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Abstract 

This research centres on independent group test of comparing two or more means by using the parametric 
method, namely the Alexander-Govern test. The Alexander-Govern (AG) test uses mean as a measure of its 
central tendency. It is a better alternative to the Welch test, James test and the ANOVA, because it has a good 
control of Type I error rates and produces a high power efficient for a normal data under variance heterogeneity, 
but not for non-normal data. As a result, trimmed mean was applied on the test under non-normal data for two 
group condition, but as the number of groups increased above two, the test fails to be robust. Due to this, when 
the MOM estimator was applied on the test, it was not influenced by the number of groups, but failed to give a 
good control of Type I error rates under skewed heavy tailed distribution. In this research, the Winsorized MOM 
estimator was applied in AG test as a measure of its central tendency. 5,000 data sets were simulated and 
analysed using Statistical Analysis Software (SAS). The result shows that with the pairing of unbalanced sample 
size with unequal variance of (1:36) and the combination of both balanced and unbalanced sample sizes with 
both equal and unequal variances, under six group condition, for g = 0.5 and h = 0.5, for both positive and 
negative pairing condition, the test gives a remarkable control of Type I error rates. In overall, the AGWMOM 
test has the best control of Type I error rates, across the distributions and across the groups, compared to the AG 
test, the AGMOM test and the ANOVA. 

Keywords: Alexander-Govern test, trimmed mean, MOM estimator, Type I error rates, Power and AGWMOM 
test 

1. Introduction 

This research focuses on comparing the performance of the Type I error rates and power of the AG test, the 
AGMOM test, the AGWMOM test, the t-test and the ANOVA, for two, four and six group conditions. In order to 
see of the five tests, which one of the tests will give good control of Type I error rates and also produce high 
power efficient, under skewed heavy tailed distribution. The independent group tests such as the analysis of 
variance (ANOVA) methods have been employed in many areas, for example, in medicine, economics, sociology 
and agriculture, as discussed by Pardo, Pardo, Vincente and Esteban (1997). Several assumptions have to be 
satisfied before the method can perform effectively, which are (i) homogeneity of variances, (ii) normal 
distribution of the data and (iii) independent observations. The ANOVA is a classical method of analysis that is 
used for comparing the differences between three or more means. It is used for testing the equality of the 
measure of the central tendency of a distribution and is robust to small deviations from normality, especially 
when the sample size is large enough to guarantee normality as stated by Wilcox (1997, 2003). 

Yusof, Abdullah, Yahaya and Othman (2011) observed that the two major problems confronting the analysis of 
variance are the presence of non-normality and variance heterogeneity in a data distribution. As a result of this, 
Type I error rates is increased and there is a reduction in the power efficiency of the test. When the data 
distribution is seen to be heavy tailed, the standard error of the mean can be badly increased (Wilcox & 
Keselman, 2002).This makes the standard error of the ANOVA to be larger than it ought to be and the power of 
the test would be reduced. To obtain a good test, Type I error rates should be controlled and likewise the power 
of the test. This implies that neither should Type I error rates be increased nor should there be a lost in the power 
of the test. 

The ANOVA is very sensitive to the assumptions of homogeneity of variance such that when there is a violation, 
the outcome of the analysis could be unreliable: then the p-value becomes too conservative or may be large. 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 10; 2015 

52 
 

Therefore, it is very important to test for the homogeneity of the variance and to check for the equality of the 
variance assumptions by using the correct test, so as to increase the genuineness of the results (Brown & 
Forsythe, 1974; Wilcox, Charlin & Thompson, 1986).  The problem of heterogeneity of variance has been 
discussed by few researchers and some alternatives were proposed. Welch (1951) introduced the Welch test that 
is used to test for the hypothesis of two populations having equal means. It was mentioned in different literatures 
as an alternative to the ANOVA (Algina, Oshima & Lin, 1994; Keselman, 1982; Lix, Keselman, & Keselman, 
1996; Wilcox et al., 1986). 

James (1951) also introduced a better solution for ANOVA under heterogeneity of variance, namely the James 
test. This test is used for weighing sample means and is recommended by different researchers (Lix et al., 1996; 
Oshima & Algina, 1992; Wilcox, 1988). When the sample size is small, and the data distribution is non-normal, 
the James test fails to give a good control of Type I error rates. Both the Welch test and the James test are used 
for analysing a data distribution that is non-normal with unequal variance (Brunner, Dette, & Munk, 1997; Kohr 
& Games, 1974; Krishnamorthy, Lu, & Mathew, 2007; Wilcox & Keselman, 2003). 

The Alexander-Govern test was introduced in (1994) as to deal with heterogeneity of variance under the 
condition of normality, but is a test that is not robust to non-normal data. The Alexander-Govern test has been 
compared with the Welch test and the James test and it was agreed by Schneider and Penfield (1997) and Myers 
(1998) that the Alexander-Govern test and the James test were better under most conditions being studied. The 
performance of the Alexander-Govern test was comparable to the James test, and the calculation of the 
Alexander-Govern test was simpler than that of the James test. 

This finding was agreed by Myers (1998) suggesting that the Alexander-Govern test provides a good solution to 
the problem of variance heterogeneity.  Although, the Alexander-Govern test is a good alternative to the 
ANOVA when it comes to variance heterogeneity, this test still has some drawbacks. The main weakness of the 
test is that it cannot handle a deviation from normality, as proven by Myers (1998). This method can acceptably 
put under control Type I error rates when there is heterogeneity in the variances and when the distribution of the 
data is normal. 

Lix and Keselman (1998) proposed an alternative approach by substituting the common mean with trimmed 
mean in a few robust test statistics which improved the performance of the tests under non-normal data. The 
trimmed mean and Winsorized variance are widely used as alternative to the common mean and variance 
respectively, due to some good properties, such as having a remarkable control over Type I error rates and the 
power of the test, when there is a violation under the assumptions of homogeneity of the variance and when the 
distribution is normal (Wilcox, 1995). 

