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Research Article 
A Novel Strategy for Speed up Training for Back Propagation Algorithm via Dynamic 

Adaptive the Weight Training in Artificial Neural Network 
 

Mohameed Sarhan Al_Duais, AbdRazak Yaakub, Nooraini Yusoff and Faudziah Ahmed  
Department of Computer Science, University Utara Malaysia, 06010 Sintok, Kedah, Malaysia 

 

Abstract: The drawback of the Back Propagation (BP) algorithm is slow training and easily convergence to the 

local minimum and suffers from saturation training. To overcome those problems, we created a new dynamic 

function for each training rate and momentum term. In this study, we presented the (BPDRM) algorithm, which 

training with dynamic training rate and momentum term. Also in this study, a new strategy is proposed, which 

consists of multiple steps to avoid inflation in the gross weight when adding each training rate and momentum term 

as a dynamic function. In this proposed strategy, fitting is done by making a relationship between the dynamic 

training rate and the dynamic momentum. As a result, this study placed an implicit dynamic momentum term in the 

dynamic training rate. This αdmic = � � �
�����

	. This procedure kept the weights as moderate as possible (not to small 

or too large). The 2-dimensional XOR problem and buba data were used as benchmarks for testing the effects of the 

‘new strategy’. All experiments were performed on Matlab software (2012a). From the experiment’s results, it is 

evident that the dynamic BPDRM algorithm provides a superior performance in terms of training and it provides 

faster training compared to the (BP) algorithm at same limited error. 
  
Keywords: Artificial neural network, dynamic back propagation algorithm, dynamic momentum term, dynamic 

training rate, speed up training 

 
INTRODUCTION 

 
The Back Propagation (BP) algorithm is commonly 

used in robotics, automation and Global positioning 
System (GPS)  (Thiang and Pangaldus, 2009; Tieding 
et al., 2009). The BP algorithm is used successfully in 
neural network training with a multilayer feed forward 
(Bassil, 2012, Abdulkadir et al., 2012, Kwan et al., 
2013, Shao and Zheng, 2009). The back propagation 
algorithm led to a tremendous breakthrough in the 
application of multilayer perceptions (Moalem and 
Ayoughi, 2010, Oh and Lee, 1995). It has been applied 
successfully in applications in many areas and it has an 
efficient training algorithm for multilayer perception 
(Iranmanesh and Mahdavi, 2009). Gradient descent is 
commonly used to adjust the weight through the change 

training errors, but the gradient descent is not 

guaranteed to find the global minimum error, because 
training is slow and converges easily to the local 
minimum (Kotsiopoulos and Grapsa, 2009, Nand et al., 
2012, Shao and Zheng, 2009, Zhang, 2010). The main 
problem of the BP algorithm is slow training; it needs a 
long learning time to obtain the result (Scanzio et al., 
2010). However, stuck at a local minimum when Or, the 
output  training  of  hidden  layers  and  Or,  the   output  

training of output layer, extremely approaches 1 or 0 
(Dai and Liu,  2012,  Shao  and  Zheng, 2009, Zakaria 
et al., 2010).  

To overcome this problem, there are techniques for 
increasing the learning speed of the BP algorithm or 
escaping the local minimum, such as the flat spots 
method, the gradient descent method through 
magnifying the slope, or changing the value of gain in 
the activation function, respectively. In addition, the 
heuristics approach is one of them, which focuses on 
the parameter training rate and momentum term. In this 
study, we propose a dynamic function for each training 
rate and momentum term. 

However, this problem has been discussed 
thoroughly by many researchers. More specifically, to 
give the BP algorithm faster convergence through 
modifying it by using some parameter as a modified 
gain in the sigmoid function in back propagation Zhang 
et al. (2008). In addition, the ∆wjk is affected by the 
slope value. The small value of the slope makes back 
propagation very slow during training. In addition, the 
large value of the slope may make it faster in training. 
The value of the gain and momentum parameter 
directly influences the slope of the activation function, 
so Nawi et al. (2011), adapts each parameter gain and 
momentum to remove the saturation, but (Oh and Lee, 
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1995), focuses on magnifying the slope. The objectives 
of this study involve improving the speed of training of 
the back propagation algorithm through adapting each 
training rate and momentum by using a dynamic 
function. 

Current work for solving the slow training back 

propagation algorithm is through adaptation of a 

parameter (e.g., training rate and the momentum term), 

which controls the weight of the adjustment along the 

descent direction (Iranmanesh and Mahdavi, 2009), 

Asaduzzaman at el., 2009). Improving the speed of the 

back propagation algorithm through adapting each 

training rate and momentum by dynamic function 

Xiaozhong and Qiu (2008) has improved the back 

propagation algorithm by adapting the momentum term. 

