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Abstract 

Choquet integral operator is currently making inroads into many real multiple attribute analysis due to its ability on modeling the 
usual interactions held by the attributes during the aggregation process. Unfortunately, the process of identifying  values of 
fuzzy measure prior to employing Choquet integral normally turns into a very complex one with the increasing number of 
attributes, . On that note, this paper mainly reviews on some of the methods that have been proposed in reducing the complexity 
of identifying fuzzy measure values together with their pros and cons. The paper begins with a discussion on the aggregation 
process in multiple attribute analysis which then focuses on the usage of Choquet integral and its associated fuzzy measure before 
investigating some of the fuzzy measure identification methods. A simple numerical example to demonstrate the merit of using 
Choquet integral and the indications for future research are provided as well. The paper to some extent would be helpful in 
stimulating new ideas for developing simpler or enhanced versions of fuzzy measure identification methods. 
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1. Introduction 

In the context of multiple attribute analysis, aggregation can be defined as a process of composing the 
performance scores (scores with respect to a set attributes) of each alternative under evaluation into a single or 
global score where based on these single scores, the alternatives are then classified or ranked up [1]. A function 
which synthesizes the attribute scores into a global score is usually referred as an aggregation operator. Effective 
aggregation operators are expected to satisfy several mathematical properties including three fundamental properties 
namely identity when unary, boundary condition and monotonicity [2], as well as several behavioral properties such 
as having the ability to express the interactions shared by evaluation attributes [3]. 

Normally, additive operators such as simple weighted average (SWA), quasi arithmetic means, ordered weighted 
average, weighted min and weighted max are used for aggregation purpose. Unfortunately, these operators presume 
that the attributes are always independent to each other [4]. This assumption is inapt with real scenario where in 
many cases, the attributes hold interactive characteristics [5]. Therefore, aggregation should not be always carried 
out using additive operators instead, Sugeno or Choquet integral operator could be used to deal with these 
interactive attributes [6].  

Although both integrals are capable in capturing the usual interactions that exist between the attributes, the 
application of Choquet integral is widening across many disciplines with greater extent than the other one due to 
following two reasons. Firstly, as affirmed by Iourinski and Modave [7], Choquet integral is better suited for 
numerical or quantitative based problems whereas the Sugeno integral is more ideal for qualitative problems. In 
other words, the application of Choquet integral can generate more practical outcomes as most of the multiple 
attribute problems involve numbers which have a real meaning (interval or ratio level of measurement) where 
cardinal aggregation is required, unlike Sugeno integral which is more suitable for ordinal aggregation where only 
the order of the elements is important. Secondly, Choquet integral has the merit in producing unique solution in 
contrast to Sugeno integral.  

2. Choquet integral and its associated fuzzy measure 

The usage of Choquet integral usually requires a prior identification of fuzzy measure values, . These values not 
only represent the importance of each attribute, but also the importance of all possible combinations or subsets of 
attributes [8]. Let  be a finite set of criteria. A set function  defined on the set of the subsets 
of , , is called a fuzzy measure if it satisfies the following conditions: 

 
 , and (boundary condition)  
  if  then  (monotonic condition) 

 
The boundary condition interprets that an empty set, with the absence of any attributes, has no importance where 

 and the maximal set, with the presence of all attributes, has maximal importance where . 
Meanwhile, monotonicity condition implies that adding a new attribute to a combination or subset cannot decrease 
its importance. A fuzzy measure can express three types of interactions that could be shared by the attributes. 
Suppose  and  are two subsets of attributes where , then the interaction shared by these two subsets 
can be described as follows [9]: 

 
 If the value or importance of the combination of  and  is equal to the sum of respective importance assigned to 

 and  such that , then it can be claimed that  and  are sharing additive effect or in 
other words, being independent to each other.  

 If the importance of the combination of  and  is lesser than or equal to the sum of respective importance 
assigned to  and  such that , then it can be claimed that  and  are sharing sub-
additive effect or being redundant to each other.  

 If the importance of the combination of  and  is greater than or equal to the sum of respective importance 
assigned to  and  such that , then it can be claimed that  and  are expressing 
super-additive or synergistic effect. 
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To put it differently, the importance of an alliance of attributes can be actually estimated by understanding the 
interaction shared by the attributes. For instance, consider a multiple attribute problem comprising three 
attributes, . Assume the individual importance or contribution of the attributes towards the 
performance of a target are ,  and  respectively, then the importance of fuzzy 
measure consisting  and ,  can be estimated as follows: 

 
 If  and  are being redundant, the presence or combination of both attributes does not significantly the 

performance of the target as both of them share some similar information. Therefore, too much importance 
should not be given on the combination of these attributes. Thus, the importance assigned on the combination of 
these two attributes should be at most 0.5;  (sub-additive effect). 