Trimmed mean is calculated by averaging only the centred data after discarding a particular amount of the 
percentage of the largest and the smallest data value, while its variance is estimated by Winsorized variance. In 
applying trimmed mean in a data distribution, it possesses some disadvantages, which are firstly: the percentage 
of trimming is placed at prior, resulting in the elimination process performed regardless of the shape of the 
distribution. Secondly in trimming process, it should be done carefully, to minimize loss of information. Thirdly, 
it cannot handle large size of extreme values (Yahaya, Othman & Keselman, 2006).  

One of the suggested estimator as a replacement for the trimmed mean is a better alternative referred to as the 
modified one-step M-estimator (MOM), which is able to identify the presence of outliers in a data distribution 
(Yusuf, Abdullah, Yahaya & Othman, 2011). It empirically trims only extreme data (Othman, Keselman, 
Padmanabhan, Wilcox & Fradette, 2004). The main disadvantage of using the MOM estimator as a measure of 
the central tendency, for example in Alexander-Govern test, is that it cannot control the error rates in the test 
when the level of skewness and kurtosis is at peak. In this research, the Winsorized MOM was applied in 
Alexander–Govern test under variance heterogeneity for non-normal data, under a skewed heavy tailed 
distribution, and it gave the test a remarkable control of Type I error rates and produced a high power efficient 
for test. 

2. Method 

2.1 The Alexander-Govern Test 

The Alexander-Govern test is a test introduced by Alexander-Govern (1994). This test uses mean as a measure of 
its central tendency. It produces a good control of Type I error rates and high power efficient under variance 
heterogeneity, but it is not robust for a non-normal data. As a result, the test fails to give a good control of Type I 
error rates for a non-normal data. This test is used for comparing two or more groups. The test statistic for the 
Alexander-Govern test is obtained by using the following procedures. 

https://www.researchgate.net/publication/243042935_Comparability_of_the_James'_second-order_approximation_test_and_the_Alexander_and_Govern_A_statistic_for_non-normal_heteroscedastic_data?el=1_x_8&enrichId=rgreq-ad4d2bac-7ea5-4b01-b52c-29762a84560a&enrichSource=Y292ZXJQYWdlOzI4Mjg0NjQ0NjtBUzoyODQzNjY5Mjk0NDg5NjFAMTQ0NDgwOTc2NzcxNg==
https://www.researchgate.net/publication/243042935_Comparability_of_the_James'_second-order_approximation_test_and_the_Alexander_and_Govern_A_statistic_for_non-normal_heteroscedastic_data?el=1_x_8&enrichId=rgreq-ad4d2bac-7ea5-4b01-b52c-29762a84560a&enrichSource=Y292ZXJQYWdlOzI4Mjg0NjQ0NjtBUzoyODQzNjY5Mjk0NDg5NjFAMTQ0NDgwOTc2NzcxNg==
https://www.researchgate.net/publication/243042935_Comparability_of_the_James'_second-order_approximation_test_and_the_Alexander_and_Govern_A_statistic_for_non-normal_heteroscedastic_data?el=1_x_8&enrichId=rgreq-ad4d2bac-7ea5-4b01-b52c-29762a84560a&enrichSource=Y292ZXJQYWdlOzI4Mjg0NjQ0NjtBUzoyODQzNjY5Mjk0NDg5NjFAMTQ0NDgwOTc2NzcxNg==
https://www.researchgate.net/publication/243042935_Comparability_of_the_James'_second-order_approximation_test_and_the_Alexander_and_Govern_A_statistic_for_non-normal_heteroscedastic_data?el=1_x_8&enrichId=rgreq-ad4d2bac-7ea5-4b01-b52c-29762a84560a&enrichSource=Y292ZXJQYWdlOzI4Mjg0NjQ0NjtBUzoyODQzNjY5Mjk0NDg5NjFAMTQ0NDgwOTc2NzcxNg==
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2.1.1. The Alexander-Govern Test Statistic 

The procedure to calculate the test statistic for the Alexander-Govern test starts by first ordering the data set, 
with population j (j = 1, …, J). Then for each of the data set, the mean is calculated using: 

        (1) 

where 

represents the observed random samples and denote the sample sizes of the observation. The mean is 

used as the central tendency measure in the Alexander-Govern (1994) procedure. After obtaining the mean, the 

estimate of the usual unbiased variance is calculated using: 

       (2) 

where 

is used for estimating for the population j. The standard error of the mean is calculated for each group 

using: 

        (3) 

The weight ( for the group sizes with j population of the ordered sample data is defined such that 

should be equal to 1. So, the weight ( for each of the group is calculated using the formula below: 

       (4) 

The null hypothesis for the Alexander-Govern test (1994) method for the equality of the mean, under variance 
heterogeneity is expressed as: 

      (5) 

The alternative hypothesis contradicts the claim or statement made by the null hypothesis. The variance 
weighted estimate of the total mean for all the groups in the data distribution is calculated using: 

       (6) 

where 

denotes the weight for each group in the data set and denotes the mean of each of the groups in the 

ordered sample. The statistic for each group is calculated by using: 

        (7) 

X



ijj

j

X

n



ijX jn

2

2
( )

( 1)

ij j
j

j

X X
s

n









jX


j

2
1/2[ ]j

ej
j

s
S

n


)jw jw

( )jw

2

2

1/

1/
e j

j
e jj

S
w

S



1

1

: ...

: ... , 1,...,

o j

A j

H

H j J

 

 



 

1

J

jj j
w X

 




jw jX


t

j

j
e j

X
t

S


 






www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 10; 2015 

54 
 

where 

is the mean for each group. is the grand mean for all the groups under analysis and is the standard 

error of the mean for each of the group with population j. 