For a new algorithm tested by XOR -2 dimensions, the 

experiment results demonstrated that the new algorithm 

is better than the BP algorithm. Burse et al., (2010) 

proposed a new method for avoiding the local minimum 

by adding the momentum term and PF term. Shao and 

Zheng (2009) proposed new algorithm, PBP, is based 

on adaptive momentum. The simulation result has 

shown that the new algorithm has faster convergence 

and smoothing oscillation. Zhixin and Bingqing (2010) 

have improved the back propagation algorithm has 

improved based on the adaptive momentum term. A 

new algorithm was tested using the 2-dimensional 

XOR. The simulation results show that the new 

algorithm is better than the BP algorithm.  On the other 

hand, some studies focus on the   adaptive    training   

rate Latifi and Amiri (2011) presented in a novel 

method based on adapting the variable steep learning 

rate to increase the convergence speed of the EBP 

algorithm. The proposed convergence is faster than the 

back propagation algorithm. Gong (2009) proposed a 

novel algorithm (NBPNN) beside this is on the self-

adaptive training rate. From the experiment results, the 

NBPNN gives more accurate results than the others. 

Iranmanesh and Mahdavi, (2009) proposed different 

training rate for different location for output layer. 

Yang and Xu (2009) have proposed to modify the 

training rate by a math formula based on a two-step 

function. From the experiment results, the new 

algorithm gives a superior performance compared to the 

back propagation algorithm. Al-Duais et al. (2013) 

improved BP algorithm by created the mathematic 

formula of the training rate. The experiments results 

show that the Dynamic BP algorithm gave a faster 

training rate than the BP algorithm. 

 

MATERIALS AND METHODS 

 

This kind of this research belong the heuristic 

method. Heuristic method included two parameter such 

training  rate  and  momentum  term.  This study will be  

 

 
 
Fig. 1: Training of back propagation 
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creating dynamic function for each training rate and 

momentum term to increase speeding up back 

propgation algorithm. There are many steps which 

appear in follows: 

 

NEURAL NETWORKS MODEL 

 

In this section, we will propose the ANN model, 

which consists of a three-layer neural network 

composed of an input layer, a hidden layer and an 

output layer. The input layer is considered as {x1, x2, ..., 

xi} nodes, which depends on the kind or attribute of the 

data. The hidden layer is made of two layers with four 

nodes. The output layer is made of one layer with one 

neuron. Of the three biases, two are used in the hidden 

layers and one in the output layer, denoted by u0j, v0k 
and w0r. Finally, the sigmoid function is employed as an 

activation function, which is linear for the output layer 

in (Hamid et al., 2012). The proposed neural network 

can be defined as {I, T, W, A}, where, I denotes the set 

of input nodes and T denotes the topology of NN, 

which covers the number of hidden layers and the 

number of neurons. Wjr denoted the set of weight and 

A, denoted by the activation function as Fig. 1. 

Before presenting the BPDRM algorithm, let us bri

efly define some of the notations used in the algorithm 

as follows: 

 

Zh :
 

First hidden layer for neuron h, h = 1, …, q 

ZZr  
: Second hidden layer for neuron j, j = 1,..., p 

Or : Output layer for neuron r 

uih : The weight between neuron i in the input 

layer and neuron h in the hidden layer 

u0h :
  

The weight of the bias for neuron j 

vhj :
 

The weight between neuron h from hidden 

layer z and neuron j from the hidden layer 

ZZ 

v0j :
 

The weight of the bias for neuron j 

wjr
  

: The weight between neuron k from the 

hidden layer ZZ and neuron r from the 

output layer O 

w0r : The weight of the bias for neuron r from the 

output layer 

∆w : The difference between the current and new 

value in the next iteration 

η :
 

The manual of training rate 

α : The manual of momentum term 

ηdmic : The dynamic training rate 

αdmic :
 

The dynamic momentum term 

�
(Or) : Differential of activation functions for 

output layer Or at neuron r 

ε  : Absolute value 

e : Error training 

1.0 E-n : 1 power -n, n = 1, …, i,∀ i ∈  N 

δr :
 

The error back propagation at neuron r 

δj :
 

The error back propagation at neuron j 

CREATING THE DYNAMIC FUNCTIONS FOR 

THE TRAINING RATE AND  

MOMENTUM TERM 

 

One way to escape the local minimum and save 

training time in the BP algorithm is by using a large 

value of η in the first training instance. On the contrary, 

the small value of η leads to slow training (Huang, 

2007). In the BP algorithm, the training rate is selected 

by depending on experience and a trail value between 

(0, 1) in (Li et al., 2010, 2009). Despite this, there are 

studies that have proposed techniques to increase the 

value of η
 

to speed up the BP algorithm through 

creating a dynamic function. However, the increasing 

value of η becomes too large; it leads to oscillated 

output training in (Negnevitsky, 2005). Even a large 

value of η is unlikely for the training BP algorithm. The 

weight update between neuron k from the output layer 

and neuron j from the hidden layer is as follows: 

  

( )jkw t+1 w ( ) ( 1)
( )

jk

jk

E
t w t

W t
η α

∂
∆ = − + ∆ −

∂
           (1) 

  

where, the ( )jkw t∆  changes, the weight is updated for 

each epoch from equation1, slow training or fast 

depends on some parameter, which affects updating the 

weight. The key for the convergence of the error 

training is monotonicity function in (Zhang, 2009). 

