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ABSTRACT. Hybrid metaheuristic algorithms have the ability to produce 

better solution than stand-alone approach and no algorithm could be con-

cluded as the best algorithm for scheduling algorithm or in general, for 

combinatorial problems. This study presents the low and high level hybridi-

zation of ant colony system and genetic algorithm in solving the job sched-

uling in grid computing. Two hybrid algorithms namely ACS(GA) as a low 

level and ACS+GA as a high level are proposed. The proposed algorithms 

were evaluated using static benchmarks problems known as expected time 

to compute model. Experimental results show that ant colony system algo-

rithm performance is enhanced when hybridized with genetic algorithm spe-

cifically with high level hybridization. 

Keywords: grid computing, job scheduling, hybrid metaheuristic algorithm, 

ant colony system, genetic algorithm 

INTRODUCTION 

Grid computing provides a computing capability to solve complex problems which are not 

possible to solve using individual resource. Resource Management System (RMS) in grid 

computing is to schedule jobs and monitor available resources (Kolodziej, 2012). Scheduling 

in grid computing system is considered as an NP-complete problem. The scheduling algo-

rithm could be based on simple approach such as first come first serve. However, with the 

increased number of jobs and resources, RMS needs more sophisticated algorithm such as 

metaheuristic algorithm. There are several metaheuristic algorithms that have been applied in 

job scheduling problem such as Tabu Search (TS), Genetic Algorithm (GA), Ant Colony Sys-

tem (ACS) and Artificial Bee Colony (ABC). Each algorithm shows good performance in 

specific instance problem and no algorithm could be concluded as the best algorithm for 

scheduling algorithm or in general, for combinatorial problems (Yang, 2014). Hybrid ap-

proach between one or more algorithms will combine the advantages of individual algorithms 

(Kolodziej, 2012).  

ACS algorithm is one of the prominent metaheuristic algorithm solving various types of 

combinatorial problems (Dorigo & Stutzle, 2004). The three main phases in ACS are the ants’ 

solution construction, global pheromone trail update, and local pheromone trail update. ACS 

algorithm starts solution construction when the ant moves from node to node and will choose 

the node using one of the two rules. The first rule is called pseudorandom proportional rule 

which is based on exploitation mechanism. The second rule uses exploration mechanism 

which is based on the probability distribution used in Ant System (AS). The tuning between 
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exploitation and exploration is controlled via a parameter fixed by the user. ACS algorithm 

applies the local and global pheromone trail update. All ants apply a local pheromone update 

rule immediately after moving on arcs during the tour construction using the evaporation con-

cept. In global update, only one ant (the best-so-far ant) is allowed to add pheromone after all 

ants have finished constructing their tours.  

GA is a well-known algorithm to solve various types of combinatorial optimization prob-

lems developed in 1975 by John Holland (Blum & Roli, 2003). It is applied in various types 

of scheduling problems, such as manufacturing scheduling, scheduling of production and 

transport systems, and scheduling workflow applications in cloud environment. GA has three 

prime operators, namely crossover, mutation, and selection. The solution quality produced by 

GA depends upon many factors, such as the initializing of the population method, the type of 

crossover, mutation, and replace methods.  

This study has implemented low and high level of hybridization between ACS and GA. 

The proposed hybrid algorithms are called ACS(GA) for low level and ACS+GA for high 

level. The rest of the paper is organized as follows. Next section presents the problem formu-

lation and the benchmark for static grid scheduling. The implementation of hybrid ACS and 

GA in grid computing is described in the subsequent section followed by a section on results 

of the experiments conducted on ACS hybrid with GA in grid computing. Finally, the conclu-

sion and future work are provided. 

PROBLEM FORMULATION 

This study has considered a static grid computing system based on batch mode. In batch 

mode, the jobs are grouped into batches and each batch is assigned to the resources via the 

scheduler. Jobs are independent and job size is expressed in Million of Instruction (MI) while 

the resource capacity is expressed in Million of Instruction Per Second (MIPS). 

One of the successful models for heterogeneous static computing system is ETC (Braun et 

al., 2001). ETC model arranges the information in a two dimension matrix called ETC matrix. 