The t statistic is distributed as a t variable, having  degrees of freedom for  

Where, is the degree of freedom for each of the groups in the order sample data. The t statistic calculated for 
each group is converted to a standard normal deviates by using the Hill’s (1970) normalization approximation in 
the Alexander-Govern (1994) procedure. The formula is expressed as: 

    (8) 

where 

         (9) 

where 

       (10) 

The test statistic for the Alexander-Govern procedure is expressed as: 

          (11) 

After obtaining the test statistic for the Alexander-Govern test, we select a significance level of with J 
– 1 chi-square degrees of freedom. The p-value is also obtained for the Alexander-Govern method. The standard 
chi-square distribution is used to calculate the critical value of the test. After which, we compare our chi-square 
value with the test statistic value of the Alexander-Govern test. If A calculated is greater than the chi-square 
value from the chi-square distribution table, then we reject and conclude that the means of the independent 
groups are different from each other, otherwise, we do not. 

3. The Modified Alexander-Govern Test 

In this research, we modified the mean as a central tendency measure in the Alexander-Govern test by replacing 
it with the Winsorized modified one step M-estimator (WMOM) as a measure of its central tendency. The 
Winsorized MOM estimator is applied on the data distribution where the outlier detected value is replaced or 
exchanged with a preceding value closest to the position where the outlier is located. The Winsorized MOM 
estimator is obtained by using the formula: 

       (12) 

 where, 

is the mean of the Winsorized data distribution, and n is the sample size of the Winsorized data 

distribution. 
The WMOM estimator becomes a replacement for the common mean as a measure of the central tendency in 
Alexander-Govern test, for the following reasons: 

i. To remove the presence of outliers from the data distribution 

ii. To make the Alexander-Govern test to be robust to non-normal data. 

The Winsorized sample variance is expressed as: 

jX





e jS

1jn  .



3 7 5 3

2 4

[ 3 ] [4 33 240 855 ]

[10 8 1000 ]j

c c c c c c
Z c

b b bc b

   
  

 

2
1/2[ log (1 )]j

e
j

t
c a


  

21, 0.5, 48j j jn a b a     

2

1

J

jj
A Z




0.05 

OH

1
j

J

WMOMjj
WMOM

X
WMOM X

n


 



WMOMjX




www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 10; 2015 

55 
 

       (13) 

where 

is the Winsorized sample variance for the Winsorized data distribution, is the observed values  

and is the Winsorized MOM estimator for the Winsorized data distribution.  

The standard error of the WMOM is obtained by using the bootstrapping methods in order to estimate the 
standard error and the bootstrapping algorithm for estimating the standard errors is defined below: 

Firstly, we choose B independent bootstrap samples defined as: where each of these random 
samples comprises of n data values selected with replacement from x defined below: 

              (14) 

The indication of the star shows that is not the real data set of x, but it refers to a randomized or resampled 
version of x.  

In estimating the standard error of the bootstrap samples, the number of B falls within the range of (25-200). In 
this research, we made use of 50 amount of the bootstrap samples is sufficient to give reasonable estimate of the 
standard error of the MOM estimator (Efron & Tibshirani, 1998). 

Secondly, we evaluate the bootstrap replications equating to each of the bootstrap samples defined below: 

             (15) 

Thirdly, we estimate the standard error of from the sample standard deviations of the bootstrap (B) 

replications as defined below: 

                        (16) 

where 

             (17) 

The weight for the Winsorized data distribution for each group is expressed below: 

             (18) 

where 

is the sum of the inverse of the square of the standard error for all the groups in the ordered data 

distribution, from the real data distribution. 

The variance weighted estimate of the total mean for the Winsorized data distribution for all the groups is 

expressed as: 

                          (19) 

The t statistic for the Winsorized data distribution for each of the groups is obtained using the formula below: 
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             (20) 

where  

is the Winsorized sample standard error from the Winsorized data distribution for each of the 

independent group of  

In the Alexander-Govern (1994) method, the value is converted to standard normal by using the Hill’s (1970) 

normalization approximation and the hypothesis testing of the Winsorized data distribution, where is 

the usual estimate of the Winsorized sample variance of the WMOM estimator for is expressed as: 

           (21)

 

Thus, the normalization approximation formula for the Alexander-Govern method, using the Winsorized data 
distribution is expressed as AGWMOM. The test statistic of the AGWMOM for all the groups in the ordered data 
sample is expressed as: 

            (22) 

The test statistic for the AGWMOM test follows a chi-square distribution at level of significance, 
having J – 1 chi-square degrees of freedom. The p- value can be determined using a chi-square distribution table. 

3.1 The Variables Used in this Research 

There are five different types of variables that were used in this research. They are balanced and unbalanced 
sample size, equal and unequal variance, group sizes, types of distribution and nature of pairing. All these 
variables mentioned above, were manipulated to show the strength and the weakness of the original AG test, the 
AGMOM test, the AGWMOM test, the t-test and the ANOVA. 

 

Table 1. The characteristics of the g- and h- distribution 

g- (Non-negative content) h- (Non-negative) Skewness Kurtosis Types of distribution 
0 0 0 3  Normal 
0 0.5 0 11986.20 Symmetric heavy tailed

0.5 0 1.81 18393.60 Skewed normal tailed 
0.5 0.5 120.10 18393.60 Skewed heavy tailed 

Source: Wilcox (1997) 

 

4. The Research Design 

The Alexander-Govern test is a test that is not robust for non-normal data under variance heterogeneity. For the 
design of this research, both balanced and unbalanced sample size were paired with equal and unequal variance 
for two groups (J = 2), for four groups, (J = 4), and for six groups (J = 6), positively and negatively with each of 
the g- and h- distribution. 