 If the synergy between  and  can significantly enhance the performance of the target, then more importance 
should be given on the combination of these attributes. Therefore, the importance assigned on these two 
attributes when considered jointly should be at least 0.5;  (super-additive effect).  

 If  and  are independent to each other, then the importance assigned on the combination of these two 
attributes should be equal to 0.5;   (additive effect).  
 
With the complete set of fuzzy measure values and available performance scores, the Choquet integral operator 

can be then applied to compute the aggregated or global score of each alternative. Let  be a fuzzy measure on 
 and  be the performance scores of an alternative with respect to the attributes 

in . Suppose , then  = ( ) and the aggregated score using Choquet integral can be 
identified using (1) [10]. 

 
 

 
 

(1) 

 
where  is determined based on the descending order of the performance scores . For better understanding, presume 
that the scores of a student, x in three subjects (attributes), Mathematics ( ), Physic ( ), Biology ( ) are 75, 80, 
and 50 respectively. Hence, , and so  {  }. As a result, the aggregated score of the student 
based on Choquet integral model (1), 

.  

3. An additive operator versus Choquet integral: a numerical example  

Consider a student evaluation problem borrowed from [11]. Assume there are three students ( , , and ) and we 
want to identify the best student who has no any weak points. Further assume that the overall performance scores of 
the students are assessed based on three subjects namely Mathematics ( ), Statistics ( ) and Literature ( ) and their 
scores with respect to each subject, ranging from 0 to 20, are as shown in Table 1. 
 

Table 1. Decision matrix for student evaluation problem 

Student/subject    

 18 17 10 

 10 12 18 

 14 15 15 
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Suppose the overall performance score of each student is measured using SWA operator with an equal importance is 
assigned on each subject as follows: ,   and , then the computed overall scores and final 
ranking of each student can be summarized as presented in Table 2.  
 

Table 2. Result for student evaluation problem using SWA operator 
Student     Overall performance score Ranking 

 18 17 10  1 

 10 12 18  3 

 14 15 15  2 

 
The result derived using SWA shows that student  has the highest rank followed by  and . However, this result 
is somewhat counterintuitive because if the school is in search for a well-balanced student without any weak points, 
student  should be considered as the best one. The crux of this counterintuitive result is due to the usage of SWA 
operator which assumes that the subjects independently contribute to a student’s overall performance. In other 
words, the subjects are assumed to express additive effect. Nevertheless, appropriate fuzzy measure values and 
Choquet integral operator can be used as a solution for this undesirable result.  

Suppose the individual importance of each subject is assigned by adhering to the initial ratio (1:1:1) where 
, and since mathematics and statistics are redundant to each other, the importance on the 

combination of these two subjects should be lesser than or equal to the sum of their individual importance. 
Therefore, assume . Besides, since it is believed that a student’s overall 
performance increases drastically if he or she is being good at both mathematics and literature (or statistics and 
literature) or in other words, since mathematics (or statistics) shares super-additive effect with literature, then the 
importance assigned on the combination of  and  should be greater than or equal to the sum of their 
individual importance. Hence, assume   and . Not to 
mention, as per the two axioms of fuzzy measure,  and . The estimated fuzzy measure 
values and the scores as in Table 1 are then precisely substituted into Choqeut integral model to compute the overall 
performance score of each student. The result can be summarized as shown in Table 3. 
 

Table 3: Result for student evaluation problem using Choquet Integral 
Student Overall performance score Ranking 

 Step 1: scores are ranked in descending order where , and so  
Step 2: estimated fuzzy measure values and scores are replaced accordingly into Choquet 
integral model (1) 

 
 

 

2 

  3 
  1 

 
Based on the result in Table 3, it can be concluded that by applying Choquet integral which captures the interactions 
between the subjects, the expected student (student ), who has no any weak points is identified as the best student. 

4. Fuzzy measure identification methods 

As mentioned formerly, before employing Choquet integral, it is essential to identify the importance of all 
subsets of attributes or in other words, the fuzzy measure values. However, it is rather impossible or burdensome for 
the decision makers to subjectively estimate  values of fuzzy measure especially when the number of attributes, n 
is sufficiently large [12, 13]. As a result, some identification methods such as minimization of squared error based 
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method and constraint satisfaction based method were introduced [14] to aid the decision makers in estimating these 
values.  

