9. A function $f:(X,\tau)\to (Y,\sigma)$ is called (γ,β) - P_S -open (resp. $(\gamma,\beta P_S)$ -open) if for every γ - P_S -open (resp. γ -open) set V of X, f(V) is β - P_S -open set in Y.

Definition 5.10. A function $f:(X,\tau)\to (Y,\sigma)$ is called (γ,β) - P_S -closed (resp. $(\gamma,\beta P_S)$ -open) if for every γ - P_S -closed (γ -closed) set F of X, f(F) is β - P_S -closed set in Y.

Theorem 5.11. A function $f: (X, \tau) \to (Y, \sigma)$ is (γ, β) - P_S -open if and only if for every $x \in X$ and for every γ - P_S -neighbourhood N of x, there exists a β - P_S -neighbourhood M of Y such that $f(x) \in M$ and $M \subseteq f(N)$.

Proof. Obvious.

Theorem 5.12. The following statements are equivalent for a function $f:(X,\tau)\to (Y,\sigma)$:

- 1. f is (γ, β) - P_S -open.
- 2. $f(\tau_{\gamma}-P_SInt(A)) \subseteq \sigma_{\beta}-P_SInt(f(A))$, for every $A \subseteq X$.

3. τ_{γ} - $P_SInt(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SInt(B))$, for every $B \subseteq Y$.

Proof. The proof is similar to Theorem 4.1.

Theorem 5.13. The following properties of f are equivalent for a function $f:(X,\tau)\to (Y,\sigma)$:

- 1. f is (γ, β) - P_S -closed.
- 2. $f^{-1}(\sigma_{\beta}-P_SCl(B)) \subseteq \tau_{\gamma}-P_SCl(f^{-1}(B))$, for every $B \subseteq Y$.
- 3. σ_{β} - $P_SCl(f(A)) \subseteq f(\tau_{\gamma}$ - $P_SCl(A))$, for every $A \subseteq X$.
- 4. σ_{β} - $P_SD(f(A)) \subseteq f(\tau_{\gamma}$ - $P_SCl(A))$, for every $A \subseteq X$.

Proof. The proof is similar to Theorem 4.1.

Definition 5.14. Let $id: \tau \to P(X)$ be the identity operation. If f is (id, β) - P_S -closed, then for every γ - P_S -closed set F of X, f(F) is β - P_S -closed set in Y.

Theorem 5.15. If a function f is bijective and $f^{-1}: (Y, \sigma) \to (X, \tau)$ is (id, β) - P_S -irresolute, then f is (id, β) - P_S -closed.

Proof. Follows from Definition 5.14 and Definition 3.1. \square

Theorem 5.16. Suppose that a function $f:(X,\tau)\to (Y,\sigma)$ is both (γ,β) - P_S -irresolute and (γ,β) - P_S -closed, then:

- 1. For every γ - P_S -g-closed set A of (X, τ) , the image f(A) is β - P_S -g-closed in (Y, σ) .
- 2. For every β - P_S -g-closed set B of (Y, σ) the inverse set $f^{-1}(B)$ is γ - P_S -g-closed in (X, τ) .
- Proof. (1) Let G be any β - P_S -open set in (Y, σ) such that $f(A) \subseteq G$. Since f is (γ, β) - P_S -irresolute function, then by Theorem 4.1 (2), $f^{-1}(G)$ is γ - P_S -open set in (X, τ) . Since A is γ - P_S -g-closed and $A \subseteq f^{-1}(G)$, we have τ_{γ} - $P_SCl(A) \subseteq f^{-1}(G)$, and hence $f(\tau_{\gamma}-P_SCl(A)) \subseteq G$. Since $\tau_{\gamma}-P_SCl(A)$ is γ - P_S -closed set and f is (γ, β) - P_S -closed, then $f(\tau_{\gamma}-P_SCl(A))$ is β - P_S -closed set in Y. Therefore, σ_{β} - $P_SCl(f(A)) \subseteq \sigma_{\beta}$ - $P_SCl(f(\tau_{\gamma}-P_SCl(A))) = f(\tau_{\gamma}-P_SCl(A)) \subseteq G$. This implies that f(A) is β - P_S -g-closed in (Y, σ) .
- (2) Let H be any γ - P_S -open set of (X, τ) such that $f^{-1}(B) \subseteq H$. Let $C = \tau_{\gamma}$ - $P_SCl(f^{-1}(B)) \cap (X \setminus H)$, then C is γ - P_S -closed set in (X, τ) . Since f is

