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Abstract

This paper introduces some new classes of functions called γ-PS-
continuous, β-PS-open and β-PS-closed using γ-PS -open set and γ-PS-
closed set. In addition, some properties and characterizations of these
functions are given. The result shows that γ-PS-continuous function
and γ-continuous function are independent.
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1 Introduction

Kasahara [5] defined the concept of α-closed graphs of an operation γ on τ .
Later, Ogata [12] renamed the operation α as γ operation on τ . He defined and
investigated the concept of operation-open sets, that is, γ-open sets. Further
study by Krishnan and Balachandran ([8], [9]) defined two types of sets called
γ-preopen and γ-semiopen sets. Recently, Asaad, Ahmad and Omar [1] defined
the notion of γ-regular-open sets which lies strictly between the classes of γ-
open set and γ-clopen set. They also introduced a new class of sets called
γ-PS-open sets, and they also defined γ-PS-operations and their properties [2].
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They proved that the union of any class of γ-PS-open sets in a space X is
also a γ-PS-open, but the intersection of any two γ-PS-open sets may not be
a γ-PS-open.

In this paper, we define the concept of γ-PS-continuous function and then
establish its properties. The result reveals that γ-PS-continuous function and
γ-continuous function are independent. Furthermore two other classes of func-
tions called β-PS-open and β-PS-closed are defined. Some properties and the-
orems for these two functions are also presented.

Throughout this paper, the pairs (X, τ) and (Y, σ) (or simply X and Y )
represent denote topological spaces with no separation axioms assumed unless
explicitly stated. Let A be any subset of X, Int(A) and Cl(A) denotes the
interior of A and the closure of A, respectively.

2 Preliminaries

A subset A of X is said to be preopen if A ⊆ Int(Cl(A)) [11] and semiopen
if A ⊆ Cl(Int(A)) [10]. The complement of a semiopen set is said to be
semiclosed. A preopen subset A of a topological space (X, τ) is said to be PS-
open if for each x ∈ A, there exists a semiclosed set F such that x ∈ F ⊆ A
[6]. An operation γ on the topology τ on X is a mapping γ: τ → P (X) such
that U ⊆ γ(U) for each U ∈ τ , where P (X) is the power set of X and γ(U)
denotes the value of γ at U [12]. A nonempty set A of X with an operation
γ on τ is said to be γ-open [12] if for each x ∈ A, there exists an open set U
containing x such that γ(U) ⊆ A. The complement of a γ-open set is called
a γ-closed. The τγ-closure of a subset A of X with an operation γ on τ is
defined as the intersection of all γ-closed sets containing A and it is denoted
by τγ-Cl(A) [12], and the τγ-interior of a subset A of X with an operation γ
on τ is defined as the union of all γ-open sets containing A [9].

A topological space (X, τ) with an operation γ on τ is said to be γ-regular
if for each x ∈ X and for each open neighborhood V of x, there exists an open
neighborhood U of x such that γ(U) ⊆ V [5]. A topoplogical space (X, τ) with
an operation γ on τ is said to be γ-locally indiscrete if every γ-open subset
of X is γ-closed, or every γ-closed subset of X is γ-open [1]. A topological
space (X, τ) with an operation γ on τ is said to be γ-semi-T1 if for each pair of
distinct points x, y in X, there exist two γ-semiopen sets U and V such that
x ∈ U but y /∈ U and y ∈ V but x /∈ V [9]. Let (X, τ) and (Y, σ) be two
topological spaces and γ be an operation on τ . A function f : (X, τ) → (Y, σ)
is called γ-continuous if f−1(V ) is γ-open set in X, for every open set V in Y
[3].
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Now we recall some definitions and results which will be used in the sequel.

Remark 2.1 For any subset A of a topological space (X, τ). Then:

1. A is γ-open if and only if τγ-Int(A) = A [7].

2. A is γ-closed if and only if τγ-Cl(A) = A [12].

Definition 2.2 Let (X, τ) be a topological space and γ be an operation on
τ . A subset A of X is said to be:

1. γ-regular-open if A = τγ-Int(τγ-Cl(A)) [1].

2. γ-preopen if A ⊆ τγ-Int(τγ-Cl(A)) [8].

3. γ-semiopen if A ⊆ τγ-Cl(τγ-Int(A)) [9].

4. γ-β-open if A ⊆ τγ-Cl(τγ-Int(τγ-Cl(A))) [3]].

Definition 2.3 The complement of γ-regular-open, γ-preopen and γ-semiopen
set is said to be γ-regular-closed [3], γ-preclosed [8] and γ-semiclosed [9], re-
spectively.

Definition 2.4 [2] A γ-preopen subset A of a topological space (X, τ) is
called γ-PS-open if for each x ∈ A, there exists a γ-semiclosed set F such that
x ∈ F ⊆ A. The complement of a γ-PS-open set is called a γ-PS-closed.

The family of all γ-PS-open and γ-preopen subsets of a topological space
(X, τ) are denoted by τγ-PSO(X) and τγ-PO(X), respectively.