Many studies adapt the training rate and momentum by 

using a monotonicity function such as (Shao and 

Zheng, 2009, Yang and Xu, 2009), used exponentially 

to increase the speed of the BP algorithm. The 

exponential function is a monotonic function. We 

propose a dynamic training rate as follows: 

 

sin(1-o )
=  +  tan(log ( e)) 

1- (o )

r
dmic

r
f

η ε
′

              

 (2) 

 

Substituting αdmic 
from Eq. (2) into Eq. (1) to obtain: 

 

( )jk

sin(1-o )
w t+1 w ( ) [ + tan(log ( e)) ] ( )

1- (o ) 

r
jk jk

r

t w t
f

ε∆ = − ∆
′

(3) 

 
 

Alternatively, we can extend the Eq. (1) by adding 

a momentum term to become as follows: 

 

( )jk jkw 1  w (t)  w ( )  w ( 1)jk jkt t tη α+ = − ∆ + ∆ −      (4)  

 

In the back propagation algorithm, the value of the 

momentum term and training rate are selected as a trial 

value from the interval [0, 1] or 0<α≤1. 

In this study, we proposed a new strategy, which 

consists of two steps to avoid inflation in the gross 
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weight when added for each training rate and 

momentum term as a dynamic function. We proposed a 

new strategy to avoid the gross weight of the fitting 

producer by creating a relationship between the 

dynamic training rate and the dynamic momentum, so 

we placed an implicit momentum function in the 

training rate
 

( )
dmic dmic

fα η= , which was defined as the 

implicit training rate proposed in Eq. 2. From the 

previous decoction, we can propose the dynamic 

function of the momentum term as follows: 

 

 

1
dmic

dmic

α
η

=                             (5)  

 

From Eq. 5 we see the relationship between αdmic 
and ηdmic are inverse. By having this the weight is 

moderator (no large value, no small value) for avoid the 

gross the weight or according the overshooting of 

training. Substituting ηdmic 
from Eq. (2) into Eq. (5), the 

dynamic of the momentum term is defended by Eq. (6) 

as follows:  

 

 1

sin(1-o )
 + tan(log ( e)) 

1- (o ) 

dmic
r

rf

α
ε

=

′

              (6)  

 

The value of dynamic of αdmic is located (0, 1) for 

epoch. The small value of αdmic avoids the gross weight 

for each equation (25, 26, 27, 28, 29, 30), while the 

weight is updated. 

 

BACK PROPAGATION WITH DYNAMIC 

TRAINING RATE AND MOMENTUM  

(BPDRM) ALGORITHM 

 

The back propagation algorithm, BP, is trained 

with a trial value of the training rate between a range of 

0<η≤1 l and 0<α≤1. Many techniques for enhancing the 

BP algorithm neglect speeding up the training, using 

flat-spot, gradient descent and the heuristics technique, 

which include the training rate and the momentum 

term. The weight update for every epoch or iteration in 

the new algorithm BPDRM between any neurons {j, k, 

…, r} from any hidden layer or output layer is as 

follows: 

 

Forward propagation: In the feed forward phase, each 

input unit xi receives an input signal xi and broadcasts 

this signal to the next layer until the end layer in the 

system. 

Equation 6 indicted the update to the weight for a 

new algorithm that we denote as BPDRM. The best 

value of the ε at ε = 0.0042: 

1

n

inh oh i ih

i

z u x u−

=

= +∑
                             (7)  

  

Then, each hidden unit computes its activation to 

get the signal Zh: 

 

( )h inpz f z−=
                                            (8)

    

It then sends its output signal to all the units in the 

second hidden layer. And each hidden unit (zzj j = 1, 2, 

…, p) calculates the input signal:  

 

– in j 0 j  h h j

1

  Z Z   v  z v  
i

i =

= +∑
                             (9) 

 

It also calculates the output layer of hidden zz: 

 

( )
jj inzz f zz−=                                           (10)  

 

It sends out layer zz to output layer or then 

calculates the input layer for the out layer:
 
 

 

inro−    

0

1

p

inr r j jr

j

O w zz w− +

=

= ∑
                           (11) 

 

 

Finally, it computes the output layer signal:  

 

( )r inro f o−=
              (12) 

 

Backward propagation: This step starts when the 

output of the last hidden layer or feed forward reaches 

the end step then starts the feedback that is obvious in 

Fig. 1. The information provides feedback to allow the 

adjustment of the connecting weights between each 

layer. The goal of the BP is to get the minimum error 

training between the desired output and actual data, as 

Eq. (13): 

 

1

( )
n

r r r

r

e t o
=

= −∑                                           (13) 

 

Calculate the local gradient for an output derivative 

of the activation function of Or to get: 

 