 (γ, β) - P_S -closed function. Then f(C) is β - P_S -closed in (Y, σ) . Since f is (γ, β) - P_S -irresolute function, then by using Theorem 4.1 (4), we have $f(C) = f(\tau_{\gamma} - P_S Cl(f^{-1}(B))) \cap f(X \setminus H) \subseteq \sigma_{\beta} - P_S Cl(B) \cap f(X \setminus H) \subseteq \sigma_{\beta} - P_S Cl(B) \cap (Y \setminus B)$. This implies that $f(C) = \phi$, and hence $C = \phi$. So τ_{γ} - $P_S Cl(f^{-1}(B)) \subseteq H$. Therefore, $f^{-1}(B)$ is γ - P_S -g-closed in (X, τ) .

Theorem 5.17. Let $f:(X,\tau)\to (Y,\sigma)$ be an injective, (γ,β) - P_S -irresolute and (γ,β) - P_S -closed function. If (Y,σ) is β - P_S - $T_{\frac{1}{2}}$, then (X,τ) is γ - P_S - $T_{\frac{1}{2}}$.

Proof. Let G be any γ - P_S -g-closed set of (X,τ) . Since f is (γ,β) - P_S -irresolute and (γ,β) - P_S -closed function. Then by Theorem 5.16 (1), f(G) is β - P_S -g-closed in (Y,σ) . Since (Y,σ) is β - P_S - $T_{\frac{1}{2}}$, then f(G) is β - P_S -closed in Y. Again, since f is (γ,β) - P_S -irresolute, then by Theorem 4.1, $f^{-1}(f(G))$ is γ - P_S -closed in X. Hence G is γ - P_S -closed in X since f is injective. Therefore, a space (X,τ) is γ - P_S - $T_{\frac{1}{2}}$.

Theorem 5.18. Let a function $f:(X,\tau)\to (Y,\sigma)$ be a surjective, $(\gamma,\beta)-P_S$ -irresolute and $(\gamma,\beta)-P_S$ -closed. If (X,τ) is $\gamma-P_S-T_{\frac{1}{2}}$, then (Y,σ) is $\beta-P_S-T_{\frac{1}{2}}$.

Proof. Let H be a β - P_S -g-closed set of (Y, σ) . Since a function f is (γ, β) - P_S -irresolute and (γ, β) - P_S -closed. Then by Theorem 5.16 (2), $f^{-1}(H)$ is γ - P_S -g-closed in (X, τ) . Since (X, τ) is γ - P_S - $T_{\frac{1}{2}}$, then we have, $f^{-1}(H)$ is γ - P_S -closed set in X. Again, since f is (γ, β) - P_S -closed function, then $f(f^{-1}(H))$ is β - P_S -closed in Y. Therefore, H is β - P_S -closed in Y since f is surjective. Hence (Y, σ) is β - P_S - $T_{\frac{1}{2}}$ space.

Remark 5.19. Every β - P_S -open (resp., β - P_S -closed) function is $(\gamma, \beta P_S)$ -open (resp., $(\gamma, \beta P_S)$ -closed), but the converse is not true as it is shown in the following example.