Each entry in the matrix 𝐸𝑇𝐶[𝑖, 𝑗] represents the expected execution time of job[𝑖] on ma-

chine[𝑗]. In ETC matrix, the elements along a row represent the estimates of the expected 

execution times of a given job on different machines, while the elements along a column give 

the estimates of the expected times of different jobs on a given machine. The time required to 

process a task on a resource is calculated as follows: 

𝐸𝑇𝐶[𝑖, 𝑗]  = [𝑡𝑎𝑠𝑘𝑖] / [𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑗] (1) 

𝐸𝑇𝐶𝑛×𝑚 is a matrix with two dimensions 𝑛 ×𝑚 where 𝑛 is the number of jobs and 𝑚 is 

the number of machines. The [𝑡𝑎𝑠𝑘𝑖]  and  [𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑗]  values are generated using range-based 

technique (Braun et al., 2001). The ETC matrix is categorized into four categories i.e. high 

job heterogeneity and high machine heterogeneity, high job heterogeneity and low machine 

heterogeneity, low job heterogeneity and high machine heterogeneity and low job heterogene-

ity and Low machine heterogeneity. Each category will be classified further into three classes: 

consistent, inconsistent, and semi-consistent ETC matrices. These classes are orthogonal to 

the previous categories. This combination produced twelve ETC matrices. In ETC matrix, 

each machine has a load to process before processing the new jobs. The previous load ex-

pressed using ready time vector. The ready time vector of all machines is defined as: 

𝑟𝑒𝑎𝑑𝑦_𝑡𝑖𝑚𝑒 = [𝑟𝑒𝑎𝑑𝑦1, 𝑟𝑒𝑎𝑑𝑦2, … , 𝑟𝑒𝑎𝑑𝑦𝑚]  (2) 

The completion time of 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑗 is calculated using: 
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𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[𝑗] = 𝑟𝑒𝑎𝑑𝑦𝑗 + ∑  𝐸𝑇𝐶[𝑖, 𝑗],

𝑖∈𝑇𝑎𝑠𝑘(𝑗)

      (3) 

where  𝑇𝑎𝑠𝑘(𝑗) is the set of jobs assigned to the 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗. The 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[𝑗] parameters 

are the coordinates of the following completion vector: 

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 =  [𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[1], … , 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[𝑚]]
𝑇
 (4) 

Using completion vector, the makespan is calculated using the following equation: 

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max
j ∈ M

 (completion[j])  (5) 

where 𝑀 is the number of machines (Kolodziej, 2012). Makespan metric is considered as the 

main metric to measure the grid computing performance which in turn measures the schedul-

ing algorithm efficiency.  

PROPOSED HYBRID ACS AND GA ALGORITHMS 

Hybridization could be between any types of algorithms such as heuristic and metaheuris-

tics algorithms (Talbi, 2013). There are two levels of hybridization, namely low and high 

levels. In low level hybridization, the algorithms interchange their inner procedures. The low 

level hybridization could be presented as 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2), where 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 is 

the main algorithm and 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 is the subordinate algorithm. On the other hand, high 

level hybridization could be represented as 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 + 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 +⋯+ 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑛 

where 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 will start first, and then it will call 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 after it finishes its process 

and so on.  

The proposed low level hybridization called ACS(GA) has ACS as the main algorithm 

which during its flow will call the GA for enhancement. ACS(GA) will refine the solution 

produced by each ant in ACS. The best solution produced by the ants is sent to GA for en-

hancement. The enhanced solution is returned to the ant to update the pheromone value. 

Therefore, the ant will update the pheromone using the enhanced solution which will increase 

the pheromone value. The pheromone value will influence the movements of the ants in the 

next iteration. Figure 1 represents the pseudocode for ACS(GA) algorithm. ACS(GA) algo-

rithm is different from the one presented by Liu, Chen, Dun, Liu, & Dong (2008) which is 

based on using GA to choose, cross, and mutate the parameters of ant colony algorithm. In the 

proposed ACS(GA) algorithm, GA is used to enhance the best-so-far solution found by ants 

in every cycle as shown in Figure 1 with the step “Add (best ant solution from ACS to P)”.  