For each of the test namely: the AG test, the AGMOM test, the AGWMOM test, the t-test and the ANOVA, 5,000 
data sets were simulated in the research design. To obtain the pseudo random variates, SAS generator RANNOR 
(SAS, Institute, 1999) was used with a nominal level of for the analysis of the tests in this research. The 
robustness of the Winsorized modified one step M-estimator was obtained by manipulating the five listed 
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variables as mentioned previously with regards to the Type I error rates and power of the test. 

 

Table 2. Research Design for Two Groups 

The g- and h- 
distribution 

Balanced and 
Unbalanced sample size

Equal and 
Unequal variance 

Nature of 
Pairing 

Notations for the 
Conditions of Pairing 

g = 0 and h = 0 20:20 1:1 Balanced 
condition 

C1 

1:36 Positive 
Pairing 

C2 

16:24 1:1  C3 
1:36 Positive 

Pairing 
C4 

36:1 Negative 
Pairing 

C5 

g = 0 and h = 0.5 20:20 1:1 Balanced 
condition 

C6 

 1:36 Positive 
Pairing 

C7 

16:24 1:1  C8 
1:36 Positive 

Pairing 
C9 

36:1 Negative 
Pairing 

C10 

g = 0.5 and h = 0 20:20 1:1 Balanced 
condition 

C11 

1:36 Positive 
Pairing 

C12 

16:24 1:1  C13 
1:36 Positive 

Pairing 
C14 

36:1 Negative 
Pairing 

C15 

g = 0.5 and h = 
0.5 

20:20 1:1 Balanced 
condition 

C16 

1:36 Positive 
Pairing 

C17 

16:24 1:1  C18 
1:36 Positive 

Pairing 
C19 

36:1 Negative 
Pairing 

C20 

 

Table 3. Research Design for Four Groups 

The g- and h- 
distribution 

Balanced and Unbalanced 
sample size 

Variance 
ratio 

Nature of 
Pairing 

Notations for the 
condition of Pairing 

g = 0 and h = 0 20:20:20:20 1:1:1:1 Balanced 
condition 

C21 

1:1:1:36 Positive 
Pairing 

C22 

1:4:16:36 Positive 
Pairing 

C23 

15:15:20:30 1:1:1:1  C24 
1:1:1:36 Positive 

Pairing 
C25 
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36:1:1:1 Negative 
Pairing 

C26 

1:4:16:36 Positive 
Pairing 

C27 

  36:16:4:1 Negative 
Pairing 

C28 

g = 0 and h = 0.5 20:20:20:20 1:1:1:1 Balanced 
condition 

C29 

1:1:1:36 Positive 
Pairing 

C30 

1:4:16:36 Positive 
Pairing 

C31 

15:15:20:30 1:1:1:1  C32 
1:1:1:36 Positive 

Pairing 
C33 

36:1:1:1 Negative 
Pairing 

C34 

1:4:16:36 Positive 
Pairing 

C35 

36:16:4:1 Negative 
Pairing 

C36 

g = 0.5 and h = 0 20:20:20:20 1:1:1:1 Balanced 
condition 

C37 

1:1:1:36 Positive 
Pairing 

C38 

1:4:16:36 Positive 
Pairing 

C39 

15:15:20:30 1:1:1:1  C40 
1:1:1:36 Positive 

Pairing 
C41 

36:1:1:1 Negative 
Pairing 

C42 

1:4:16:36 Positive 
Pairing 

C43 

36:16:4:1 Negative 
Pairing 

C44 

g = 0.5 and h = 0.5 20:20:20:20 1:1:1:1 Balanced 
condition 

C45 

1:1:1:36 Positive 
Pairing 

C46 

1:4:16:36 Positive 
Pairing 

C47 

15:15:20:30 1:1:1:1  C48 
1:1:1:36 Positive 

Pairing 
C49 

36:1:1:1 Negative 
Pairing 

C50 

1:4:16:36 Positive 
Pairing 

C51 

36:16:4:1 Negative 
Pairing 

C52 

 

Table 4. Research Design for Six Groups 

The g- and h- 
distribution 

Balanced and Unbalanced 
sample size 

Variance ratio Nature of 
Pairing 

Notations for the 
Condition of Pairing 
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g = 0 and h = 0 20:20:20:20:20:20 1:1:1:1:1:1 Balanced 
condition 

C53 

1:1:1:1:1:36 Positive 
Pairing 

C54 

1:4:4:16:16:36 Positive 
Pairing 

C55 

2:4:4:16:32:62 1:1:1:1:1:1  C56 
1:1:1:1:1:36 Positive 

Pairing 
C57 

36:1:1:1:1:1 Negative 
Pairing 

C58 

1:4:4:16:16:36 Positive 
Pairing 

C59 

36:16:16:4:4:1 Negative 
Pairing 

C60 

g = 0 and h = 0.5 20:20:20:20:20:20 1:1:1:1:1:1 Balanced 
condition 

C61 

1:1:1:1:1:36 Positive 
Pairing 

C62 

1:4:4:16:16:36 Positive 
Pairing 

C63 

2:4:4:16:32:62 1:1:1:1:1:1  C64 
 1:1:1:1:1:36 Positive 

Pairing 
C65 

  36:1:1:1:1:1 Negative 
Pairing 

C66 

1:4:4:16:16:36 Positive 
Pairing 

C67 

36:16:16:4:4:1 Negative 
Pairing 

C68 

g = 0.5 and h = 0 20:20:20:20:20:20 1:1:1:1:1:1 Balanced 
condition 

C69 

1:1:1:1:1:36 Positive 
Pairing 

C70 

1:4:4:16:16:36 Positive 
Pairing 

C71 

2:4:4:16:32:62 1:1:1:1:1:1  C72 
1:1:1:1:1:36 Positive 

Pairing 
C73 

36:1:1:1:1:1 Negative 
Pairing 

C74 

1:4:4:16:16:36 Positive 
Pairing 

C75 

36:16:16:4:4:1 Negative 
Pairing 

C76 

g = 0.5 and h = 
0.5 

20:20:20:20:20:20 1:1:1:1:1:1 Balanced 
condition 

C77 

1:1:1:1:1:36 Positive 
Pairing 

C78 

1:4:4:16:16:36 Positive 
Pairing 

C79 

2:4:4:16:32:62 1:1:1:1:1:1  C80 
1:1:1:1:1:36 Positive 

Pairing 
C81 

36:1:1:1:1:1ssssssss Negative 
Pairing 

C82 
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1:4:4:16:16:36 Positive 
Pairing 