Example 5.20. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, \{b, c\}, X\}$ and $Y = \{1, 2, 3\}$ with the topology $\sigma = \{\phi, Y, \{2\}, \{1, 3\}\}$. Define operations β on σ by $\beta(B) = B$ for all $B \in \sigma$ and γ on τ as follows: For every $A \in \tau$

$$\gamma(A) = \begin{cases} A & \text{if } A = \{c\} \\ X & \text{otherwise} \end{cases}$$

Then $\tau_{\gamma} = \{\phi, X, \{c\}\}\$ and hence $\tau_{\gamma} P_S O(X) = \{\phi, X\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be a function defined as follows:

$$f(x) = \begin{cases} 3 & \text{if } x = a \\ 1 & \text{if } x = b \\ 2 & \text{if } x = c \end{cases}$$

So f is $(\gamma, \beta P_S)$ -open (resp., $(\gamma, \beta P_S)$ -closed) function, but f is not β - P_S -open (resp., β - P_S -closed) since $\{c\} \in \tau$, but $f(\{b,c\}) = \{1,2\}$ is not β - P_S -open set in (Y,σ) . Again since $\{a\}$ is closed set in (X,τ) , but $f(\{a\}) = \{3\}$ is not β - P_S -closed set in (Y,σ) .

Theorem 5.21. Let (X,τ) be γ -semi T_1 space and (Y,σ) be β -semi T_1 space. A function $f:(X,\tau)\to (Y,\sigma)$ is (γ,β) - P_S -closed if and only if f is (γ,β) -preclosed.

Proof. This is an immediate consequence of Theorem 2.9 (2). \Box

Theorem 5.22. Let (X, τ) be γ -locally indiscrete space and $f: (X, \tau) \to (Y, \sigma)$ be a function, then the following properties of f are equivalent:

- 1. (γ, β) - P_S -open.
- 2. (γ, β) - P_S -closed.
- 3. $(\gamma, \beta P_S)$ -closed.
- 4. $(\gamma, \beta P_S)$ -open.

Proof. Follows directly from Theorem 2.9 (1).

Theorem 5.23. Let (X, τ) be γ -regular space. A function $f: (X, \tau) \to (Y, \sigma)$ is $(\gamma, \beta P_S)$ -open (resp., $(\gamma, \beta P_S)$ -closed) if and only if f is β - P_S -open (resp., β - P_S -closed).

Proof. This is an immediate consequence of Theorem 2.9 (5).

Theorem 5.24. Let $f:(X,\tau) \to (Y,\sigma)$ be a surjective function. If (X,τ) is γ -hyperconnected space, then f is (γ,β) - P_S -open.

Proof. This is an immediate consequence of Theorem 2.9 (3).

Theorem 5.25. A function $f: (X, \tau) \to (Y, \sigma)$ is (γ, β) - P_S -closed if and only if for each subset S of Y and each γ - P_S -open set O in X containing $f^{-1}(S)$, there exists a β - P_S -open set R in Y containing S such that $f^{-1}(R) \subseteq O$.

Proof. Suppose that f is (γ, β) - P_S -closed function and let O be a γ - P_S -open set in X containing $f^{-1}(S)$, where S is any subset in Y. Then $f(X \setminus O)$ is β - P_S -open set in Y. If we put $R = Y \setminus f(X \setminus O)$. Then R is β - P_S -closed set in Y such that $S \subseteq R$ and $f^{-1}(R) \subseteq O$.

Conversely, let F be a γ - P_S -closed set in X. Let $S = Y \setminus f(F) \subseteq Y$. Then $f^{-1}(S) \subseteq X \setminus F$ and $X \setminus F$ is γ - P_S -open set in X. By hypothesis, there exists a β - P_S -open set R in Y such that $S = Y \setminus f(F) \subseteq R$ and $f^{-1}(R) \subseteq X \setminus F$. For $f^{-1}(R) \subseteq X \setminus F$ implies $R \subseteq f(X \setminus F) \subseteq Y \setminus f(F)$. Hence $R = Y \setminus f(F)$. Since R is β - P_S -open set in Y. Then f(F) is β - P_S -closed set in Y. Therefore, f is (γ, β) - P_S -closed function.

Theorem 5.26. A function $f:(X,\tau) \to (Y,\sigma)$ is $(\gamma,\beta P_S)$ -closed if and only if for each subset S of Y and each γ -open set O in X containing $f^{-1}(S)$, there exists a β - P_S -open set R in Y containing S such that $f^{-1}(R) \subseteq O$.

Proof. The proof is similar to Theorem 5.25.

Definition 5.27. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be (γ, β) - P_S -homeomorphism, if f is bijective, (γ, β) - P_S -irresolute and f^{-1} is (γ, β) - P_S -irresolute.