( )inro_   r re fδ ′= , ( ) ( )inr inr inro_    o_ 1  o_f ′ = −
           (14) 

 

Calculates the weight correction term (used to 

update wjr latter): 
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sin(1-o ) 1
[ +  tan(log ( e)) ] [ ] ( 1)

sin(1-o )1- (o )
+  tan(log ( e)) 

1- (o )

r
jr r j jr

rr

r

w zz w t
f

f

ε δ

ε

∆ = − + ∆ −
′

′

                                      (15) 

 

Calculate, the bias correction term (used to update the news w0r: 
 

0 0

sin(1-o ) 1
[ +  tan(log ( e)) ] [ ] ( 1)

sin(1-o )1- (o )
+  tan(log ( e)) 

1- (o )

r
r r r

rr

r

w w t
f

f

ε δ

ε

∆ = − + ∆ −
′

′

                          (16) 

 

And then sends δr to hidden units
 
ach hidden unite (zzj, j = 1, …, p)

 
 

Sums weighted input from the units in the layer above to get: 

  

 

 jr

1

w  
m

inj r

r

δ δ−

=

= ∑
                                                                                                                                                 (17) 

 

Calculate the local gradient for hidden layer (zzj) to get:  

 

( ) inj inj  zz-j fδ δ − −
′=

                                                                                                               (18) 

 

Calculate weight correction term (used to update the news
 
vhj):

 
 

hj hj

sin (1-o )1
v [ ] v ( ) [ +  tan (log ( e)) ] ( 1)

sin(1-o ) 1- (o )
 + tan(log ( e)) 

1- (o ) 

r
hj

r r

r

t v t
f

f

ε
ε

= − ∆ + ∆ −
′

′

                                      (19) 

 

Calculates the bias collection term (used to update ��  newest): 

  

0 0

sin(1-o ) 1
v [ +  tan(log ( e)) ] [ ] ( 1)

sin(1-o )1- (o )
 + tan(log ( e)) 

1- (o ) 

r
j j j

rr

r

v t
f

f

ε δ
ε

∆ = − + ∆ −
                                    (20) 

 

It then sends δj to hidden unit, each hidden unit’s (Zh h = 1, …, q) sum is the weighted input from the unit in the 

layer above and gets: 

 

inh

1

 
b

j hl

j

vδ δ−
=

=∑
                                                                                                                                                   (21)

 

 

Calculate the local gradient of hidden layer zh (expressed in terms of xi):
  

 

( )h  inh inh z   fδ δ − −
′= , ( )inh   z     (1  )    inh inhf z z− − −

′ = −                                                                                                      (22)  

 

Calculates the weight correction (update 
ih

u  newest): 

 

sin(1-o ) 1
[ +  tan(log ( e)) ] [ ] ( 1)

sin(1-o )1- (o )
 + tan(log ( e)) 

1- (o ) 

r
ih h i ih

rr

r

u x u t
f

f

ε δ
ε

∆ = − + ∆ −
′

′

                                   (23)  

 

Calculates the bias weight corrective term (used to update the news
 
u0h): 
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0 0

sin(1-o ) 1
[ +  tan(log ( e)) ] [ ] ( 1)

sin(1-o )1- (o )
+ tan(log ( e)) 

1- (o ) 

r
h h h

rr

r

u u t
f

f

ε δ

ε

∆ = − + ∆ −
′

′

                                      (24)  

 

Update the weight: The weight adjustment stage for all the layers are adjusted simultaneously. The adjustment of 

the weight is based on the above calculated factor in this cases the formal of update the weight is given by as below: 

For each output layer (j = 0, 1, 2, … p; r = 1…, m): 

The weight update for every layer according of the equations below: 

 

( )jk jkw 1  w (t) (- ) w ( )  w ( 1)jk jkt t tη α+ = + ∆ + ∆ −  

 

Then the weight update dynamically for every layer under effect of the Eq. (2) and (6), as follows: 

  

( )jr

sin(1-o ) 1
W t+1 ( ) [ +  tan(log ( e)) ] [ ] ( 1)

sin(1-o )1- (o )
+ tan(log ( e)) 

1- (o ) 

r
jr r j jr

rr

r

w t zz w t
f

f

ε δ
ε

= + + ∆ −
′

′
                             

(25) 

 

For the bias:  

 

( )0r 0

sin(1-o ) 1
W t+1 ( ) [ +  tan(log ( e)) ] [ ] ( 1)

sin(1-o )1- (o )
+ tan(log ( e)) 

1- (o ) 

r
jr r r

rr

r

w t w t
f

f

ε δ
ε

= + + ∆ −
′

′

                      (26) 

 

( )hj

sin(1-o ) 1
v t+1 ( ) [ +  tan(log ( e)) ] [ ] ( 1)

sin(1-o )1- (o ) 
 + tan(log ( e)) 

1- (o )  

r
hj j h hj

rr

r

v t z v t
f

f

ε δ
ε

= + + ∆ −
′

′
                       (27)

 

 
For the bias: 

