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Abstract: The defuzzification process converts fuzzy numbers to crisp ones and is an important stage in the 
implementation of fuzzy systems. In many actual applications, we encounter cases, in which the observed or derived 
values of the variables are approximate, yet the variables themselves must satisfy a set of relationships dictated by 
physical principle. When the observed values do not satisfy the relationships, each value is adjusted until they satisfy 
the relationships among observed data indicating their mathematical dependence on one another. Hence, this study 
proposes a new method based on the Data Envelopment Analysis (DEA) model to defuzzify groups of fuzzy 
numbers. It also aims to assume that each observed value is an approximate number (or a fuzzy number) and the true 
value (crisp value) is found in the production possibility set of the DEA model. The proposed method partitions the 
fuzzy numbers and the relationships among these observed data are observed as constraints. The paper presents the 
model, the computational process and applications in a real problem. 
 
Keywords: Data envelopment analysis, defuzzification, groups of fuzzy numbers, observed data 

 
INTRODUCTION 

 
The modeling of complex systems is limited by 

incomplete knowledge and lack of information (Lai and 
Hwang, 1992). Hence, the fuzzy set theory developed 
by Zadeh (1965), along with its techniques, is an 
interesting and promising approach to address complex, 
real-world issues. In general, a fuzzy representation 
provides more information regarding a set than a crisp 
representation. However, this crisp representation 
remains necessary because it simplifies conception and 
clarification. Thus, the objective determination of the 
fuzzy structures of problematic systems is difficult. 
Thus, a crisp representation is typically easy to interpret 
and understand although it displays less information. To 
replace a fuzzy representation of sets with a crisp 
representation in fuzzy system applications, the process 
of defuzzification is applied (Leekwijck and Kerre, 
1999; Mahdiani et al., 2013). 

This definition enables the defuzzification of a set 
into a crisp subset of the original. Previous literature 
presents many defuzzification methods, but most of 
these methods generate fuzzy set results with the best 
information and composition. Furthermore, some of 
these methods lose their properties during actual 
observations of groups of related data. Meanwhile, 
defuzzification methods can generate similar results of 
a given data, with various relationships. 

This study mainly presents a new method to 
defuzzify groups of fuzzy numbers with the tool Data 
Envelopment Analysis (DEA). The method is suitable 

when information about the original values is minimal, 
when the values are considered approximate or when 
we need to find estimation values based on the original 
values. Given a set of observed values and the basic 
relationships that they must satisfy, the method yields a 
set of adjusted numbers that are close to the original 
numbers and that also meets the relationship. 
 

LITERATURE REVIEW 
 

This section is highlight on the origin of the 
definition which commonly used and background of 
defuzzification methods. 
 
Defuzzification: Defuzzification is an important fuzzy 
system stage that replaces fuzzy numbers with a 
representative crisp number (Esogbue et al., 2000; 
Mahdiani et al., 2013). Some common defuzzification 
techniques are center of area (COA), weighted average 
method and height method (Lee, 1990; Nurcahyo, 
2014). 

Related literature also described various 
defuzzification methods with different levels of 
complexity. For instance, Ma et al. (2000) brought 
forward a novel method to defuzzify fuzzy sets 
according to the metric distance between two 
symmetric and triangular fuzzy numbers. Similarly, 
Sladoje et al. (2011) demonstrated a novel 
defuzzification method for image processing. Their 
method determined the crisp set that is at a minimal 
distance from the fuzzy set by generating a family of 
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distance functions. The distance between two fuzzy sets 
is expressed as a Minkowski distance.  

Meanwhile, Naaz et al. (2011) proposed a simple 

model of the fuzzy load balancing algorithm in a 

distributed system and compared the effects of five 

defuzzification methods, namely, COA, bisector of 

area, Mean of Maximum (MOM), smallest of 

maximum and largest of maximum. Prior authors 

(Asady and Zendehnam, 2007; Saneifard and Ezatti, 

2010) proposed defuzzification methods to rank fuzzy 

numbers. In the present study, we compare the 

proposed method with the Center Of Gravity (COG) 

method and with that proposed by Asady and 

Zendehnam (2007). 