Lemma 2.5 [2] Let A be a subset of a topological space (X, τ) and γ be an
operation on τ . Then A is γ-PS-open if and only if A is γ-preopen set and A
is a union of γ-semiclosed sets.

Definition 2.6 [2] Let A be any subset of a topological space (X, τ) and γ
be an operation on τ . Then

1. the τγ-PS-interior of A is defined as the union of all γ-PS-open sets of
X contained in A and it is denoted by τγ-PSInt(A).

2. the τγ-PS-closure of A is defined as the intersection of all γ-PS-closed
sets of X containing A and it is denoted by τγ-PSCl(A)

Definition 2.7 [2] A subset N of a topological space (X, τ) is called a γ-
PS-neighbourhood of a point x ∈ X, if there exists a γ-PS-open set U in X
such that x ∈ U ⊆ N .
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Definition 2.8 [2] Let (X, τ) be a topological space and γ be an operation
on τ . Let A be any subset of X. Then

1. the γ-PS-derived set of A is defined as {x : for every γ-open set U con-
taining x, U ∩ A \ {x} �= φ} and it is denoted by τγ-PSD(A).

2. the γ-PS-boundary of A is defined as τγ-PSCl(A) \ τγ-PSInt(A) and it is
denoted by τγ-PSBd(A).

Theorem 2.9 [2] Let A be a subset of a topological space (X, τ) and γ be
an operation on τ . Then x ∈ τγ-PSCl(A) if and only if A ∩ U �= φ for every
γ-PS-open set U of X containing x.

Theorem 2.10 [2] Let (X, τ) be a topological space and γ be an operation
on τ . For any subset A of a space X. The following statements are true.

1. A is γ-PS-open set if and only if τγ-PSInt(A) = A.

2. A is γ-PS-closed set if and only if τγ-PSCl(A) = A.

3. τγ-PSCl(X \ A) = X \ τγ-PSInt(A) and τγ-PSInt(X \ A) = X \ τγ-
PSCl(A).

4. τγ-PSD(A) ⊆ τγ-PSCl(A).

5. τγ-PSCl(A) = τγ-PSInt(A) ∪ τγ-PSBd(A).

Remark 2.11 If a topological space (X, τ) is γ-regular, then τγ = τ [12]
and hence τγ-Int(A) = Int(A) [7].

Theorem 2.12 [2] Let (X, τ) be a topological space and γ be an operation
on τ . Then:

1. If X is γ-regular, then the concept of γ-PS-open set and PS-open set are
equivalent.

2. If X is γ-semi-T1, then the concept of γ-PS-open set and γ-preopen set
are equivalent.

3. If X is γ-locally indiscrete, then the concept of γ-PS-open set and γ-open
set are equivalent.

Definition 2.13 [6] A function f : (X, τ) → (Y, σ) is said to be PS-continuous
if the inverse image of each open set in Y is PS-open in X.
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Definition 2.14 [4] Let (X, τ) and (Y, σ) be two topological spaces and γ
be an operation on τ . A function f : (X, τ) → (Y, σ) is called γ-precontinuous
at a point x ∈ X if for each open set V of Y containing f(x), there exists a γ-
preopen set U of X containing x such that f(U) ⊆ V . If f is γ-precontinuous
at each point x of X, then f is said to be γ-precontinuous.

Theorem 2.15 [4] Let (X, τ) and (Y, σ) be two topological spaces and γ
be an operation on τ . A function f : (X, τ) → (Y, σ) is γ-precontinuous if for
every open set V in Y , f−1(V ) is γ-preopen set in X.

Definition 2.16 [4] Let β be an operation on a topological space (Y, σ).
A function f : (X, τ) → (Y, σ) is called β-preopen and β-preclosed if for every
open and closed set V of X, f(V ) is β-preopen and β-preclosed set in Y ,
respectively.

3 γ-PS-Continuous Functions

In this section, we introduce a new class of functions called γ-PS-continuous
using γ-PS-open set. Moreover, we give some characterizations and theorems
of this function. The result shows that γ-PS-continuous and γ-continuous
functions are independent.

Definition 3.1 Let (X, τ) and (Y, σ) be two topological spaces and γ be an
operation on τ . A function f : (X, τ) → (Y, σ) is called γ-PS-continuous at a
point x ∈ X if for each open set V of Y containing f(x), there exists a γ-PS-
open set U of X containing x such that f(U) ⊆ V . If f is γ-PS-continuous at
every point x in X, then f is said to be γ-PS-continuous.

Theorem 3.2 For a function f : (X, τ) → (Y, σ) and γ be an operation on
τ , the following statements are equivalent:

1. f is γ-PS-continuous.

2. f−1(V ) is γ-PS-open set in X, for every open set V in Y .

3. f−1(F ) is γ-PS-closed set in X, for every closed set F in Y .

4. f(τγ-PSCl(A)) ⊆ Cl(f(A)), for every subset A of X.