 

0j 0 0

sin (1-o )1
v (t+1) ( ) [ ] [ +  tan (log ( e)) ] ( 1)

sin(1-o ) 1- (o )
 + tan(log ( e)) 

1- (o ) 

r
j j j

r r

r

v t v t
f

f

δ ε
ε

= + + ∆ −
′

′
                       

(28) 

 

For each hidden layer, ( ) i 0, , n ; h 1,..., q     hZ = … = : 

 

( )ih

sin(1-o ) 1
u t+1 ( ) [ +  tan(log ( e)) ] [ ] ( 1)

sin(1-o )1- (o )
+  tan(log ( e)) 

1- (o )

r
ih h i ih

rr

r

u t x u t
f

f

ε δ
ε

= + + ∆ +
′

′

   
                       (29)  

 

For the bias: 

 

( )0h 0 h 0

sin(1-o ) 1
u t+1 ( ) [ +  tan(log ( e)) ] [ ] ( 1)

sin(1-o )1- (o )
+  tan(log ( e)) 

1- (o )

r
h h

rr

r

u t u t
f

f

ε δ

ε

= + + ∆ −
′

′

                          (30) 

 

IMPLEMENTATION OF THE BPDRM ALGORITHM WITH XOR-2BIT AND BUBA DATE SET 

 

In this section, we implement the Dynamic BPDRM algorithm with the XOR problem is famous use of training 

in BP algorithm. XOR problem gives the response true if exactly one of them in put value is true otherwise the 

response is false. XOR problem it has two input with four patterns. Also buba data is famous data which consist 6 

inputs with 345 patterns. In this case, the structure of the BP and BPDRM algorithm is 2:2:1 with XOR problem. 

However, the structure of the BPDRM algorithm and BP algorithm is 6:2:1 with buba data. 
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Steps of implementation for the BPDRM algorithm: 

 

Step 0: For XOR problem, read initialize weight W1 
= 

[0.5-0.1; -0.3 0.2], W2= [0.3-0.5; -0.4 0.3] W3 

= [0.3; 0.7], b1 = [0.1; -0.2], b2 = [-0.3; -0.2], 

b3 = [0.4].  

 

For buba data set, read weight W1 = rand (2, 6, 

'double'); W2 = rand (2, 2, 'double'), W3 = rand (2, 1, 

'double') b1 = rand (2, 1, 'double'), b1 = rand (2, 1, 

'double'), b3 = rand (1,'double').  

 

Step 1:  Read the number of the neuron hidden layer  

Step 2: Read the pattern from XOR-2Bit, get to find 

the target and the limited error = 10 power-6 

Step 3: Read the dynamic training rate and 

momentum 

Step 4: While (MSE>limited error), do steps 5-18 

Step 5: For each training pair, do steps 6-17 Forward 

Propagation  

Step 6: Compute the input layer of hidden layer Z 

using Eq. (7) and output value using Eq. (8). 

Step 7: Compute the input layer of hidden layer ZZ 

using Eq. (9) and output value using Eq. (10). 

Step 8: Compute the input layer of hidden layer Or 

using Eq. (11) and output value using Eq. 

(12). 

 

Back propagation:  

 
Step 9 : Calculate the error training using Eq. (13) 

Step 10: Computing the error signal δr at neural r using 

Eq. (14). 

Step 11: Calculate the weight correction for each 
jrw∆

 
and bias 

0r
w∆  using Equations 15 and 16, 

respectively. 

Step 12: Send δk 
to zzj

 
and calculate the error signal 

jin
δ− and local gradient of error signal δj using 

Eq. (17) and (18), respectively.  

Step 13: Calculate the weight correction for each 
hjv∆

and bias 
0 jv∆  using Eq. (19) and (20), 

respectively 

Step 14: Send δj
 

to zh 
and calculate the error signal 

hinδ−  and local gradient of error Signal δh, 

using Eq. (21) and (22), respectively.  

Step 15: For layer zh, calculate the weight correction for 

each 
ih

u∆ and bias 
0hu∆  using Equations 23 

and 24, respectively.
 

Step 16: The weight update for each layer:  

 
Output layer Or using Eq. (25) and Eq. (26), 

respectively  

Hidden layer zzj using Eq. (27) and Eq. (28), 

respectively 

Hidden layer zh 
using Eq. (29) and Eq. (30), 

respectively 

 

Step 17: Calculate the Mean Square error, MSE  = 

2

1

1
0.5 ( )

n i

kp kp

p k

t o
p =

−∑∑  

Step 18: Test the conditional  

 

EXPERIMENTS RESULTS 

 

In this section, we report the results obtained when 

experimenting with our proposed method with the 2-bit 

XOR parity problem and the iris data as a benchmark. 

We use Matlab software R2012a running on a 

Windows machine. There are no theories to determine 

the value of the limited error, but the range of the 

limited error effects the training time (Kotsiopoulos 

and Grapsa, 2009) determines the error tolerance by l 

to a power of -5. The convergence rate is very  slow  

and  it  takes  500000 epochs, but (Cheung et al., 2010) 

determined the limited error by less than 3 to a power 

of -4. The convergence rate is very slow and it takes 

1000 epochs. 