Theorem 5.28. For a bijective function $f:(X,\tau)\to (Y,\sigma)$. The following properties of f are equivalent:

- 1. f^{-1} is (γ, β) - P_S -irresolute.
- 2. f is (γ, β) - P_S -open.
- 3. f is (γ, β) - P_S -closed.

Proof. Obvious.

Theorem 5.29. The following conditions of f are equivalent for a bijective function $f:(X,\tau)\to (Y,\sigma)$:

- 1. f is (γ, β) - P_S -homeomorphism.
- 2. f is (γ, β) - P_S -irresolute and (γ, β) - P_S -open.
- 3. f is (γ, β) - P_S -irresolute and (γ, β) - P_S -closed.
- 4. $f(\tau_{\gamma}-P_SCl(A)) = \sigma_{\beta}-P_SCl(f(A))$ for each subset A of X.

Proof. Straightforward.

Proposition 5.30. Assume that a function $f:(X,\tau)\to (Y,\sigma)$ is a (γ,β) - P_S -homeomorphism. If (X,τ) is γ - P_S - $T_{\frac{1}{2}}$, then (Y,σ) is β - P_S - $T_{\frac{1}{2}}$.

Proof. Let $\{y\}$ be any singleton set of (Y, σ) . Then there exists an element x of X such that y = f(x). So by hypothesis and Theorem 2.9 (4), we have $\{x\}$ is γ - P_S -closed or γ - P_S -open set in X. By using Theorem 4.1, $\{y\}$ is β - P_S -closed or β - P_S -open set. Then by Theorem 2.9 (4), (Y, σ) is β - P_S - $T_{\frac{1}{2}}$ space.

In the end of this section, we shall obtain some conditions under which the composition of two functions is (γ, β) - P_S -irresolute and (γ, β) - P_S -continuous.

Theorem 5.31. Let α be an operation on the topological space (Z, ρ) . Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \rho)$ be functions. Then the composition function $g \circ f: (X, \tau) \to (Z, \rho)$ is (γ, α) - P_S -continuous if f and g satisfy one of the following conditions:

- 1. f is (γ, β) - P_S -irresolute and g is (β, α) - P_S -continuous.
- 2. f is (γ, β) - P_S -irresolute and g is β - P_S -continuous.
- *Proof.* (1) Let V be an α -open subset of (Z, ρ) . Since g is (β, α) - P_S -continuous, then $g^{-1}(V)$ is β - P_S -open in (Y, σ) . Since f is (γ, β) - P_S -irresolute, then by Theorem 4.1, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is γ - P_S -open in X. Therefore, $g \circ f$ is (γ, α) - P_S -continuous.
- (2) The proof follows directly from the part (1) since every β - P_S -continuous is (β, α) - P_S -continuous.

Theorem 5.32. Let α be an operation on the topological space (Z, ρ) . If the functions $f: (X, \tau) \to (Y, \sigma)$ is (γ, β) - P_S -irresolute and $g: (Y, \sigma) \to (Z, \rho)$ is (β, α) - P_S -irresolute. Then $g \circ f: (X, \tau) \to (Z, \rho)$ is (γ, α) - P_S -irresolute.

Proof. It is clear. \Box

Theorem 5.33. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\rho)$ be functions. Then the composition function $g\circ f:(X,\tau)\to (Z,\rho)$ is γ - P_S -continuous if f and g satisfy one of the following conditions:

- 1. f is (γ, β) - P_S -irresolute and g is β - P_S -continuous.
- 2. f is (γ, β) - P_S -continuous and g is β -continuous.

Proof. The proof is similar to Theorem 5.31.

Proposition 5.34. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\rho)$ be any functions and α be an operation on ρ . Then the following are holds:

1. If f is β -open (β -closed) and g is (β , α)- P_S -open ((β , α)- P_S -closed), then $g \circ f : (X, \tau) \to (Z, \rho)$ is α - P_S -open (α - P_S -closed).