However, both methods came with several inconveniences. The usage of the former method requires some initial 
inputs or information on the desired overall score of each alternative which actually cannot be easily or accurately 
offered by the decision makers [15]. Meanwhile, the later method requires various types of initial inputs such as 
partial ranking of the alternatives, partial ranking of the attributes, intuitions about the importance of the attributes 
and interaction among attributes which are also could not be easily offered by the decision makers especially when 
they are ill-informed on the existing problem [16]. Besides, since both methods were developed based on 
optimization models, finding a solution via these methods still remains as a bottleneck for the decision makers 
especially when the analysis involves huge number of attributes. 

Kojadinovic [17] formulated an unsupervised identification method in order to assist those decision makers who 
are unknowledgeable on the existing problem and facing difficulties in providing the necessary initial inputs. Via 
this method, the fuzzy measure values can be simply estimated based on the available performance scores by means 
of information-theoretic functions. However, the major shortcoming of this method is that it normally requires a 
large set of performance scores to estimate the fuzzy measure values precisely. 

With the intention to further reduce the complexity allied with the process of estimating general fuzzy measure 
values, several patterns or subfamilies of fuzzy measure were proposed. Among many types of fuzzy measures, λ-
measure which was introduced by Sugeno [18] emerges as one of the widely applied fuzzy measures due to its ease 
of usage, mathematical soundness and modest degree of freedom [19].  

λ-measure can be defined as follows. Let  be a finite set. A set function  defined on the 
set of the subsets of , , is called a λ- measure if it satisfies the following conditions: 
 
  and  (boundary condition)  
  if  then implies  (monotonic condition) 
  for all  where  and . 

 
Note that (a) and (b) are fundamental properties for any types of fuzzy measure and (c) is an additional property of 
λ-measure. λ-measure is constrained by a parameter λ, which describes the degree of additivity the attributes hold. 
According to Gürbüz, Alptekin and Alptekin [20] and Hu and Chen [21]: 

 
 If  < 0, then it implies that the attributes are sharing sub-additive (redundancy) effect. This means a significant 
increase in the performance of the target can be achieved by only enhancing some attributes in  which are having 
higher individual importance. 

 If  > 0, then it interprets that the attributes are sharing super-additive (synergy support) effect. This means a 
significant increase in the performance of the target only can be achieved by simultaneously enhancing all the 
attributes in  regardless of their individual importance. 

 If  = 0, then it indicates that the attributes are non-interactive. 
 

As  is finite, then the complete set of λ- measure values can be identified using equation (2).  
 

                                        (2) 
 
With regards to equation (2),  denotes the fuzzy density or individual importance of each 

attribute. If ,  , but in the case of , the  value can be determined by solving equation 
(3). 

 
                                                                            (3) 

 
In the early years, in order to simplify the process of identifying -measure values, various methods have been 

formulated by LeszczySnski, Penczek, and Grochulski [22], Sekita and Tabata [23], Tahani and Keller [24], and 
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Wierzchon [25], but these methods still suffer from large inputs or information requirement as the decision makers 
need to subjectively estimate the importance of all subsets of attributes to employ them. 

As a result, Lee and Leekwang [26] developed a genetic algorithm (GA) based identification method which is 
computationally simpler and at the same time, it does not require complete subjective estimations for all subsets of 
attributes. A few years later, Chen and Wang [27] proposed another method based on sampling design and GA 
which is also simple, fast, easily programmable, and most importantly, it only requires a few data to run the solution 
procedure. Nevertheless, there are a few disadvantages incorporated with these methods. Firstly, it is claimed that 
the more inputs or estimations offered by decision makers on the values of subsets, the better would be the solution 
generated by these methods or in other words, the method failed to have a scheme to control the amount of  
information lost on the basis of generating a satisfactory solution. Secondly, since these two methods were 
developed based on GA, they do have many intrinsic flaws such as slow convergence speed and uncertainty of 
extreme position. 

Takahagi [28] proposed a method based on diamond pair-wise comparisons that only require two types of inputs 
from the decision makers where on the horizontal axis of the diamond, they need to indicate the relative importance 
of attributes whereas the vertical axis is used to express the interaction shared by each pair of attributes. In nutshell, 
the method only requires  inputs from the decision makers. However, the method needs refinements on few 
aspects. Firstly, in order to ensure the decision makers are able to answer the diamond pair-wise comparisons 
without any complications, an understandable instruction is needed. Secondly, suitable interpretations on the axis, 
especially vertical axis should be provided. Thirdly, unlike analytical hierarchy process (AHP), where consistency 
index is defined, this method has not proposed any means to measure the consistency on the interaction 
comparisons.   

Larbani, Huang, and Tzeng [29] proposed a novel and simple method for identifying -measure values; a type 
of fuzzy measure which does not hold the typical λ-measure characteristics.  Using this method, the decision makers 
only need to provide  pair-wise comparisons of interdependence between attributes, and if possible a 
fuzzy evaluation on the individual importance of  attributes. However, unlike λ-measure, the method fails in 
providing clear indications on which attributes can be to be improved in order to significantly enhance the 
performance of the target. 