 

Center of Gravity (COG): The COG method was 

developed by Sugeno (1985) and is the most commonly 

used defuzzification method. This method calculates 

the position at which the left and the right areas are 

equal. COG refers to the centroid of the area and the 

defuzzification method can be expressed as: 

 

���� =
� ��	
��.���

� ��	
��.��
,  

 

where ����  is the crisp value to the fuzzy number �� 
 
The method of Asady and Zendehnam: Asady and 
Zendehnam (2007) presented a defuzzification method 
based on the nearest point of a fuzzy number. The 

nearest point to the triangular fuzzy number �� =

��, �, ��to be: 
 

��&� = �� +
���

�
,  

 
where � and � are the left and the right fuzziness 
values, respectively, ��&� is the crisp value to the fuzzy 

number ��. 
 
Data Envelopment Analysis (DEA): DEA is a 
recognized modern approach that stems from a Linear 
Programming (LP) model to evaluate the relative 
efficiencies of Decision Making Units (DMUs) with 
multiple inputs and outputs. DEA is a non-parametric 
technique and was initially proposed by Charnes et al. 
(1978) as a (CCR) model. This model was improved by 
other  scholars,  particularly in the form of the Banker 
et al. (1984) (BCC) model. 

Assuming the inputs ���
� = 1,2, . . , "� and outputs 

#$�  
& = 1,2, . . , '� for DMUj(j = 1, 2,…, n), the 

programming statement for the CCR model is 
formulated as follows: 
 
Model (1): 
()

∗ = "�+ () 

'. ,.  - .���� ≤ ()��)
0
�12  - .�#$� ≥ #$)

0
�12  

.� ≥ 0 5 = 1, … , +  
( 7&88  

where, .� is a non-negative value related to the j
th

DMU. 

The vector . = 
.2, .9, … , .0�: constructs a hull that 
covers all of the data points. 

Model (1) is divided into three parts, namely, the 
left- and right-hand sides of the constraints and the 
objective function. The left-hand side generates the 
Production Possibility Set (PPS) and retouching this set 
changes the space. The right-hand side and the 
objective function lead DMUs to the frontier. Thus, the 
DMUs located on the efficiency frontier are considered 
the relative ideal points in DEA evaluation. That is, 
each inefficient DMU probes its own ideal DMU on the 
frontier. However, the question is whether the ideal 
points always lie on the efficiency frontier. In this 
research, we indicate that the ideal point can be probed 
within PPS. 
 
Defuzzification of groups of fuzzy numbers: This 
section stresses on the origin of the premise underlying 
dependency. First, Kikuchi (2000) proposed the new 
defuzzification method that is capable of finding the 
most appropriate set of crisp numbers. The method 
assumes that each observed value is an approximate 
number (or a fuzzy number) and the true value is found 
in the support of the membership function. Although 
his method was validated for solving special kind of 
problems under assumption that inputs equal outputs in 
transportation problem and planning, it is quite notable 
that all the proposed methods in literature deal with no 
relationships on original data (observed data), which 
produce similar defuzzification results under various 
relationships. Literature is also rife with defuzzification 
methods emphasizing the transformation of individual 
fuzzy numbers into crisp (e.g., COG, MOM) and the 
method brought forward by Saneifard and Ezatti 
(2010). 

However, because real application data is noted in 
groups that display some relationships and properties 
that emphasize their dependence, dependency takes 
significance. Therefore, in this study, a new 
defuzzification method that stresses on groups of fuzzy 
numbers is proposed. In other words, the present study 
is unique in that it addresses dependent data rather than 
what has been extensively examined in literature 
namely independent data.  

To explain further, we refer to an example 

presented by Zerafat et al. (2009), where (G1, G2,.., Gn) 

indicates the supposed ranking places. Given a group of 

p experts (E1, E2,.., Ep) commenting on the weights of 

these places, the weights ;�<
� = 1,2, . . , +�
= =
1,2, . . , >� can be aggregated into a group of fuzzy 

numbers. Thus, we first generate n fuzzy numbers. We 

then select the Triangular Fuzzy Numbers (TFN) from 

among the various shapes of fuzzy numbers because it 

is the most popular one. Therefore, the triangular fuzzy 

numbers are denoted by three points as follows: 
 

 ;?� = 
;�
@, ;�

A , ;�
B� 
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Fig. 1: Example to illustrate the shortcoming of existing defuzzification methods

 

In this case, we determine a representative of the 

fuzzy numbers given above 
;2
∗, ;

representative is established as the 

each C�  
� = 1,2, … , +� and the sum of the

representative weights must be one. However, this 

restriction may not be adhered to if a defuzzification 

method, such as COG or that developed by Asady and 

Zendehnam (2007), is employed because the

do not have a condition that maintains these relations 

among the representative weights. The following 

diagram illustrates this matter (Fig. 1). 