5. τγ-PSCl(f−1(B)) ⊆ f−1(Cl(B)), for every subset B of Y .

6. f−1(Int(B)) ⊆ τγ-PSInt(f−1(B)), for every subset B of Y .

7. Int(f(A)) ⊆ f(τγ-PSInt(A)), for every subset A of X.
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Proof: (1) ⇒ (2) Let V be any open set in Y . We have to show that f−1(V )
is γ-PS-open set in X. Let x ∈ f−1(V ). Then f(x) ∈ V . By (1), there exists a
γ-PS-open set U of X containing x such that f(U) ⊆ V . Which implies that
x ∈ U ⊆ f−1(V ). Therefore, f−1(V ) is γ-PS-open set in X.

(2) ⇒ (3). Let F be any closed set of Y . Then Y \ F is an open set of Y .
By (2), f−1(Y \ F ) = X \ f−1(F ) is γ-PS-open set in X and hence f−1(F ) is
γ-PS-closed set in X.

(3) ⇒ (4). Let A be any subset of X. Then f(A) ⊆ Cl(f(A)) and
hence A ⊆ f−1(Cl(f(A))). Since Cl(f(A)) is closed set in Y . Then by (3),
we have f−1(Cl(f(A))) is γ-PS-closed set in X. Therefore, τγ-PSCl(A) ⊆
f−1(Cl(f(A))). Hence f(τγ-PSCl(A)) ⊆ Cl(f(A)).

(4) ⇒ (5). Let B be any subset of Y . Then f−1(B) is a subset of X.
By (4), we have f(τγ-PSCl(f−1(B))) ⊆ Cl(f(f−1(B))) = Cl(B). Hence τγ-
PSCl(f−1(B)) ⊆ f−1(Cl(B)).

(5) ⇔ (6). Let B be any subset of Y . Then apply (5) to Y \ B we obtain
τγ-PSCl(f−1(Y \ B)) ⊆ f−1(Cl(Y \ B)) ⇔ τγ-PSCl(X \ f−1(B)) ⊆ f−1(Y \
Int(B)) ⇔ X \ τγ-PSInt(f−1(B)) ⊆ X \ f−1(Int(B)) ⇔ f−1(Int(B)) ⊆ τγ-
PSInt(f−1(B)). Therefore, f−1(Int(B)) ⊆ τγ-PSInt(f−1(B)).

(6) ⇒ (7). Let A be any subset of X. Then f(A) is a subset of Y . By (6),
we have f−1(Int(f(A))) ⊆ τγ-PSInt(f−1(f(A))) = τγ-PSInt(A). Therefore,
Int(f(A)) ⊆ f(τγ-PSInt(A)).

(7) ⇒ (1). Let x ∈ X and let V be any open set of Y containing f(x). Then
x ∈ f−1(V ) and f−1(V ) is a subset of X. By (7), we have Int(f(f−1(V ))) ⊆
f(τγ-PSInt(f−1(V ))). Then Int(V ) ⊆ f(τγ-PSInt(f−1(V ))). Since V is an
open set. Then V ⊆ f(τγ-PSInt(f−1(V ))) implies that f−1(V ) ⊆ τγ-PSInt(f−1(V )).
Therefore, f−1(V ) is γ-PS-open set in X which contains x and clearly f(f−1(V )) ⊆
V . Hence f is γ-PS-continuous function.

Theorem 3.3 Let f : (X, τ) → (Y, σ) be any function and γ be an oper-
ation on τ . Then f is γ-PS-continuous if and only if τγ-PSBd(f−1(B)) ⊆
f−1(Bd(B)), for each subset B of Y .

Proof: Let B be any subset of Y and f be a γ-PS-continuous function.
Then by using Theorem 3.2 (2) and (5), we have f−1(Bd(B)) = f−1(Cl(B) \
Int(B)) = f−1(Cl(B)) \ f−1(Int(B)) ⊇ τγ-PSCl(f−1(B)) \ f−1(Int(B)) = τγ-
PSCl(f−1(B))\τγ-PSInt(f−1(Int(B))) ⊇ τγ-PSCl(f−1(B))\τγ-PSInt(f−1(B)) =
τγ-PSBd(f−1(B)). Hence τγ-PSBd(f−1(B)) ⊆ f−1(Bd(B)).

Conversely, let G be any open set in Y . Then Y \G is closed in Y . So by hy-
pothesis, we have τγ-PSBd(f−1(Y \G)) ⊆ f−1(Bd(Y \G)) ⊆ f−1(Cl(Y \G)) =
f−1(Y \ G). By Theorem 2.10 (5), τγ-PSCl(f−1(Y \ G)) = τγ-PSInt(f−1(Y \
G)) ∪ τγ-PSBd(f−1(Y \ G)) ⊆ f−1(Y \ G). Then f−1(Y \ G) is γ-PS-closed
set in X and hence f−1(G) is γ-PS-open set in X. By Theorem 3.2, f is
γ-PS-continuous function.
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Theorem 3.4 Let f : (X, τ) → (Y, σ) be any function and γ be an operation
on τ . Then f is γ-PS-continuous if and only if f(τγ-PSD(A)) ⊆ Cl(f(A)), for
each subset A of X.

