Teaching Flexible Manufacturing System in University Education for Future Engineers

Prof.Madya.DR.Bhuvenesh Rajamony
Encik.Ahmad Humaizi Hilmi
School of Manufacturing Engineering
University Malaysia Perlis
UniMAP, Jalan Kangar-Arau,02600, Jejawi, Perlis, Malaysia
Tel: 604-9772615 ® 604-9798164(O) Fax: 04-9798160
Email: bhuvenesh@unimap.edu.my, humaizi@unimap.edu.my

ABSTRACT

Flexible Manufacturing System (FMS) typically possesses multiple automated stations and is capable of variable routings among stations. Human resource development, equipment operator skills, manufacture of processing tools, products, processes & machinery, research and development are some of the issues resulting from higher level of technology implementation. Industry needs universities to respond with increase emphasis on design and manufacturing skills. With FMS teaching and training in the university laboratories, the increasing capability of engineers provides a distinct advantage for future industries.

Key Words: Flexible, products, manufacturing, industry, training, university

(1) INTRODUCTION

Flexible Manufacturing System (FMS) typically possesses multiple automated stations and is capable of variable routings among stations. Its flexibility allows it to operate as a mixed model system. The FMS integrates into one highly automated manufacturing system many of the concepts and technologies, including: flexible automation, CNC machines, distributed computer control, robotics, automated material handling and storage. The FMS requires a significantly greater capital investment because new equipment is being installed rather than existing equipment being rearranged.

(2) TRENDS IN MANUFACTURING INDUSTRIES

A flexible manufacturing system (FMS) is an arrangement of machines... interconnected by a transport system. The transporter carries work to the machines on pallets or other interface units so that work-machine registration is accurate, rapid and automatic. A central computer controls both machines and transport system... [1]

The FMS is technologically more sophisticated for the industries and the human resources who must make it work. Flexible Manufacturing Systems (FMS), as they were called, became a great focus of attention in industry and in academic research for a number of years. The advantages of a well-run FMS were clear; short lead-times, low inventory and a step towards the factory of the future.

“Fig. 1” The Mode of Operation and Strength of FMS [2]

(3) MANPOWER REQUIREMENTS

Human resource development, equipment operator skills, manufacture of processing tools, products, processes & machinery, research and development are some of the issues resulting from higher level of technology implementation. In this situation, a contingency strategy for training engineers and other specialists with FMS should be considered in university learning with engineering education. These evolving trends in industry must be applied back into
the engineering curriculum. Industry needs universities to respond with increase emphasis on design and manufacturing skills.

(4) TEACHING COMPETENT ENGINEERS

FMS teaching in the university laboratories, increases the capability of engineers provides a distinct advantage for manufacturing industries.

(5) TEACHING WITH ROBOTIC CONTROLLERS

The objectives of this teaching are to expose the Robotic System in manufacturing and to expose the robotics software for program and design.
The objective of this exercise is to expose students with CAD/CAM for CNC Turning Machine. The students learn how to use the programming software for Turning Machine. The students generate CNC programming and work on the CNC Turning Machine.

The objective of this exercise is to expose students with CAD/CAM for CNC Milling Machine. The students learn how to use the programming software for Milling Machine. The students generate CNC programming and work on the CNC Milling Machine.

It is important to emphasize that the Flexible Manufacturing System is a straightforward engineering solution to the problem of industrial automated manufacturing activities with the application of engineering and computer-science techniques rather than from a forced economic or anthropomorphic analogy.

Reduced inventory, due to the planning and programming precision.

Faster, lower-cost changes from one part to another which will improve capital utilization.

Consistent and better quality, due to the automated control.

Savings from the indirect labor, from reduced errors, rework, repairs and rejects.
The FMS have following limitations;

- Sophisticated manufacturing systems.
- Limited ability to adapt to changes in product or product mix.
- Substantial pre-planning activity.
- FMS complexity and cost are reasons for their slow acceptance by industry.
- Expensive, costing millions of Ringgit Malaysia.

(9) CONCLUSIONS

With FMS teaching in the university laboratories, the increasing capability of engineers provides a distinct advantage for future industries. If the desired experience exists inside the university and the experience level of the teaching staff with the technological approach is high, its use should be considered and/or projects involving the proposed approach should be developed and implemented early.

In this situation, a contingency strategy for teaching and training engineers and other specialists with FMS should be considered in university learning with engineering education.

REFERENCES