 

Experiments the BPDRM algorithm: We run the 

BPDRM algorithm, which is given in Eq. (2) and (6). 

Ten experiments have been done at the limited error 

1.0E-05. The average time for training and the epoch 

for all experiment results are tabulated in Table 1. 

From Table 1 above, the formula proposed in Eq. 

(5) and (6) helps the back propagation algorithm to 

reduce the time for training. Whereas t = 1.0315 sec, 

the average value of the MSE performance is a very 

small value for every epoch training. Training is shown 

in Fig. 2. 

From Fig. 2 the training curve as a beginner is a 

slightly vibrating curve during the first training, then 

the curve decays with an inverse of the index of epoch. 

From the figure above, the training curve is smooth and 

convergence is quickly at global minimum. 

 

Experiments on the BP algorithm: We are going to 

run the BP algorithm, which is given in equation 1 with 

trial or manual values for each training rate and 

momentum term. The value of η and α are chosen ∈ [0, 

1]. The experiments’ result is tabulated in Table 2. 

From Table 2, the best performance of the BP 

algorithm is a achieved at η = α = 0.9, whereas the time 

training was 9.3020 sec. The worst performance of the 

BP algorithm was achieved at η = α = 1, whereas the 

training time was 1920 sec. The range of the time 

training is located 1920≤t≤9.3020 sec. We consider the 

1920 sec as the maximum training time and the value 

9.3020   as   the  minimum  training  time.  In   addition, 
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Table 1: Average time training of BPDRM algorithm with XOR 

problem 

Average time-sec Average MSE Average Epoch 

1.0315 5.05E-07 504 

 
Table 2: Average time training of BP algorithm with XOR problem 
Value of 
----------------------- 

η α Time-Sec MSE Epoch 

0.1 0.1 904.1690 1.00 E-05 538028 
0.2 0.2 398.0140 1.00 E-05 237289 
0.3 0.3 227.9380 1.00 E-05 137566 
0.4 0.4 150.8910 1.00 E-05 87969 
0.5 0.5 103.1740 9.99 E-06 58389 
0.6 0.6 62.71000 9.99 E-06 38783 
0.7 0.7 45.36400 1.00 E-05 24877 
0.8 0.8 24.90300 9.99 E-06 14492 
0.9 0.9 9.302000 9.99 E-06 6512 
1.0 1.0 1920.000 0.096000 1259443 

 
Table 3: Average time training of BPDRM algorithm with buba 

training set 

Limited error 
Average  
Time-Sec Average MSE 

Average 
Epoch 

0.000001 4.8689 9.96 E-07 119 

 
Table 4: Average Time Training of BP algorithm with buba-training 

set 
Value of 
--------------------- 

η                   α 
Average  
Time-Sec 

Average  
MSE 

Average  
Epoch 

0.1 0.1 196.3241 1.00 E-06 4591 
0.2 0.2 80.15617 1.00 E-06 2017 
0.3 0.3 47.94164 1.00 E-06 1164 
0.4 0.4 32.77282 1.00 E-05 747 
0.5 0.1 36.00864 9.99 E-07 907 
0.6 0.5 16.61182 9.99 E-07 410 
0.7 0.2 22.43927 9.99 E-07 581 
0.8 1.0 21.66527 9.99 E-07 571 
0.9 0.99 21.66527 0.500000 124769 
1.0 1.0 17.72250 9.99 E-07 459 

 
Table 5: Average Time Training of BPDRM algorithm with buba-

testing set 

Limited error 
Average 
Time-Sec Average MSE 

Average 
Epoch 

0.000001 7.2813 9.96328 E-07 180 

 

the value of MSE and the number of epochs at η = α = 1 
whereas the value of MSE = 0.0960 and number or 
epoch is 1259443. The large value of MSE at η = 0.9, η 
= 0.1. That means the weight change is very slight or 
equal for every epoch. The figure training is shown in 
Fig. 3. 
 

BPDRM Algorithm experiments using the data 
training set: We test the performance of our 
contribution, created in Eq. (2) and (6), by using 178 
patterns as a form of training. Ten experiments have 
been done; the simulation results are tabulated in 
Table 3. 

From Table 3, we are shown the average of the 
training time is very short and also the epoch number is 
very small. That indicates the dynamic training rate and 
momentum term to help the back propagation 
algorithm to remove the saturation training and reach 
the global minimum training. The training curve of the 
BPDRM algorithm on buba data is as shown in Fig. 4. 

 
 

Fig. 2: Training curve of BPDRM algorithm 

 

From Fig. 4, we can see that the BP starts training 

with a small value for a training error, whereas MSE is 

4.5 power-3, then the MSE decays quickly with an 

inverse index of the epoch number. At around 10 

epochs, the value of MSE = 0.005 then reaches the 

global minimum. 