Krishnan [30] introduced a hybrid multiple attribute method that uses factor analysis as one of its components to 
extract the large set of attributes  into fewer independent factors as a means to reduce the actual number of fuzzy 
measure values that need to be identified before employing Choquet integral from  to  where 

 represents the set of extracted factors,  denotes the total number of factors, and  represent 
number of attributes within factor . However, the process of collecting data to perform a meaningful factor analysis 
could be time consuming as it may require the involvement of large number of respondents. 

Table 4 recaps the fuzzy measure identification methods discussed in this section together with their advantages 
and disadvantages.  

5. Conclusion and recommendations 

Employing additive operators in multiple attribute analysis to aggregate the performance scores of an alternative 
could lead to faulty results or decisions as these operators assume independencies among attributes, which is 
completely fallacious in reality. This paper suggests that instead of using the conventional additive operators, 
Choquet integral should be utilized for the aggregation purpose as it has the ability to deal with interactive attributes. 
The only drawback of Choquet integral is it requires a prior identification of  values of fuzzy measure where the 
complexity of identifying these values hikes up with the increasing number of evaluation attributes, .  

Many methods have been proposed to simplify the process of identifying fuzzy measure values and each of these 
methods has its own pros and cons. Through this paper, it can be noticed that the usability of each identification 
method can be actually measured based on three aspects: types of inputs required by the methods, number of inputs 
required by the methods and number of fuzzy measure values that need to be identified through each method. Future 
research can focus to further enhance the methods highlighted in this paper or formulate new versions of methods 
which: 



433 Anath Rau Krishnan et al.  /  Procedia Computer Science   59  ( 2015 )  427 – 434 

 
 only require types of inputs or information that can be easily offered by decision makers and/or,  
 only demand minimal number of inputs from decision makers and/or,  
 significantly reduce the actual number of fuzzy measure values that need to be identified.  

It can be claimed that the simpler is the fuzzy measure identification procedure, the more motivated will be the 
decision makers in utilizing the advantageous Choquet integral. 
 

Table 4. Fuzzy measure identification methods 
Methods Advantages  (A)/ Disadvantages(D)  

Minimization of squared error and 
constraint satisfaction based 
method 
(used to identify general fuzzy 
measure values) 

 (D) former method requires inputs or information on the desired overall score of each alternative which 
cannot be easily or accurately offered by the decision makers 
(D) later method requires various types of initial inputs or information such as partial ranking of the 
alternatives, partial ranking of the attributes, intuitions about the importance of the attributes and 
interaction among attributes 
(D) finding the solution via these methods is somewhat complex for the analysis involving huge number 
of attributes,  
 

Unsupervised identification method 
(used to identify general fuzzy 
measure values) 

(A) helpful for those decision makers who are ill-informed on the existing problem and having the 
complications in providing  the necessary initial inputs or information 
(D) normally requires a large number of performance scores to estimate the fuzzy measure values 
precisely 
 

Methods by [22-25] 
(used to identify λ- measure values) 
 

(D) large inputs or information requirement as the decision makers need to subjectively estimate the 
importance of all subsets of attributes 
 

GA based method/ sampling design 
and GA based method  
(used to identify λ- measure values) 
 

(A) simple , fast , and easy to be programmed  
(A) only requires a few data to run the solution procedure  
(D) failed to have a scheme to control the amount of  information lost 
(D) many intrinsic flaws such as slow convergence speed and uncertainty of extreme position  
 

Diamond pair-wise comparisons 
method 
(used to identify λ- measure values) 
 

(A) only requires two types of inputs from the decision makers; relative importance of attributes and 
interaction shared by each pair of attributes  
(A) only requires  inputs from the decision makers 
(D) the instruction for the decision makers to answer the diamond pair-wise comparisons is somewhat 
vague  
(D) requires suitable interpretations on the vertical axis  
(D) a method to  measure the consistency of interaction comparisons is not  available  
 

-measure identification method 
(used to identify -measure values) 

(A) decision makers only need to provide  pair-wise comparisons of interdependence 
between attributes, and if possible a fuzzy evaluation on the individual importance of  attributes; total 
number of inputs required is  
(D) fails in providing clear indications on which attributes can be to be improved in order to 
significantly enhance the performance of alternatives 
 

Hybrid MAA model using factor 
analysis 
(used to identify λ- measure values)  

(A) reduces the actual number of fuzzy measure values that need to be identified before employing 
Choquet integral from  to  
(D) data collection for the purpose of performing factor analysis could be time consuming and may 
involve large number of respondents 
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