Proof: Let f be a γ-PS-continuous function and A be any subset of X. Then
by Theorem 3.2 (4), we have f(τγ-PSCl(A)) ⊆ Cl(f(A)) and by Theorem
2.10 (4), f(τγ-PSD(A)) ⊆ f(τγ-PSCl(A)) which implies that f(τγ-PSD(A)) ⊆
Cl(f(A)).

Conversely, let F be any closed set in Y . Then f−1(F ) is subset of X.
By hypothesis, we have f(τγ-PSD(f−1(F ))) ⊆ Cl(f(f−1(F ))) = Cl(F ) = F
and hence τγ-PSD(f−1(F )) ⊆ f−1(F ). Then f−1(F ) is γ-PS-closed set in X.
Therefore, by Theorem 3.2, f is γ-PS-continuous function.

Theorem 3.5 Let γ be an operation on (X, τ). A function f : (X, τ) →
(Y, σ) is γ-PS-continuous if and only if for every x ∈ X and for neighbourhood
O of Y such that f(x) ∈ O, there exists a γ-PS-neighbourhood P of X such
that x ∈ P and f(P ) ⊆ O.

Proof: It is clear and hence it is omitted.

Theorem 3.6 Let γ be an operation on (X, τ). A function f : (X, τ) →
(Y, σ) is γ-PS-continuous if and only if the inverse image of every neighbour-
hood of f(x) is γ-PS-neighbourhood of x ∈ X.

Proof: The proof follows from Theorem 3.5.

Theorem 3.7 Let f : (X, τ) → (Y, σ) be a surjection function and γ be an
operation on τ , then the following statements are equivalent:

1. f is γ-PS-continuous.

2. f−1(Int(B)) ⊆ Int(Cl(f−1(B))) and f−1(Int(B)) = ∪i∈IFi where Fi is
γ-semiclosed set in X, for every subset B in Y .

3. Cl(Int(f−1(B))) ⊆ f−1(Cl(B)) and f−1(Cl(B)) = ∪i∈IGi where Gi is
γ-semiopen set in X, for every subset B in Y .

4. f(Cl(Int(A))) ⊆ Cl(f(A)) and f−1(Cl(f(A))) = ∪i∈IGi where Gi is
γ-semiopen set in X, for every subset A in X.

5. Int(f(A)) ⊆ f(Int(Cl(A))) and f−1(Int(f(A))) = ∪i∈IFi where Fi is
γ-semiclosed set in X, for every subset A in X.
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Proof: It is enough to proof (1) ⇒ (2) and (5) ⇒ (1) since the others are
obvious.

(1) ⇒ (2). Let B be any subset in Y . Then Int(B) is open set in
Y . Since f is γ-PS-continuous, then by Theorem 3.2, f−1(Int(B)) is γ-PS-
open set in X. By Lemma 2.5, we obtain f−1(Int(B)) is γ-preopen set in
X and f−1(Int(B)) = ∪i∈IFi where Fi is γ-semiclosed set in X, for ev-
ery subset B in Y . Therefore, f−1(Int(B)) ⊆ Int(Cl(f−1(Int(B)))) and
f−1(Int(B)) = ∪i∈IFi where Fi is γ-semiclosed set in X. Thus f−1(Int(B)) ⊆
Int(Cl(f−1(B))) and f−1(Int(B)) = ∪i∈IFi where Fi is γ-semiclosed set in X.

(5) ⇒ (1). Let V be any open set in Y . Then f−1(V ) is a subset of X. By
(5), we get Int(f(f−1(V ))) ⊆ f(Int(Cl(f−1(V )))) and f−1(Int(f(f−1(V )))) =
∪i∈IFi where Fi is γ-semiclosed set in X. Hence Int(V ) ⊆ f(Int(Cl(f−1(V ))))
and f−1(Int(V )) = ∪i∈IFi where Fi is γ-semiclosed set in X. This implies that
V ⊆ f(Int(Cl(f−1(V )))) and f−1(V ) = ∪i∈IFi where Fi is γ-semiclosed set
in X and hence f−1(V ) ⊆ Int(Cl(f−1(V ))) and f−1(V ) = ∪i∈IFi where Fi is
γ-semiclosed set in X. So f−1(V ) is γ-preopen set in X and f−1(V ) = ∪i∈IFi

where Fi is γ-semiclosed set in X. Therefore, by Lemma 2.5, f−1(V ) is γ-PS-
open set in X and hence by Theorem 3.2, f is γ-PS-continuous.

Remark 3.8 Every γ-PS-continuous function is γ-precontinuous, but the
converse is not true as it is shown in the following example.