 

Experiments of the BP algorithm with buba-training 

set: In this part, we test the performance using 180 

patterns as a form of training. 100 experiments have 

been done and then taken average of the experiments. 

The results are tabulated in the Table 4. 

From Table 4, the best performance of the BP 

algorithm is achieved at, η =
 
0.6, α = 0.5, whereas the 

training time is 16.61482 sec. The worst performance of 

the BP algorithm was achieved at η = 0.9, α = 0.99, 

whereas the training time is 4750.909 sec. The range of 

the average training time is located between 

16.61482≤t≤4750.909 sec. We consider that 4750.909 

sec is the maximum amount of training time and the 

value 16.61482 is the minimum amount of training 

time. The BP algorithm suffers the highest saturation at 

a value for each η and momentum term α at a value of 

1. The curve of training as shown in Fig. 5. 

 

Experiments of the BPDRM algorithm with buba-

testing set: In this section, we implement the BPDRM 

algorithm using the buba data testing set. A hundred 

and twenty patterns were used as a test set. The input 

layer equals the attribute of the data. The structure of 

the BPDRM algorithm becomes 6:2:1. All experiments 

are illustrated in the Table 5.  

From Table 5, the dynamic training rate and 

momentum reduces the time for training and enhancing 

the convergence of MSE. The average training time is 

7.2813 sec at an epoch of 180. The curve of training as 

shown in Fig. 6. 

From Fig. 6 we can see the training curve of the 

back propagation as it starts training with a small value 

of training error. The average value of MSE decays fast  



 

 

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015 

 

197 

 
 

Fig. 3: Training curve of BP algorithm 

 

 
 

Fig. 4: Training curve of the BPDRM algorithm with buba-

training set 

 

 
 
Fig. 5: Training curves of BP algorithms  

 
 
Fig. 6: Training curve for the BPDRM algorithm for the 

buba-testing set 

 
Table 6: Average Time Training of BP algorithm with buba-testing   

set 

Value of 
--------------------- Average  

Time-Sec 
Average  
MSE 

Average  
Epoch η α 

0.1 0.1 268.4603 1.00 E-06 6937 
0.2 0.2 125.2125 9.998 E-07 3216 
0.3 0.3 96.71273 1.00 E-06 1804 
0.4 0.4 45.75273 1.00 E-06 1133 
0.5 0.5 30.50627 9.99 E-07 763 
0.6 0.5 24.69000 9.99 E-07 636 
0.7 0.4 26.58618 9.99 E-07 687 
0.8 0.3 26.44518 9.99 E-07 674 
0.9 1.0 4330.909 0.500000 100183 
1.0 1.0 3834.545 0.500000 100617 

 
with the inverse index of number epoch. Around 5 
epochs are the value of MSE = 0.001, which then 
reaches global minimum. 
 
Experiments on the BP algorithm for the buba-
testing set: We implement the BP algorithm using 120 
patterns, which represents the test data set. A hundred 
experiments have been done on matlab. The experiment 
results are tabulated in Table 6. 

From Table 6, the best performance of the BP 
algorithm was achieved at η = 0.6 and α = 0.5. In 
addition, the BP algorithm provides fast training at the 
same point, whereas the training time = 24.69 sec. The 
worst performance of the BP algorithm is achieved at η 
= 0.9, α = 1 whereas the training time = 4330.909 and 
MSE = 0.5. The range of the average training time 
location is 24.69≤t≤4330.909 sec. We consider that 
4330.909 sec is the maximum of training time and the 
value 24.69 is the minimum training time. The BP 
algorithm suffers the highest saturation at a value for 
each η = 0.9 and momentum term α = 1. 
 

DISCUSSION 
 

In this part, we discuss and compare the BPDRM 

algorithm with consider the BP algorithm on three 

criteria: the training time, MSE and the number of 
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epoch. According to (Saki et al., 2013; Nasr and 

Chtourou, 2011; Scanzio et al., 2010) we calculate 

speed up training by formulae as follow: 

  

Speed up = 
��������� ���� �� ��  ��� !"#$% 

��������� ���� �� ��&'( ��� !"#$% 
 

 

For XOR problem the dynamic propagation 

provides better training which is show in the Table 7.  
From Table 7, it is evident that the BPBRM 

algorithm provides superior performance over the BP  
algorithm. The BPDRM algorithm is better for training, 
whereas the BPDRM algorithm is 1861.36699≈ 1862 
times faster than the BP algorithm as a maximum 
training. In addition, the BPDRM algorithm is 9.019≈ 9 
times faster than the BP algorithm as a minimum 
training time.  

For buba training set we compare the BPDRM 
algorithm and the BP algorithm on three criteria: 
training time, MSE and number of epochs to discover 
which gives the superior training. The comparison 
between them is Table 8. 