 

METHODOLOGY AND METHOD 

DEVELOPMENT 

 

The method proposed to defuzzify groups of fuzzy 

numbers operates in six stages: 

 

Stage 1: n triangular fuzzy numbers are generated 

based on the method proposed by 

Chang (2009) as follows:
 

x x x xi i i i
%

1

( ) , min{ , ,..., } max{ , ,..., }
1 2 1 2

1

p
pm l ux x x x x x and x x x x

i ik i i i ip i i i ip
k

= = =∏
=
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Fig. 1: Example to illustrate the shortcoming of existing defuzzification methods 

In this case, we determine a representative of the 

;9
∗, . . , ;0

∗�. This 

representative is established as the final weight of 

and the sum of the 

representative weights must be one. However, this 

restriction may not be adhered to if a defuzzification 

method, such as COG or that developed by Asady and 

, is employed because these methods 

do not have a condition that maintains these relations 

among the representative weights. The following 

 

METHODOLOGY AND METHOD 

The method proposed to defuzzify groups of fuzzy 

triangular fuzzy numbers are generated 

based on the method proposed by Yeh and 

( , , )
m l u

x x x xi i i i=  

( ) , min{ , ,..., } max{ , ,..., }
1 2 1 2

m l ux x x x x x and x x x x
i ik i i i ip i i i ip
= = =

 

i =1,2,…,n  is the number of fuzzy numbers,

=1,2,…,p is the number of observations,

value, xi
m
  is the geometric mean and

value. 

This method displays the following membership 

functions: 

 

( )

l

m l

u

u m

x x
L for x x x

x x
xx x xi

R for x x x
x x

µ

  −    − =
 −
   − 

%

 

Stage 2: T: The interval [x
l
, x

u
] of each fuzzy number 

is divided into m subintervals with equal width, with 

each subinterval being of width x∆ =

each element in these subintervals as shown 
l

k
x x k x= + ∗∆ k=1,2,..,m then the corresponding 

subintervals are; 

{[xi
l
= xi0, xi1],[ xi1, xi2],.. [ xi(m-1), xim= x

 

is the number of fuzzy numbers, k 

number of observations, xi
l 
is the lowest 

and xi
u 

is the highest 

This method displays the following membership 

l m

m u

L for x x x

R for x x x

≤ ≤

≤ ≤  

] of each fuzzy number i 

subintervals with equal width, with 
u lx x

x
m

−
∆ = . We label 

each element in these subintervals as shown 

then the corresponding 

= xi
u
]}.  
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Table 1: Illustration of inputs and outputs of DMUs 

i j i1 i2 . . in-1 in o1 

DMU0 �2
D = �2� �9

D = �9� . . �0�2
D = �
0�2�� �0

D = �0� 1 

DMU1 �22 �92 . . �
0�2�2 �02 1 

DMU2 �29 �99 . . �
0�2�9 �09 1 

. . . . . . . . 

. . . . . . . . 

DMUm-1 �2
@�2� �9
@�2� . . �
0�2�
@�2� �0
@�2� 1 

DMUm �2
B = �2@ �9

B = �9@ . . �0�2
B = �
0�2�@ �0

B = �0@ 1 

 

Stage 3: With these subintervals, mDMUs are created. 

The PPS of these DMUs generate all of the 

possible solutions in the fuzzy interval. In 

other words, I � = 1 ,ℎ8+�2
A  

=  �2� , �22, . . , �2
@�2�, �2@ = �2
B represents 

the input values of DMUj (j = 1, 2,…, m) that 

are used to produce PPS. The single output 

corresponding to DMUj is assumed to be one. 

The inputs of each DMUs are illustrated in 

the following Table 1. 

Stage 4: In this stage, we propose the following non-

linear programming model based on the CCR 

model (1), but we replace the main objective 

with n objectives. The number of these 

objectives depends on the number of fuzzy 

numbers. Each objective gives an optimal 

solution �F� which has a minimum distance to 

all points in the fuzzy interval. 