Example 3.9 Let X = {a, b, c} with the topologies τ = {φ, X, {a}, {b}, {a, b}, {b, c}}
and σ = {φ, {a}, {a, b}, X}. Define an operation γ: τ → P (X) as follows: for
every A ∈ τ

γ(A) =

{
A if a ∈ A
Cl(A) if a /∈ A

Then τγ = {φ, X, {a}, {a, b}, {b, c}}, τγ-PO(X) = {φ, X, {a}, {b}, {a, b}, {a, c}, {b, c}}
and τγ-PSO(X) = {φ, X, {a}, {a, c}, {b, c}}. Let f : (X, τ) → (X, σ) be a func-
tion defined as follows: f(a) = c, f(b) = a and f(c) = b. Then f is γ-
precontinuous, but it is not γ-PS-continuous since {a} ∈ σ, but f−1({a}) =
{b} /∈ τγ-PSO(X).

Theorem 3.10 Let (X, τ) be γ-semi-T1 space and γ be an operation on
τ . A function f : (X, τ) → (Y, σ) is γ-PS-continuous if and only if f is γ-
precontinuous.

Proof: This is an immediate consequence of Theorem 2.12 (2).

Theorem 3.11 A function f : (X, τ) → (Y, σ) with an operation γ on τ is
γ-PS-continuous if and only if f is γ-precontinuous and for each x ∈ X and
each open set V of Y containing f(x), there exists a γ-semiclosed set F in X
containing x such that f(F ) ⊆ V .
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Proof: Let x ∈ X and let V be any open set of Y containing f(x). Since f is
γ-PS-continuous, there exists a γ-PS-open set U of X containing x such that
f(U) ⊆ V . Since U is γ-PS-open set. Then for each x ∈ U , there exists a
γ-semiclosed set F of X such that x ∈ F ⊆ U . Therefore, we get f(F ) ⊆ V .
And also since f is γ-PS-continuous. Then f is γ-precontinuous.

Conversely, let V be any open set of Y . We have to show that f−1(V ) is γ-
PS-open set in X. Since f is γ-precontinuous, then by Theorem 2.15, f−1(V )
is γ-preopen set in X. Let x ∈ f−1(V ). Then f(x) ∈ V . By hypothesis,
there exists a γ-semiclosed set F of X containing x such that f(F ) ⊆ V .
Which implies that x ∈ F ⊆ f−1(V ). Therefore, by Definition 2.4, f−1(V ) is
γ-PS-open set in X. Hence by Theorem 3.2, f is γ-PS-continuous.

Theorem 3.12 If a function f : (X, τ) → (Y, σ) with an operation γ on τ
is γ-PS-continuous, then for each x ∈ X and each open set V of Y containing
f(x), there exists a γ-semiclosed set F in X such that x ∈ F and f(F ) ⊆ V .

Proof: Suppose f be a γ-PS-continuous function and let V be any open set
of Y such that f(x) ∈ V , for each x ∈ X. Then there exists a γ-PS-open set
U of X such that x ∈ U and f(U) ⊆ V . Since U is γ-PS-open set. Then for
each x ∈ U , there exists a γ-semiclosed set F of X such that x ∈ F ⊆ U .
Therefore, we have f(F ) ⊆ V . This completes the proof.

Theorem 3.13 Let (X, τ) be γ-regular space and γ be an operation on
τ . A function f : (X, τ) → (Y, σ) is γ-PS-continuous if and only if f is PS-
continuous.

Proof: This is an immediate consequence of Theorem 2.12 (1).

The following example shows that the relation between γ-PS-continuous
function and γ-continuous function are independent in general.

Example 3.14 Let (X, τ) be a topological space and γ be an operation on
τ as in Example 3.9. Suppose that Y = {1, 2, 3} and σ = {φ, Y, {2}, {2, 3}}
be a topology on Y . Let f : (X, τ) → (Y, σ) be a function defined as follows:
f(a) = 2, f(b) = 3 and f(c) = 1. Then f is γ-continuous, but it is not
γ-PS-continuous since {2, 3} ∈ σ, but f−1({2, 3}) = {a, b} /∈ τγ-PSO(X).

Example 3.15 Let (X, τ) be a topological space and γ be an operation on
τ as in Example 3.9. Suppose that Y = {1, 2, 3} and σ = {φ, Y, {1, 3}} be
a topology on Y . Let f : (X, τ) → (Y, σ) be a function defined as follows:
f(a) = 1, f(b) = 2 and f(c) = 3. Then f is γ-PS-continuous, but it is not
γ-continuous since {1, 3} ∈ σ, but f−1({1, 3}) = {a, c} /∈ τγ.
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Theorem 3.16 Let f : (X, τ) → (Y, σ) be a function and let (X, τ) be γ-
locally indiscrete topological spaces and γ be an operation on τ . Then f is
γ-PS-continuous if and only if f is γ-continuous.

Proof: This is an immediate consequence of Theorem 2.12 (3).