- 2. If f is (γ, β) - P_S -open $((\gamma, \beta)$ - P_S -closed) and g is (β, α) - P_S -open $((\beta, \alpha)$ - P_S -closed), then $g \circ f : (X, \tau) \to (Z, \rho)$ is (γ, α) - P_S -open $((\gamma, \alpha)$ - P_S -closed).
- 3. If f is $(\gamma, \beta P_S)$ -open $((\gamma, \beta P_S)$ -closed) and g is (β, α) - P_S -open $((\beta, \alpha)$ - P_S -closed), then $g \circ f : (X, \tau) \to (Z, \rho)$ is $(\gamma, \alpha P_S)$ -open $((\gamma, \alpha P_S)$ -closed).

Proof. It is clear. \Box

Proposition 5.35. If $f: (X, \tau) \to (Y, \sigma)$ is a function, $g: (Y, \sigma) \to (Z, \rho)$ is (β, α) - P_S -open and injective, and $g \circ f: (X, \tau) \to (Z, \rho)$ is (γ, α) - P_S -irresolute. Then f is (γ, β) - P_S -irresolute.

Proof. Let V be an β - P_S -open subset of Y. Since g is (β, α) - P_S -open, g(V) is α - P_S -open subset of Z. Since $g \circ f$ is (γ, α) - P_S -irresolute and g is injective, then $f^{-1}(V) = f^{-1}(g^{-1}(g(V))) = (g \circ f)(g(V))$ is γ - P_S -open in X, which proves that f is (γ, β) - P_S -irresolute.

Proposition 5.36. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\rho)$ be any functions and α be an operation on ρ . Then the following are holds:

- 1. If f is (γ, β) - P_S -open and surjective, and $g \circ f : (X, \tau) \to (Z, \rho)$ is (γ, α) - P_S -irresolute, then g is (γ, β) - P_S -irresolute.
- 2. If f is (γ, β) - P_S -irresolute and surjectiv, and $g \circ f: (X, \tau) \to (Z, \rho)$ is (γ, α) - P_S -open, then g is (β, α) - P_S -open.

Proof. Similar to Proposition 5.35.

References

- [1] B.A. Asaad, N. Ahmad and Z. Omar, γ -Regular-open sets and γ -extremally disconnected spaces, *Mathematical Theory and Modeling*, **3** 12 (2013), 132-141.
- [2] B.A. Asaad, N. Ahmad and Z. Omar, γ - P_S -Open sets in topological spaces, Proceedings of the 1st Innovation and Analytics Conference and Exhibition, $UUM\ Press,\ Sintok,\ (2013),\ 75$ -80.
- [3] B.A. Asaad, N. Ahmad and Z. Omar, γ - P_S -Functions in topological spaces, International Journal of Mathematical Analysis, **8** 6 (2014), 285-300. DOI: http://dx.doi.org/10.12988/ijma.2014.4121

- [4] B.A. Asaad, N. Ahmad and Z. Omar, γ - P_S -Generalized Closed Sets and γ - P_S - $T_{\frac{1}{2}}$ Spaces, International Journal of Pure and Applied Mathematics, **93** 2 (2014), 243-260. DOI: http://dx.doi.org/10.12732/ijpam.v93i2.9
- [5] C.K. Basu, B.M.U. Afsan, and M.K. Ghosh, A class of functions and separation axioms with respect to an operation, *Hacettepe Journal of Mathe*matics and Statistics, 38 2 (2009), 103-118.
- [6] C. Carpintero, N. Rajesh and E. Rosas, Somewhat (γ, β) -semicontinuous functions, *Bol. Soc. Paran. Mat.*, **30** 1 (2012), 45-52. DOI: http://dx.doi.org/10.5269/bspm.v30i1.13015
- [7] S. Kasahara, Operation compact spaces, Math. Japonica, 24 1 (1979), 97-105.
- [8] G.S.S. Krishnan and K. Balachandran, On a class of γ -preopen sets in a topological space, East Asian Math. J., **22** 2 (2006), 131-149.
- [9] G.S.S. Krishnan and K. Balachandran, On γ -semiopen sets in topological spaces, *Bull. Cal. Math. Soc.*, **98** 6 (2006), 517-530.
- [10] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36 1 (1991), 175-184.