C83 

36:16:16:4:4:1 Negative 
Pairing 

C84 

 

This research design was used to determine the robustness of the modified AG test. By using this research design, 
the best procedure was obtained. As stated by Lix and Keselman (1998) the empirical rate of Type I error must 
fall within the interval of to judge the robustness of a given test at level of significance. 
The range of the value selected for this research gave a strict condition for the robustness of the tests within this 
interval, with the aim of producing minimum error rate with deviation from model assumptions.  

According to Abdullah, Yahaya and Othman (2007) in their research used the range of 0.042 and 0.058 to 
evaluate the robustness of the tests for their analysis. The interval selected by these researchers, reveal that a test 
is said to be robust if its Type I error rates falls within the stringent criterion of robustness, otherwise if the test 
falls outside this interval to Judge the robustness of the test, then the Type I error rates is out of control. 
According to Bradley’s (1978) the lenient criteria of robustness must fall within the range of (0.025 – 0.075).  

This interval of robustness is also selected in this research, to see those tests that can give remarkable control 
over the probability of Type I error rates.  

In the Table for the Type I error rates for two, four and six group condition, the bolded values represent those 
values that fall within the stringent criteria of robustness. The un-bolded values represent those values that fall 
within the lenient criteria of robustness. The red-coloured values represent those values that are not robust at all. 
They neither fall within the stringent criteria of robustness nor within the lenient criteria of robustness. 

 

Table 5. Comparison of the Type I error rates for the AG test, AGMOM test, AGWMOM test and t-test under 
normal distribution for two group condition. 

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Size 

Equal and 
Unequal 
Variance 

AG AGMOM AGWMOM t-test 

g = 0 and h = 0  
20:20 

1:1 0.0508 0.0414 0.0392 0.0528
1:36 0.0562 0.0528 0.0496 0.0710

16:24 1:1 0.0484 0.0430 0.0386 0.0570
1:36 0.0570 0.0552 0.0496 0.0618
36:1 0.0498 0.0450 0.0438 0.1078

 

In Table 5, for g = 0 and h = 0, in all the conditions of pairing, the AG test, the AGMOM test and the AGWMOM 
test have equal number of Type I error rates that are considered robust compared to the t-test. The t-test have two 
of its Type I error rates fall within the stringent criteria of robustness and only one of its Type I error rates fall 
within the lenient criteria of robustness, with the combination of balanced sample size with equal variance and 
the pairing of unbalanced sample size with both equal and unequal variance. The remaining two of its Type I 
error rates are regarded as not robust.  

 

Table 6. Comparison of the Type I error rates for the AG test, the AGMOM test, the AGWMOM test and the t-test 
under a symmetric heavy tailed distribution for two group condition. 

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Size 

Equal and 
Unequal 
Variance 

AG AGMOM AGWMOM t-test 

g = 0 and h = 0.5         20:20 1:1 0.0336 0.0262 0.0346 0.0356
1:36 0.0340 0.0358 0.0392 0.0402

        16:24 1:1 0.0304 0.0266 0.0352 0.0430
1:36 0.0394 0.0340 0.0412 0.0138
36:1 0.0312 0.0294 0.0346 0.0814

 

In Table 6, for g = 0 and h = 0.5, in all the conditions of pairing, the AG, AGMOM and the AGWMOM test all 

0.042 0.058
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have their Type I error rates fall within the lenient criteria of robustness and the three tests are said to be robust 
between the interval of 0.025 and 0.075. While the t-test has just one of its Type I error rate, fall within the 
stringent criteria of robustness, two of its Type I error rates fall within the lenient criteria of robustness and the 
remaining two of its Type I error rates are considered not robust. 

 

Table 7. Comparison of the Type I error rates for the AG test, the AGMOM test, the AGWMOM test and the t-test 
under a skewed normal tailed distribution for two group condition. 

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Size 

Equal and 
Unequal 
Variance 

AG AGMOM AGWMOM t-test 

g = 0.5 and h = 0       20:20     1:1 0.0508 0.0420 0.0364 0.0474
    1:36 0.0562 0.0534 0.0558 0.0882

      16:24     1:1 0.0480 0.0434 0.0386 0.0570
    1:36 0.0570 0.0560 0.0588 0.0380
    36:1 0.0498 0.0504 0.0450 0.1538

 

In Table 7, for g = 0.5 and h = 0, in all the conditions of pairing, the AG test, the AGMOM test and the 
AGWMOM test are more robust compared to the t-test. The AG test and the AGMOM test have all of their Type I 
error rates fall within the stringent criteria of robustness. While the AGWMOM test have two of its Type I error 
rates fall within the stringent criteria of robustness and the remaining three of its Type I error rates fall within the 
lenient criteria of robustness. The t-test have two of its Type I error rates fall within the stringent of robustness, 
only one of its Type I error rates fall within the lenient criteria of robustness and the remaining two of its Type I 
error rates are considered not to be robust.   

 

Table 8. Comparison of the Type I error rates for the AG test, the AGMOM test, the AGWMOM test and the t-test 
under a skewed heavy tailed distribution for two group condition. 