Theorem 3.17 For any operation γ on τ and f : (X, τ) → (Y, σ) be any
function, then: X \ τγ-PSC(f) = ∪{τγ-PSBd(f−1(V )) : V is open in (Y, σ)
such that f(x) ∈ V for each x ∈ X}, where τγ-PSC(f) denotes the set of
points at which f is γ-PS-continuous function.

Proof: Let x ∈ τγ-PSC(f). Then there exists open set V in (Y, σ) contain-
ing f(x) such that f(U) �⊆ V for every γ-PS-open set U of (X, τ) containing
x. Hence U ∩ X \ f−1(V ) �= φ for every γ-PS-open set U of (X, τ) con-
taining x. Therefore, by Theorem 2.9, x ∈ τγ-PSCl(X \ f−1(V )). Then x ∈
f−1(V )∩τγ-PSCl(X\f−1(V )) ⊆ τγ-PSCl(f−1(V ))∩τγ-PSCl(X\f−1(V )) = τγ-
PSBd(f−1(V )). Then X \ τγ-PSC(f) ⊆ ∪{τγ-PSBd(f−1(V )) : V is open in
(Y, σ) such that f(x) ∈ V for each x ∈ X}.

Conversely, let x /∈ X \ τγ-PSC(f). Then for each open set V in (Y, σ)
containing f(x), f−1(V ) is γ-PS-open set of (X, τ) containing x. Hence x ∈ τγ-
PSInt(f−1(V )) and hence x /∈ τγ-PSBd(f−1(V )) for every open set V in (Y, σ)
containing f(x). Therefore, X \ τγ-PSC(f) ⊇ ∪{τγ-PSBd(f−1(V )) : V is open
in (Y, σ) such that f(x) ∈ V for each x ∈ X}.

Theorem 3.18 Let γ be an operation on the topological space (X, τ). If
the functions f : (X, τ) → (Y, σ) is γ-PS-continuous and g: (Y, σ) → (Z, ρ) is
continuous. Then the composition function g ◦ f : (X, τ) → (Z, ρ) is γ-PS-
continuous.

Proof: Clear.

Proposition 3.19 Let γ be an operation on the topological space (X, τ). If
f : (X, τ) → (Y, σ) is a function, g: (Y, σ) → (Z, ρ) is open and injective, and
g ◦ f : (X, τ) → (Z, ρ) is γ-PS-continuous. Then f is γ-PS-continuous.

Proof: Let V be an open subset of Y . Since g is open, g(V ) is open sub-
set of Z. Since g ◦ f is γ-PS-continuous and g is injective, then f−1(V ) =
f−1(g−1(g(V )) = (g ◦ f)(g(V )) is γ-PS-open in X, which proves that f is
γ-PS-continuous.

Definition 3.20 A subset A of a topological space (X, τ) with an operation
γ on τ is called γ-γ-PS-open and τ -γ-PS-open if τγ-Int(A) = τγ-PSInt(A) and
Int(A) = τγ-PSInt(A), respectively.
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Lemma 3.21 Let A be any subset of a topological space (X, τ) and γ be an
operation on τ . Then the following statements are equivalent:

1. A is γ-γ-PS-open and γ-PS-open.

2. A is γ-γ-PS-open and γ-open.

3. A is γ-PS-open and γ-open.

Proof: Follows from Definition 3.20, Remark 2.1 (1) and Theorem 2.10 (1).

Lemma 3.22 Let A be any subset of a topological space (X, τ) and γ be an
operation on τ . Then the following statements are equivalent:

1. A is τ -γ-PS-open and γ-PS-open.

2. A is τ -γ-PS-open and open.

3. A is γ-PS-open and open.

Proof: Follows from Definition 3.20 and Theorem 2.10 (1).

Proposition 3.23 In a γ-regular space (X, τ), then the concept of γ-γ-PS-
open set and τ -γ-PS-open set are equivalent.

Proof: The proof follows form Definition 3.20 and Remark 2.11.

Definition 3.24 Let (X, τ) and (Y, σ) be two topological spaces and γ be
an operation on τ . A function f : (X, τ) → (Y, σ) is called τ -γ-PS-continuous
and γ-γ-PS-continuous if for each open set V of Y , f−1(V ) is τ -γ-PS-open
and γ-γ-PS-open sets in X, respectively.

Theorem 3.25 For a function f : (X, τ) → (Y, σ) and γ be an operation on
τ , the following statements are equivalent:

1. f is γ-γ-PS-continuous and γ-PS-continuous.

2. f is γ-γ-PS-continuous and γ-continuous.

3. f is γ-PS-continuous and γ-continuous.

Proof: The proof follows from Lemma 3.21.

Theorem 3.26 For a function f : (X, τ) → (Y, σ) and γ be an operation on
τ , the following statements are equivalent:

1. f is τ -γ-PS-continuous and γ-PS-continuous.
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2. f is τ -γ-PS-continuous and continuous.

3. f is γ-PS-continuous and continuous.

Proof: Follows from Lemma 3.22.