A high level hybridization algorithm called ACS+GA is proposed to enhance the solution 

produced by ACS algorithm.  ACS will start to generate a good quality solution as one of the 

initial population for GA which will then be enhanced by GA. The algorithm notation 

ACS+GA means ACS starts first followed by GA. ACS algorithm execution and pheromone 

update are totally independent of GA and vice versa.  Figure 2 depicts the high level pseudo-

code hybridization of ACS+GA algorithm. High level hybridization between ACO and GA 

has been proposed by Kolasa & Krol (2010) for the assignment problem. In each cycle of the 

algorithm, the best solution of the two algorithms is selected and the search is continued by 

both of them. In contrast, the proposed ACS+GA algorithm applies the GA to refine the solu-

tion found by ACS. In other words, the ACS starts with a specific number of iterations or a 

period of time. Then the solution found by ACS is passed to GA as one of the initial popula-

tion. GA will refine the solution received from ACS.  
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Figure 1. ACS(GA) Pseudocode  Figure 2. ACS+GA Pseudocode 

EXPERIMENTS AND RESULTS 

The proposed hybrid algorithms ACS(GA) and ACS+GA have several parameters need to 

be tuned in order to achieve the desired performance. Therefore, this study adopted the best 

values from the literature. The parameters values for ACS and GA were selected based on 

recommended values from Dorigo & Stutzle (2004) and Xhafa, Barolli, & Durresi (2007) 

respectively. Table 1 presents the parameters value for ACS and GA. 

Table 1. ACS and GA Parameters 

ACS  Beta Evaporation rate No of ants q Run time 

8 0.6 10 0.9 
45 second (high level) 

2 seconds (low level) 
GA Population Intermediate Crossover  Mutation  

10 6 0.9 0.4 
 

In addition to parameters value, GA has several types of operators. Table 2 shows the 

types of operators implemented in this study which are adopted from Xhafa et al. (2007). 

Table 2. GA Implemented Operators 

Elitism Selection operator Crossover operator Mutation operator 

True Tournament = 3 Fitness based Re-balanced 
 

Experiments have been conducted using Intel® Core (TM) i7-3612QM CPU @ 2.10GHz 

and 8G RAM. The grid computing simulator is developed using visual C#. Each algorithm 

was executed 10 times in order to calculate the average values as well as to get the best run.  

Tables 3 and 4 present the experimental results. The first column of each table represents 

the instance name with an abbreviation code: x-yyzz as: x represents the type of consistency; c 

means consistent, i means inconsistent, and s means semi-consistent. yy represents the hetero-

geneity of the jobs; hi means high and lo means low. zz represents the heterogeneity of the 

machines; hi means high and lo means low. For example: c_hilo means consistent environ-

ment, high heterogeneity in jobs and low heterogeneity in machines. 

Procedure ACS(GA) 

Step 1- Initialize the number of ants 𝑛; 

Step 2- Initialize parameters and pheromone trails;                

Step 3- While (Termination condition not met) Do; 

Step 4-  For i = 1 to 𝑛 Do; 

Step 5-   Construct new solution;                                   

Step 6-              Apply local pheromone update;                      

Step 7-  End For; 

                 // Genetic algorithm starts here; 
Step 8-      Initialize population (P); 

Step 9-    Add (best ant solution from ACS to P); 
Step 10- Evaluate (P);                                                        

Step 11- While (termination condition not met); 

Step 12-  Ṕ← Select (P); 
Step 13 -  Crossover (Ṕ); 

Step 14-              Mutate (Ṕ); 

Step 15-   Evaluate (Ṕ);                                                    

Step 16-   P ← Replace (Ṕ ∪ P); 
Step 17- End While; 

            // Genetic algorithm ends here; 
Step 18-          Apply Global pheromone update;                       

Step 19- Update best found solution 𝑠∗; 
Step 20- End while; 

Step 21- Return the best solution; 

End Procedure;  

Procedure ACS+GA 

Step 1- Initialize the number of ants 𝑛; 

Step 2- Initialize parameters and pheromone trails;               

Step 3- While (Termination condition not met) Do; 

Step 4-  For i = 1 to 𝑛 Do; 

Step 5-   Construct new solution; 

Step 6-                Apply local pheromone update; 

Step 7-   End For; 
Step 8-   Apply Global pheromone update; 