 

Model (2): 

 

"�+
- G�HI


��<�@
<1� J�F� − ��<J

- G�HI

��<�@

<1�
 � = 1,2, … , + 

s. t. - .<��< ≤ �F�
@
<1� � = 1,2, . . , + - .< ≥@

<1�
1 N���=1,2,..+. ��O≤��≤��P �=1,2,…,+ .=≥0 
= = 0,1,2, … , "  
 

In the proposed method, the relationships among 

these groups of fuzzy numbers are expressed as 

constraints N
�F��. The fourth constraint includes all of 

the intervals of the fuzzy numbers. 

As shown in the model above, constraints 

including λ produce PPS that correspond to the CCR 

model. This model is solved only once unlike DEA 

evaluation, which requires the calculation of many 

models. 

 

Stage 5: We assume that zRS = xUR − xRS and JzRSJ =
zRS

V + zRS
�  ∀
i, k�. The multi-objective 

nonlinear programming Model (2) is then 

proposed as follows: 

 

Model (3): 

 

 "�+
- G�HI


��<�@
<1� 
Z�<

V + Z�<
� �

- G�HI

��<�@

<1�
 � = 1,2, … , +  

'. ,.  - .<��< ≤ �F�
@
<1� � = 1,2, . . , + - .< ≥ 1 @

<1�  

��
A ≤ �F� ≤ ��

B � = 1,2, … , +  
 N 
�F�� � = 1,2, . . +,  
�F� − ��< −  
Z�<

V − Z�<
� � = 0 � = 1,2, … , + =

= 1,2, … , "  
.< ≥ 0 = = 0,1,2, … , " 

 

If G�HI

��<� the membership functions of each fuzzy 

number and the relationship N 
�F�� are linear, this 

model above is a Multi-Objective Linear Programming 

model (MOLP). 

 

Stage 6: In order to determine the solution to Model 

(3) using weighted (Archimedean) goal 

programming model (WGP) it can be solved 

in the following way: 

 

Model (4): 

 

 "�+ - ;�[� 
0
�12  

 

s. t.
- �\?I


�I]�^
]_` 
aI]

b VaI]
c �

- �\?I

�I]�^

]_`
 − [� ≤ ,`�  � = 1,2, … , +  

- .<��< ≤ �F�
@
<1�  � = 1,2, . . , +  

 

 - .< ≥ 1 = = 0,1,2, … , " @
<1�  

 

 N 
�F�� � = 1,2, … , +  
 

��
A ≤ �F� ≤ ��

B � = 1,2, … , +  
 

�F� − ��< −  
Z�<
V − Z�<

� � = 0 � = 1,2, … , + = 1,2, … , "  
 

.< ≥ 0 = = 0,1,2, … , "  
 

In model (4), ;�  
� = 1, 2, … , +� denotes positive 

penalty weights. These weights can be determined 

through multi-criteria decision making techniques such 

as the Analytic Hierarchical Process (AHP) developed 

by Saaty (1980). However, we assume that each 

objective is equally important and allocate equal weight 

without losing generality. That is 
;2 = ;9 = ⋯ =
;0 = 1/+� allocated to each weight for this model 

[�  
� = 1,2, … , +� measures the over-achievement from 

the target point ,`� 
� = 1,2, … , +� which is obtained by 

computing the MOLP model as a single objective n 

times (i.e., by considering each objective individually). 
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Table 2: The five inputs and unique output of jthDMU (j= 0, 1, 2,.. 500) 

im i1 i2 i3 i4 i5 o1 

DMU0 �2
D = �2 � �9

D = �9 � �g
D = �g � ��

D = �� � �h
D = �h � 1 

DMU1 �22 �92 �g2 ��2 �h2 1 

DMU2 �29 �99 �g9 ��9 �h9 1 

. . . . . . . 

. . . . . . . 

. . . . . . . 