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Size 

Equal and 
Unequal 
Variance 

AG AGMOM AGWMOM t-test 

g = 0.5 and h = 
0.5 

20:20 1:1 0.0336 0.0258 0.0314 0.0288
1:36 0.3400 0.0374 0.0370 0.0430

16:24 1:1 0.0274 0.0272 0.0352 0.0370
1:36 0.0394 0.0378 0.0422 0.0138
36:1 0.0312 0.0332 0.0298 0.0878

 

In table 8, for g = 0.5 and h = 0.5, in all the conditions of pairing, the AG, the AGMOM and the AGWMOM test 
have equal number of Type I error rates that are regarded as robust, compared to the t-test. The t-test only has 
one of its Type I error rate fall within the stringent criteria of robustness and the other one of its Type I error rates 
fall within the lenient criteria of robustness. The remaining three of its Type I error rates are considered not 
robust. 

 

Table 9. Comparison of the Type I error rates for the AG test, the AGMOM test, the AGWMOM test and the 
ANOVA under a normal distribution for four group condition. 

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Size 

Equal and 
Unequal 
Variance 

AG AGMOM AGWMOM ANOVA

g = 0 and h = 0 20:20:20:20 1:1:1:1 0.0518 0.0404 0.0386 0.0518
1:1:1:36 0.0522 0.0428 0.0408 0.1096

1:4:16:36 0.0544 0.0500 0.0468 0.0798
15:15:20:30 1:1:1:1 0.0504 0.0478 0.0458 0.0500

1:1:1:36 0.0514 0.0482 0.0458 0.0334
36:1:1:1 0.0504 0.0486 0.0446 0.1696
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1:4:16:36 0.0520 0.0492 0.0464 0.0320
36:16:4:1 0.0516 0.0514 0.0468 0.1446

 

In table 9, for g = 0 and h = 0, in all the conditions of pairing, the AG test, the AGMOM test and the AGWMOM 
have equal number of Type I error rates that are said to be robust, compared to the ANOVA. The ANOVA has two 
of its Type I error rates fall within the stringent criteria of robustness, the other two of its Type I error rates fall 
within the lenient criteria of robustness. The remaining four of its Type I error rates are said not to be robust. 

 

Table 10. Comparison of the Type I error rates for the AG test, the AGMOM test, the AGWMOM test and the 
ANOVA under a symmetric heavy tailed distribution, for four group condition. 

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Size 

Equal and 
Unequal 
Variance 

AG AGMOM AGWMOM ANOVA

g = 0 and h = 0.5 20:20:20:20 1:1:1:1 0.0280 0.0218 0.0282 0.0336
1:1:1:36 0.0282 0.0230 0.0310 0.0782

1:4:16:36 0.0282 0.0260 0.0330 0.0484
15:15:20:30 1:1:1:1 0.0240 0.0192 0.0260 0.0344

1:1:1:36 0.0238 0.0212 0.0272 0.0182
36:1:1:1 0.0208 0.0192 0.0264 0.1328

1:4:16:36 0.0230 0.0258 0.0298 0.0178
36:16:4:1 0.0238 0.0234 0.0286 0.1130

 

In Table 10, for g = 0 and h = 0.5, the AGWMOM test is more robust compared to the AG test, the AGMOM test 
and the ANOVA. The AGWMOM test have five of its Type I error rates fall within the lenient criteria of 
robustness, with the combination of balanced sample size with unequal variance and the pairing of unbalanced 
sample size with equal variance and the pairing of unbalanced sample size with unequal variance, positively and 
negatively. For the AG test, three of its Type I error rates fall within the lenient criteria of robustness and are said 
to be robust. The AGMOM test have only two of its Type I error rates fall within the lenient criteria of robustness, 
the remaining six of its Type I error rates are considered not robust. The ANOVA have only one of its Type I error 
rate fall within the stringent criteria of robustness, the other two of its Type I error rates fall within the lenient 
criteria of robustness. While the remaining five of its Type I error rates are considered not robust.  

 

Table 11. Comparison of the Type I error rates for the AG test, the AGMOM test, the AGWMOM test and the 
ANOVA under a skewed normal tailed distribution for four group condition. 

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Size 

Equal and 
Unequal 
Variance 

AG AGMOM AGWMOM ANOVA

g = 0.5 and h = 0 20:20:20:20 1:1:1:1 0.0620 0.0436 0.0452 0.0550
1:1:1:36 0.0620 0.0460 0.0472 0.1714

1:4:16:36 0.0756 0.0546 0.0502 0.1098
15:15:20:30 1:1:1:1 0.0596 0.0460 0.0466 0.0508

1:1:1:36 0.0872 0.0448 0.0520 0.0756
36:1:1:1 0.0602 0.0482 0.0520 0.2330

1:4:16:36 0.0928 0.0502 0.0550 0.0444
36:16:4:1 0.0646 0.0560 0.0462 0.1954

 

In Table 11, both the AGMOM test and the AGWMOM test are more robust compared to the AG test and the 
ANOVA. For the AGMOM and the AGWMOM test, all their Type I error rates fall within the stringent criteria of 
robustness, in all the conditions of pairing. The AG test has five of its Type I error rates fall within the lenient 
criteria of robustness, with the combination of balanced sample size with both equal variance and unequal 
variance. Also, with the pairing of unbalanced sample with equal variance and unbalanced sample size with 
unequal variance for negative pairing condition only. For the ANOVA, three of its Type I error rates fall within 
the stringent criteria of robustness and the remaining five of its Type I error rates are regarded as not robust.      
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Table 12. Comparison of the Type I error for the AG, the AGMOM, the AGWMOM and the ANOVA under 
skewed heavy tailed distribution for four group condition.  