Step 9-     Update best found solution 𝑠∗; 
Step 10- End while; 

  // Genetic algorithm starts here; 
Step 11-  Initialize population (P); 

Step 12-  Add (best ant solution from ACS to P); 

Step 13-  Evaluate (P);                                                         
Step 14-  While (termination condition not met); 

Step 15-  Ṕ← Select (P); 

Step 16 -  Crossover (Ṕ); 
Step 17-         Mutate (Ṕ); 

Step 18-   Evaluate (Ṕ);  

Step 19-   P ← Replace (Ṕ ∪ P); 
Step 20-  End While; 

    // Genetic algorithm ends here; 

Step 21- Return the best solution; 

End Procedure;  
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The proposed hybrid algorithms were compared with GA and ACS algorithms in terms of 

best makespan value. Table 3 shows that the proposed ACS+GA algorithm outperforms other 

algorithms for eight instances out of twelve. The proposed ACS(GA) algorithm achieved 

good results only on two instances followed by GA on two instances as well. In terms of av-

erage makespan value, the proposed algorithm ACS+GA produced the best performance on 

six instances out of twelve followed by GA on five instances and ACS on one instance as 

show in Table 4. In order to represents the overall results of the proposed algorithms visually, 

the geometric mean is used to normalize the makespan values of the 12 instances. 

Table 3. Best Makespan Values 

 Instance GA ACS ACS(GA) ACS+GA 

c_hihi 11215488.9 10794610.8 10672485.1 10533616.4 

c_hilo 182232.0 179762.4 179200.7 180289.8 

c_lohi 374686.0 346838.4 352392.8 345233.3 

c_lolo 6138.5 6051.8 6045.6 6001.9 

i_hihi 3995843.4 4066163.7 4125479.4 3924281.6 

i_hilo 91682.3 93829.0 91674.8 91709.9 

i_lohi 134151.1 137176.5 138843.6 134796.3 

i_lolo 3045.3 3209.0 3194.6 3164.3 

s_hihi 6223749.5 6119602.0 6147994.6 5854357.3 

s_hilo 120447.3 120539.1 120885.9 119123.9 

s_lohi 181155.5 178584.8 172357.1 172225.0 

s_lolo 4246.4 4350.4 4293.5 4225.7 

Table 4. Average makespan values 

 Instance GA ACS ACS(GA) ACS+GA 

c_hihi 11266455.7 10947366.9 10892151.9 10849427.3 

c_hilo 183264.9 181434.4 181019.7 180970.8 

c_lohi 375322.2 353670.8 355078.0 353882.8 

c_lolo 6152.5 6120.0 6114.3 6074.3 

i_hihi 4029108.7 4261681.8 4261742.3 4115442.3 

i_hilo 91682.3 94832.7 94420.9 93514.0 

i_lohi 135625.0 144178.5 143256.2 138746.9 

i_lolo 3051.0 3280.0 3243.5 3232.7 

s_hihi 6317823.2 6322969.8 6269617.2 6119177.6 

s_hilo 120664.4 122440.4 122341.2 120576.8 

s_lohi 181734.6 181737.4 180022.2 177965.1 

s_lolo 4249.9 4399.4 4349.0 4326.3 
 

Figures 3 and 4 present the geometric mean of best and average makespan values respec-

tively. Figure 3 shows that the proposed ACS+GA outperforms other algorithms followed by 

ACS(GA), ACS, and GA for geometric mean of the best makespan value. In terms of geomet-

ric mean of the average makespan value, the proposed algorithm ACS+GA achieved the best 

performance followed by GA, ACS(GA), and ACS as shown in Figure  4. 

   

Figure 3. Geometric Best Makespan      Figure 4. Geometric Average Makespan 
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CONCLUSION AND FUTURE WORK 

Comparison between low and high level hybridizations of ACS and GA algorithms have 

been performed for job scheduling problems in static grid computing environment. The high 

level hybridization mode of ACS and GA algorithm produced better performances in terms of 

best and average makespan values for job scheduling. Future work related to ACS+GA algo-

rithm could be implemented to solve the job shop scheduling. In addition, other local search 

algorithms such as TS and SA could by hybridized with ACS to solve the job scheduling 

problem in grid computing.  
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