DMU500 �2
B = �2 h�� �9

B = �9 h�� �g
B = �g h�� ��

B = �� h�� �h
B = �h h�� 1 

 
Table 3: Results of the proposed method under different number of partitions 

No. of fuzzy 

numbers Fuzzy numbers 

Crisp values 

-------------------------------------------------------------------------------------------------------------------------------- 

i 
��
A, ��

@, ��
B� m = 2 m = 9 m = 19 m = 20 m = 100 m = 250 m = 500 

1 (14,29.2397,48) 31 29 28 28 28 28 28 

2 (1,6.7661,19) 10 7 7 7 7 7 7 

3 (4,15.5450,34) 19 14 15 16 16 16 16 

4 (15,29.4486,51) 17 30 30 29 29 29 29 

5 (30,51.8925,76) 53 50 50 50 50 50 50 

Sum of the estimated no. of  beds 130 130 130 130 130 130 130 

 

 

 
Fig. 2: The first and second inputs of DMU1, DMU2,.., DMU9 

 

Case study and data collection: In this section, we 

apply the proposed methodology in real life by 

estimating the required number of hospital beds for the 

different wards of a Malaysian hospital. We collected 

the data on the number of beds used by patients who 

were hospitalized over a period of 150 days from the 

hospital database of the Malaysian Ministry of Health. 

The hospital patients were divided into five categories 

based on age [toddler (T), schoolchildren (S), adult (A), 

old (O) and elderly (E)]. This case study aims to aid 

managers in determining the optimal number of beds to 

be allocated to each group because the number of 

available beds at this hospital is limited. 

 

RESULTS AND DISCUSSION 

 

The data is first compiled into a group of fuzzy 

numbers. Five groups are generated by using method 

proposed by Yeh and Chang (2009) in stage 1. The 

fuzzy number of each five groups is represented as the 

input of DMUj. In DEA, the interval of each fuzzy 

number � = 1,2, … 5 is partitioned into " = 500 

subintervals. 

The starting point of each subinterval k = 0, 1, 2, 

…, 500 of fuzzy number is represented as (input1, 

input2, input3, input4, input5) for DMU1 while the 

second points of each subinterval k = 0, 1, 2, …, 500 of 

fuzzy number is represented as (input1, input2, input3, 

input4, input5) for DMU2 and so on until DMU500. For 

better understanding, refer to Table 2 for details.  

Therefore, the efficiency frontier produced by the 

starting points of the interval of fuzzy numbers is 

insignificant. In this case, optimal solution should 

occasionally be obtained from within the PPS rather 

than on the frontier, as demonstrated in the following 

example. Figure 2 indicates two groups of fuzzy 

numbers (Tand S). These groups correspond to DMUj 

where 5 = 1,2, … , " and " = 9.  

The flexibility of this method enables the increase 

in different numbers of DMUs by increasing the
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Table 4: Results of the proposed method when the total available beds is 200 

No. of fuzzy 

numbers Fuzzy numbers 

Crisp values 

-------------------------------------------------------------------------------------------------------------------------------- 

i 
��
A, ��

@, ��
B� m = 2 m = 9 m = 20 m = 27 m = 100 m = 250 m = 500 

1 (14,29.2397,48) 31 44 43 42 42 42 42 

2 (1,6.7661,19) 10 15 16 16 16 16 16 

3 (4,15.5450,34) 32 28 28 29 29 29 29 

4 (15,29.4486,51) 51 43 44 45 45 45 45 

5 (30,51.8925,76) 76 70 69 68 68 68 68 

Sum of the estimated no. of  beds 200 200 200 200 200 200 200 

 

number of partitions to obtain the best solution. Hence, 
different numbers of partitions are introduced until we 
obtain a stable result. 

Now, starting when " = 0 and from equation in 
stage 2 the element of the corresponding subinterval 

is �� = �A . Then when " = 1 the elements of the 

corresponding subinterval are  �� = �A ,  �2 = �B and 

the subinterval is[ �A , �B]. This indicates that no result 
could be obtained that satisfy the relationship in these 
subintervals indicating that the results start to appear 
from " = 2 until  " = 500. 

Table 3 shows the group fuzzy numbers generated 
for each group of inputs (five groups of patients) over 
150 days. For instance, when i=1, the first group of 
fuzzy numbers is described as follows as shown in 
column 2: 
 

 �2
A = "�+l�22, �29, . . , �2 2h�m = 14, �2

@ =


o ��<�2h�
<12

2
2h�p

= 29.2397 and �2
B =

"t�l�22, �29, . . , �2 2h�m = 48 
 

The results obtained using m = 500 different 

numbers of partitions ranged from m = 2 when the 

result start to appear as summarized in column 3 to 9. 