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Size 

Equal and 
Unequal 
Variance 

AG AGMOM AGWMOM ANOVA

g = 0.5 and h = 
0.5 

    20:20:20:20    1:1:1:1 0.0322 0.0206 0.0298 0.0290 
   1:1:1:36 0.0320 0.0220 0.0326 0.0880 
   1:4:16:36 0.0336 0.0250 0.0336 0.0512 

    15:15:20:30    1:1:1:1 0.3000 0.0190 0.0274 0.0336 
   1:1:1:36 0.3960 0.0226 0.0274 0.0240 
   36:1:1:1 0.0272 0.0200 0.0266 0.1394 
   1:4:16:36 0.0360 0.0266 0.0320 0.0164 
   36:16:4:1 0.0266 0.0256 0.0284 0.1130 

 

In Table 12, for g = 0.5 and h = 0.5, the AG test is more robust compared to the AGMOM test, the AGWMOM 
test and the ANOVA. The AG test have all its Type I error rates fall within the lenient criteria of robustness, in all 
the conditions of pairing. The AGMOM test have five of its Type I error rates fall within the lenient criteria of 
robustness and the remaining three of its Type I error rates are regarded as not robust. The AGWMOM test have 
six of its Type I error rates fall within the lenient criteria of robustness, with the combination of balanced sample 
size with unequal variance and the pairing of unbalanced sample size with equal variance. Also, with the pairing 
of unbalanced sample size with unequal variance, positively and negatively. The ANOVA has only one of its’ 
Type I error rates fall within the stringent criteria of robustness, the other one of its Type I error rates fall within 
the lenient criteria of robustness. The remaining six of its Type I error rates are considered not robust. 

 

Table 13. Comparison of the Type I error rates for the AG test, the AGMOM test, the AGWMOM test and the 
ANOVA, for six group condition, under a normal distribution 

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Size 

Equal and 
Unequal 
Variance 

AG AGMOM AGWMOM ANOVA

g = 0 and h = 0    20:20:20:20:20:20   1:1:1:1:1:1 0.0522 0.0440 0.0402 0.0530 
  1:1:1:1:1:36 0.0522 0.0444 0.0406 0.1260 
  1:4:4:16:16:36 0.0572 0.0488 0.0464 0.0810 

   2:4:4:16:32:62   1:1:1:1:1:1 0.1522 0.1864 0.1796 0.0540 
  1:1:1:1:1:36 0.1434 0.1698 0.1724 0.0002 
  36:1:1:1:1:1 0.1192 0.1432 0.1378 0.5992 
  1:4:4:16:16:36 0.0920 0.0872 0.0926 0.0020 
  36:16:16:4:4:1 0.1148 0.1454 0.1362 0.6878 

 

In Table 13, for g = 0 and h = 0, the four different tests have equal number of Type I error rates that are said to be 
robust. With the combination of balanced sample size with both equal and unequal variance, the AG test and 
AGMOM test have three of their Type I error rates fall within the stringent criteria of robustness. While the 
remaining five of their Type I error rates are said not to be robust. The AGWMOM test has only one of its Type I 
error rate fall within the stringent criteria of robustness, the other two of its Type I error rates fall within the 
lenient of robustness. The remaining five of its Type I error rates are considered not robust. The ANOVA have 
two of its Type I error rates fall within the stringent criteria of robustness, the other one of its Type I error rates 
fall within the lenient criteria of robustness. The remaining five of its Type I error rates are regarded as not 
robust.   

 

Table 14. The Comparison of the Type I error rates, for the AG test, AGMOM test, the AGWMOM test and the 
ANOVA, under symmetric heavy tailed distribution, for six group condition. 

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Equal and 
Unequal 

AG AGMOM AGWMOM ANOVA
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Size Variance 
g = 0 and h = 

0.5 
20:20:20:20:20:20 1:1:1:1:1:1 0.0260 0.1092 0.0266 0.0350

1:1:1:1:1:36 0.0258 0.0186 0.0256 0.0922
1:4:4:16:16:36 0.0248 0.0216 0.0288 0.0520

2:4:4:16:32:62 1:1:1:1:1:1 0.0794 0.1092 0.1092 0.0988
1:1:1:1:1:36 0.0656 0.0950 0.0896 0.0040
36:1:1:1:1:1 0.0796 0.0896 0.0982 0.3890

1:4:4:16:16:36 0.0348 0.0486 0.0442 0.0130
36:16:!6:4:4:1 0.0898 0.0956 0.1008 0.4732

 

In Table 14, for g = 0 and h = 0.5, the AG test is more robust compared to the AGMOM test, the AGWMOM test 
and the ANOVA. The AG test have four of its Type I error rates fall within the lenient criteria of robustness, with 
the combination of balanced sample size with both equal and unequal variance and the pairing of unbalanced 
sample size with unequal variance, for positive pairing only. The AGMOM test has only one of its Type I error 
rate fall within the stringent criteria of robustness. The remaining seven of its Type I error rates are considered 
not robust. For the AGWMOM test, only one of its Type I error rates fall within the stringent criteria of 
robustness, the other two of its Type I error rates fall within lenient criteria of robustness. The remaining five of 
its Type I error rates are regarded as not robust. The ANOVA have three of its Type I error rates fall within the 
lenient criteria of robustness, the remaining five of its Type I error rates are said not to be robust.    