From Table 8, it is clear that the BPDRM 

algorithm has superior performance over the BP 

algorithm, whereas the BPDRM algorithm is 40.32≈ 40 

times faster than the BP algorithm as a maximum 

training in the same way as the BPDRM algorithm is 

3.6398≈ 4 time faster than the BP algorithm as a 

minimum training time. 

For iris testing set the dynamic propagation 

provides better training that is show in the Table 9. 

From Table 9, it is evident that the BPDRM 

algorithm has a superior performance compared to the 

BP algorithm. Whereas the BPDRM algorithm is

Table 7: Speeding up BPDRM versus BP algorithm with XOR 

Algorithm 

Value of 
----------------------------------- 

 

η α 
Time-Sec MSE Epoch 

Speed up rate 
BP/BPDRM 

BDRM   1.031500 5.05 E-07 504  
BP 0.1 0.1 904.1690 1.00 E-05 538028 876.55 
 0.2 0.2 398.0140 1.00 E-05 237289 385.85 

 0.3 0.3 227.9380 1.00 E-05 137566 220.97 
 0.4 0.4 150.8910 1.00 E-05 87969 74.27 
 0.5 0.5 103.1740 9.99 E-06 58389 100.02 
 0.6 0.6 62.71000 9.99 E-06 38793 60.79 
 0.7 0.7 45.36400 1.00 E-05 24877 43.97 
 0.8 0.8 24.90300 9.99 E-06 14492 12.25 
 0.9 0.9 9.302000 9.99 E-06 6512 9.01 
 1.0 1.0 1920.000 0.096000 1259443 186136 

 
Table 8: Speed up BPDRM versus BP Algorithm with bub-Training set 

Algorithm  

Value of 
------------------------------------ 

 

η α Average Time-Sec Average  MSE 
Average  
Epoch 

Speed up rate 
BP/BPDRM 

BDRM   4.869000 9.96 E-07 119  
BP 0.1 0.1 196.3241 1.00 E-06 4591 40.32 
 0.2 0.2 80.15617 1.00 E-06 2017 16.46 

 0.3 0.3 47.94164 1.00 E-06 1164 9.84 
 0.4 0.4 32.77782 9.99 E-07 747 6.73 
 0.5 0.1 36.00864 9.99 E-07 907 7.39 
 0.6 0.5 16.61182 9.99 E-07 410 3.41 
 0.7 0.2 22.43927 9.99 E-07 581 4.60 
 0.8 1.0 21.66527 9.99 E-07 571 4.44 
 0.9 0.99 4750.909 0.5000000 124769 975.74 
 1.0 1.0 17.72250 9.99 E-07 459 3.63 

 
Table 9: Speeding BPDRM versus BP algorithm with buba-Testing set 

Algorithm 

Value of 
------------------------------------- 

 

η α Average Time-Sec Average  MSE 
Average  
Epoch 

Speed up rate 
BP/BPDRM 

BDRM   7.281300 9.96328E-07 180  
BP 0.1 0.1 268.4603 1.00 E-06 6937 36.86 
 0.2 0.2 125.2125 9.998E-07 3216 125.12 
 0.3 0.3 69.71273 1.00 E-06 1804 9.57 

 0.4 0.4 45.75273 9.99 E-07 1133 6.28 
 0.5 0.1 30.50627 9.99 E-07 763 4.18 
 0.5 0.5 24.69000 9.99 E-07 636 3.39 
 0.4 0.2 26.58618 9.99 E-07 687 3.65 
 0.3 1.0 26.44518 9.99 E-07 674 3.63 
 1.0 0.99 4330.909 0.5000000 100183 594.79 
 1.0 1.0 3834.545 0.5000000 100617 526.62 
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594.7988≈ 595 times faster than the BP algorithm 

maximum training time, on the other hand, the BPDRM 

algorithm is 3.3908≈ 3.4 time faster than the BP 

algorithm as a minimum training time. 
 

CONCLUSION 

 

The back propagation BP algorithm is widely used 

in many tasks such as robot control, GPS and image 

restoration, but it suffers from slow training. To 

overcome this problem, there are many techniques for 

increasing the speed of the back propagation algorithm. 

In this study, we focused on a heuristic method, which 

included two parameters, the training rate and the 

momentum term. This study introduces the BPDRM 

algorithm, which is training by creating the dynamic 

function for each training rate and momentum. The 

dynamic function influenced the weight for each hidden 

layer and output layer. One of the main advantages of 

dynamic training and the momentum term is a reduction 

in the training time, error training and number of 

epochs. All algorithms were implemented on Matlab 

software R2012 a. The XOR problem and buba data 

were used as benchmarks. For the XOR problem, in the 

experiments result, the BPDRM algorithm is 1862 

times faster than the BP algorithm at a maximum time. 

In addition, the BPDRM algorithm is 9 times faster than 

the BP algorithm at a minimum training time. For the 

buba data training set, the BPDRM algorithm is 976 

times faster than the BP algorithm at the maximum 

time. For the buba data testing set, the BPDRM 

algorithm is 595 times faster than the BP algorithm at 

the maximum time.  
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