Theorem 3.27 Let (X, τ) be γ-regular space and γ be an operation on τ .
Then a function f : (X, τ) → (Y, σ) is γ-γ-PS-continuous if and only if f is
τ -γ-PS-continuous.

Proof: This is an immediate consequence of Proposition 3.23.

4 β-PS-Open and β-PS-Closed Functions

Definition 4.1 Let (X, τ) and (Y, σ) be two topological spaces and β be an
operation on σ. A function f : (X, τ) → (Y, σ) is called β-PS-open if for every
open set V of X, f(V ) is β-PS-open set in Y .

Definition 4.2 Let (X, τ) and (Y, σ) be two topological spaces and β be an
operation on σ. A function f : (X, τ) → (Y, σ) called β-PS-closed if for every
closed set F of X, f(F ) is β-PS-closed set in Y .

Theorem 4.3 Let β be an operation on (Y, σ). A function f : (X, τ) →
(Y, σ) is β-PS-open if and only if for every x ∈ X and for every neighbourhood
N of x, there exists a β-PS-neighbourhood M of Y such that f(x) ∈ M and
M ⊆ f(N).

Proof: Obvious.

Theorem 4.4 The following statements are equivalent for a function f : (X, τ) →
(Y, σ) with an operation β on σ:

1. f is β-PS-open.

2. f(Int(A)) ⊆ σβ-PSInt(f(A)), for every A ⊆ X.

3. Int(f−1(B)) ⊆ f−1(σβ-PSInt(B)), for every B ⊆ Y .

4. f−1(σβ-PSCl(B)) ⊆ Cl(f−1(B)), for every B ⊆ Y .

5. σβ-PSCl(f(A)) ⊆ f(Cl(A)), for every A ⊆ X.

6. σβ-PSD(f(A)) ⊆ f(Cl(A)), for every A ⊆ X.

Proof: The proof is similar to Theorem 3.2.
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Remark 4.5 Every β-PS-open and β-PS-closed function is β-preopen and
β-preclosed respectively, but the converse is not true as it is shown in the
following example.

Example 4.6 Let X = {a, b, c} with the topologies τ = {φ, {c}, {b, c}, X}
and σ = {φ, X, {b}, {a, c}}. Define an operation β on σ by β(A) = A for all
A ∈ σ. Define f : (X, τ) → (X, σ) by f(a) = a, f(b) = c and f(c) = b. Then
f is both β-preopen and β-preclosed, but f is not β-PS-open and β-PS-closed
function since {b, c} ∈ τ and {a} is closed set in (X, τ), but f({b, c}) = {a, c}
is not β-PS-open set in (X, σ) and f({a}) = {a} is not β-PS-closed set in
(X, σ), respectively.

Theorem 4.7 Let (Y, σ) be β-semi-T1 space and β be an operation on σ.
A function f : (X, τ) → (Y, σ) is β-PS-open if and only if f is β-preopen.

Proof: Follows from Theorem 2.12 (2).

Definition 4.8 Let (X, τ) and (Y, σ) be two topological spaces and β be an
operation on σ. A function f : (X, τ) → (Y, σ) is called β-open if for every
open set V of X, f(V ) is β-open set in Y .

Theorem 4.9 Let (Y, σ) be β-locally indiscrete topological spaces and β be
an operation on σ. A function f : (X, τ) → (Y, σ) is β-PS-open if and only if
f is β-open.

Proof: Follows from Theorem 2.12 (3).

Theorem 4.10 Let (Y, σ) be a topological space and β be an operation on
σ. A function f : (X, τ) → (Y, σ) is β-PS-closed if and only if for each subset
S of Y and each open set O in X containing f−1(S), there exists a β-PS-open
set R in Y containing S such that f−1(R) ⊆ O.

Proof: Suppose that f is β-PS-closed function and let O be an open set in X
containing f−1(S), where S is any subset in Y . Then f(X \ O) is β-PS-open
set in Y . If we put R = Y \ f(X \ O). Then R is β-PS-closed set in Y such
that S ⊆ R and f−1(R) ⊆ O.

Conversely, let F be closed set in X. Let S = Y \ f(F ) ⊆ Y . Then
f−1(S) ⊆ X \ F and X \ F is open set in X. By hypothesis, there exists a
β-PS-open set R in Y such that S = Y \ f(F ) ⊆ R and f−1(R) ⊆ X \ F . For
f−1(R) ⊆ X \ F implies R ⊆ f(X \ F ) ⊆ Y \ f(F ). Hence R = Y \ f(F ).
Since R is β-PS-open set in Y . Then f(F ) is β-PS-closed set in Y . Therefore,
f is β-PS-closed function.

Definition 4.11 A function f : (X, τ) → (Y, σ) is said to be γ-PS-homeomorphism,
if f is bijective, γ-PS-continuous and f−1 is γ-PS-continuous.
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Theorem 4.12 The following statements are equivalent for a bijective func-
tion f : (X, τ) → (Y, σ) with an operation β on σ.

1. f is β-PS-closed.