 

Table 15. Comparison of the Type I error rates for the AG test, the AGMOM test, the AGWMOM test and the 
ANOVA under a skewed normal tailed distribution for six group condition 

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Size 

Equal and 
Unequal variance

AG AGMOM AGWMOM ANOVA

g = 0.5 and h = 
0 

20:20:20:20:20:20 1:1:1:1:1:1 0.0650 0.0498 0.0456 0.0544
1:1:1:1:1:36 0.0728 0.0508 0.0440 0.0270

1:4:4:16:16:36 0.0860 0.0576 0.0514 0.1184
2:4:4:16:32:62 1:1:1:1:1:1 0.2080 0.1944 0.2118 0.0670

1:1:1:1:1:36 0.2734 0.1692 0.2188 0.0060
36:1:1:1:1:1 0.1678 0.1600 0.1740 0.5692

1:4:4:16:16:36 0.2514 0.0880 0.1430 0.0034
36:16:16:4:4:1 0.1418 0.1636 0.1620 0.6722

 

In Table 15, for g = 0.5 and h = 0, the AGMOM test, the AGWMOM test and the ANOVA have equal number of 
Type I error rates that are said to be robust, compared to the AG test. For both the AGMOM and the AGWMOM 
test, with the combination of balanced sample size with both equal and unequal variance, their Type I error rates 
fall within the stringent criteria of robustness. The AG test have two of its Type I error fall within the lenient 
criteria of robustness and the remaining six of its Type I error rates are regarded as not robust.  

The ANOVA has only one of its Type I error rate fall within stringent criteria of robustness and the other two of 
its Type I error rates fall within the lenient criteria of robustness. While the remaining five of the Type I error 
rates of the ANOVA are considered not robust.  

 

Table 16. Comparison of the Type I error rates for the AG test, the AGMOM test, the AGWMOM test and the 
ANOVA for six group condition, under a skewed heavy tailed distribution 

The g- and h- 
distribution 

Balanced and 
Unbalanced Sample 

Size 

Equal and 
Unequal 
Variance 

AG AGMOM AGWMOM ANOVA

g = 0.5 and h = 
0.5 

20:20:20:20:20:20 1:1:1:1:1:1 0.0370 0.0208 0.0286 0.0330
 1:1:1:1:1:36 0.0386 0.0186 0.0292 0.1028

 1:4:4:16:16:36 0.0400 0.0246 0.0300 0.0574
2:4:4:16:32:62 1:1:1:1:1:1 0.1212 0.1136 0.1200 0.0970

1:1:1:1:1:36 0.1236 0.0964 0.1028 0.0100
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36:1:1:1:1:1 0.1108 0.0898 0.1036 0.3336
 1:4:4:16:16:36 0.0888 0.0478 0.0524 0.0200
 36:16:16:4:4:1 0.1044 0.0962 0.1046 0.4090

 

In Table 16, for g = 0.5 and h = 0.5, the AGWMOM test is more robust compared to the AG test, the AGMOM 
test and the ANOVA. The AGWMOM test have three of its Type I error rates fall within the lenient criteria of 
robustness and only one of its Type I error rate fall within the stringent criteria of robustness, with the 
combination of balanced sample size with both equal and unequal variance and the pairing of unbalanced sample 
size with unequal variance, for positive pairing only. The AG test have three of its Type I error rates fall within 
the lenient criteria of robustness and the remaining five of its Type I error rates are regarded as not robust. The 
AGMOM test has only one of its Type I error rate fall within the stringent criteria of robustness and the 
remaining seven of its Type I error rates are considered not robust. The ANOVA has only one of its Type I error 
rate fall within the stringent criteria of robustness and the other one of its Type I error rate fall within the lenient 
criteria of robustness. The remaining six of its Type I error rates are regarded as not robust. 

 

Table 17. Overall Summary of the Type I error rates for the five tests, for all the distributions and group sizes: 

Notation for the robustness of the tests AG AGMOM AGWMOM t-test/ANOVA 
SR 21 32 26 17 
LR 35 19 34 17 
NR 28 33 24 50 

TOTAL 84 84 84 84 
 

In Table 17, SR represents the number of each test that fall within the stringent criteria of robustness, LR 
represents the number of each test that fall within the lenient criteria of robustness and NR represents the number 
of each test that are considered not robust.  

Note. We have eighty-four conditions of pairing from the research design i.e C1 – C84 to determine the Type I 
error rates of each of the tests in this research. 

5. Discussion and Conclusion 

In this research, the stringent criteria of robustness to give a strict control of Type I error rates must fall within 
the interval of 0.042 – 0.058, as stated by Lix and Keselman (1998) and the lenient criteria of robustness must 
fall within the interval of 0.025 – 0.075, as discussed by Bradley’s (1978). These two conditions were selected in 
this research to give a strict control of the Type I error rates for the test.  

In Table 17, the overall results of the Type I error rates shows 56 out of 84 of the Type I error rates of the AG test 
are said to be robust, where 21 of its Type I error rates fall within the stringent criteria of robustness, 35 of its 
Type I error rates fall within the lenient criteria of robustness and 28 of its Type I error rates are regarded as not 
robust. The AGMOM test has 51 out 84 of its Type I error rates that are said to be robust, where 32 of its Type I 
error rates fall within the stringent criteria of robustness, 19 of its Type I error rates fall within the lenient criteria 
of robustness and 33 of its Type I error rates are considered not robust. The AGWMOM test has 60 out of 84 of 
its Type I error rates are considered to be robust, where 26 of its Type I error rates fall within the stringent 
criteria of robustness, 34 of its Type I error rates fall within the lenient criteria of robustness and 24 of its Type I 
error rates are regarded as not robust. The ANOVA has 34 out of 84 of its Type I error rates that are said to be 
robust, where 17 of its Type I error rates fall within the stringent criteria of robustness, 17 of its Type I error rates 
fall within the lenient criteria of robustness and the remaining 50 of its Type I error rates are regarded as not 
robust. 

In all, the AGWMOM test has the highest number of Type I error rates that are regarded as robust. Hence, the 
AGWMOM test is the best test compared to the other four tests in the control of Type I error rates. Also, for g = 
0.5 and h = 0.5, under six group condition, the AGWMOM test has more of its Type I error rates that are said to 
be robust compared to the AG test, the AGMOM test and the ANOVA.   
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