Then m = 9 to show different results for each groups, 

until m = 20 where the results start to be stabilized. In 

m = 100, 150 and 500, we get the same results as m = 

20 indicating that the optimal numbers of beds 

determined for these five groups of patients under 

various partitions satisfies the relationship 
- �F� =5
�11

130) and therefore, the total number of available beds 

is represented by�F2 = 28, �F9 = 7, � v g = 16, � v � =
29, �Fh = 50. 

In the next step, we assume that the available 

number of beds is 200 to show the validity of our 

method and to give the optimal solution that satisfies 

the relationship on the original data. Table 4 shows that 

the stabilized  results  start  from  m = 27 and in each m 

the  proposed  method  that  gives  an  optimal  solution  
 

Table 5: Results of COG and A&Z methods 

No. of fuzzy numbers Fuzzy numbers COG A&Z 

i 
��
A, ��

@, ��
B�   

1 (14,29.2397,48) 30 30 

2 (1,6.7661,19) 9 9 

3 (4,15.5450,34) 18 17 

4 (15,29.4486,51) 32 31 

5 (30,51.8925,76) 53 52 

Sum of the estimated 

no. of  beds 

 142 139 

 

satisfied the relation 
- �F� = 200h
�12 �, but we continue 

in our partitions until the result is stabilized and this 

appears in m = 27. This led us to be sure that no other 

optimal solution will appear under this relationship, in 

which case, the results under different numbers of 

partition starting from m = 27, 28 …., 500 are noted to 

confirm this matter.  

As mentioned above, most of the defuzzification 

methods deal with original data as individuals not as 

groups, with some relationships. For this matter, we 

used two defuzzification methods namely COG and the 

method developed by Asady and Zendehnam (A and Z) 

(2007) to defuzzify the five groups of fuzzy numbers. 

Table 5 shows the that results obtained under these 

methods did not satisfied the relationship on the 

original data as the summation of estimated number of 

beds for each group equals to the total number of 

available beds 130.  

Now, we compare the results of the proposed 

method obtained in Table 6 with the results in Table 5. 

In this comparison, we ignore the constraint 

representing the relationship (N 
�F��) in model (4). In 

other words, we apply this method when the original 

data has no relationships.  

As shown in Table 6, the proposed method presents 

different results and different summation of the 

estimated number of beds under each partition. Then, 

the results starts stabilizing from m = 75. In this 

partition, the results obtained are the same as those of A 

and Z method.  

Table 6: The results of the proposed method with no relationships in original data 

No. of fuzzy 

numbers Fuzzy numbers 

Crisp values 

------------------------------------------------------------------------------------------------------------------------------ 

i 
��
A, ��

@, ��
B� m = 2 m = 9 m = 66 m = 75 m = 100 m = 250 m = 500 

1 (14,29.2397,48) 31 29 30 30 30 30 30 

2 (1,6.7661,19) 10 9 9 9 9 9 9 

3 (4,15.5450,34) 19 17 17 17 17 17 17 

4 (15,29.4486,51) 33 31 31 31 31 31 31 

5 (30,51.8925,76) 53 50 53 52 52 52 52 

Sum of the estimated no. of  beds 146 136 140 139 139 139 139 
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This finding, lead us to say that the proposed 
method gives the nearest point to the fuzzy numbers in 
case of no relationships and the optimum nearest point 
in case some relationships in the original data need to 
be satisfied in crisp values. 
 

CONCLUSION 
 

In this study, a new defuzzification method was 
developed to defuzzify groups of fuzzy numbers using 
the DEA model. The context of the proposed method 
with respect to some relationships in original data 
reveals that the crisp point maintains these 
relationships. The proposed method is unique because 
no other method in previous literature enabled crisp 
values to keep some relationships in the original data in 
a method that can be applied in real life problems not 
like a Kikuchi (2000) method. The example and case 
study confirm that the proposed method is applicable to 
both dependent and independent original data. To 
demonstrate the influence of the new approach on 
application, an allocation problem was presented. In 
this case study, the proposed method was utilized to 
estimate the optimal number of available beds in a 
hospital by categorizing patients according to ages. 

For future research, the proposed method can also 
efficiently address nonlinear fuzzy numbers. In this 
case, many nonlinear membership functions can 
represent real problems to some extent, including the 
(hyperbolic and exponential) membership functions. 
This method can be followed by matching real 
problems to these functions using actual data or 
statistical techniques, such as regression, to get the 
actual function of these data.  
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