2. f is β-PS-open.

3. f−1 is β-PS-continuous.

Proof: It is clear.

Proposition 4.13 Let α be an operation on the topological space (Z, ρ). If
the function f : (X, τ) → (Y, σ) is open (resp., closed) and g: (Y, σ) → (Z, ρ) is
α-PS-open (resp., α-PS-closed). Then the composition function g ◦f : (X, τ) →
(Z, ρ) is α-PS-open (resp., α-PS-closed).

Proof: Obvious.

Proposition 4.14 Let β be an operation on the topological space (Y, σ). If
g: (Y, σ) → (Z, ρ) is a function, f : (X, τ) → (Y, σ) is β-PS-open and surjective,
and g ◦ f : (X, τ) → (Z, ρ) is continuous. Then g is γ-PS-continuous.

Proof: Similar to Proposition 3.19.

Proposition 4.15 Let β be an operation on the topological space (Y, σ). If
g: (Y, σ) → (Z, ρ) is a function, f : (X, τ) → (Y, σ) is continuous and surjective,
and g ◦ f : (X, τ) → (Z, ρ) is β-PS-open. Then g is β-PS-open.

Proof: Similar to Proposition 3.19.

Definition 4.16 Let (X, τ) and (Y, σ) be two topological spaces and β be
an operation on σ. A function f : (X, τ) → (Y, σ) is called σ-β-PS-open and β-
β-PS-open if for every open set V of X, f(V ) is σ-β-PS-open and β-β-PS-open
sets in Y , respectively.

Theorem 4.17 For a function f : (X, τ) → (Y, σ) and β be an operation on
σ, the following statements are equivalent:

1. f is β-β-PS-open (resp., β-β-PS-closed) and β-PS-open (resp., β-PS-
closed).

2. f is β-β-PS-open (resp., β-β-PS-closed) and β-open (resp., β-closed).

3. f is β-PS-open (resp., β-PS-closed) and β-open (resp., β-closed).

Proof: Follows from Lemma 3.21.
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Theorem 4.18 For a function f : (X, τ) → (Y, σ) and β be an operation on
σ, the following statements are equivalent:

1. f is σ-β-PS-open (resp., σ-β-PS-closed) and β-PS-open (resp., β-PS-
closed).

2. f is σ-β-PS-open (resp., σ-β-PS-closed) and open (resp., closed).

3. f is β-PS-open (resp., β-PS-closed) and open (resp., closed).

Proof: Follows from Lemma 3.22.

Theorem 4.19 Let (Y, σ) be β-regular space and β be an operation on σ.
Then a function f : (X, τ) → (Y, σ) is β-β-PS-open (resp., β-β-PS-closed) if
and only if f is σ-β-PS-open (resp., σ-β-PS-closed).

Proof: This is an immediate consequence of Proposition 3.23.

References

[1] B.A. Asaad, Nazihah Ahmad and Zurni Omar, γ-Regular-open sets and
γ-extremally disconnected spaces, Mathematical Theory and Modeling, 9
12 (2013), 131-140.

[2] B.A. Asaad, Nazihah Ahmad and Zurni Omar, γ-PS-open sets in topolog-
ical spaces, Proceedings of 1st Innovation and Analytics Conference and
Exhibition, UUM Press, Sintok, (2013). (to be appeared)

[3] C.K. Basu, B.M.U. Afsan, and M.K. Ghosh, A class of functions and sep-
aration axioms with respect to an operation, Hacettepe Journal of Math-
ematics and Statistics, 38 2 (2009), 103-118.

[4] M.K. Ghost, On γ-Preopen Sets, Int. Journal of Math. Analysis, 6 53
(2012), 2633-2645.

[5] S. Kasahara, Operation compact spaces, Math. Japonica, 24 1 (1979),
97-105.

[6] A.B. Khalaf and B.A. Asaad, PS-open sets and PS-continuity in topolog-
ical spaces, J. Duhok univ., 12 2 (2009), 183-192.

[7] G.S.S. Krishnan, A new class of semi open sets in a topological space, Pro-
ceedings of the Second National Conference on Mathematical and Compu-
tational Models, Allied Publishers, New Delhi, (2003), 305-314.



300 Baravan A. Asaad, Nazihah Ahmad and Zurni Omar

[8] G.S.S. Krishnan and K. Balachandran, On a class of γ-preopen sets in a
topological space, East Asian Math. J., 22 2 (2006), 131-149.

[9] G.S.S. Krishnan and K. Balachandran, On γ-semiopen sets in topological
spaces, Bull. Cal. Math. Soc., 98 6 (2006), 517-530.

[10] N. Levine, Semi-open sets and semi-continuity in topological spaces,
Amer. Math. Monthly, 70 1 (1963), 36-41.

[11] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinu-
ous and week precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53
(1982), 47-53.

[12] H. Ogata, Operation on topological spaces and associated topology, Math.
Japonica, 36 1 (1991), 175-184.

Received: January 7, 2014


