
Research Journal of Applied Sciences, Engineering and Technology 9(3): 189-200, 2015

DOI:10.19026/rjaset.9.1394

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: June 25, 2014 Accepted: July 19, 2014 Published: January 25, 2015

Corresponding Author: Mohammed Sarhan, Al_Duais, Department of Computer Sciences, University Utara Malaysia, 06010

Sintok, Kedah, Malaysia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

189

Research Article
A Novel Strategy for Speed up Training for Back Propagation Algorithm via Dynamic

Adaptive the Weight Training in Artificial Neural Network

Mohameed Sarhan Al_Duais, AbdRazak Yaakub, Nooraini Yusoff and Faudziah Ahmed
Department of Computer Science, University Utara Malaysia, 06010 Sintok, Kedah, Malaysia

Abstract: The drawback of the Back Propagation (BP) algorithm is slow training and easily convergence to the

local minimum and suffers from saturation training. To overcome those problems, we created a new dynamic

function for each training rate and momentum term. In this study, we presented the (BPDRM) algorithm, which

training with dynamic training rate and momentum term. Also in this study, a new strategy is proposed, which

consists of multiple steps to avoid inflation in the gross weight when adding each training rate and momentum term

as a dynamic function. In this proposed strategy, fitting is done by making a relationship between the dynamic

training rate and the dynamic momentum. As a result, this study placed an implicit dynamic momentum term in the

dynamic training rate. This αdmic = � � �
�����

	. This procedure kept the weights as moderate as possible (not to small

or too large). The 2-dimensional XOR problem and buba data were used as benchmarks for testing the effects of the

‘new strategy’. All experiments were performed on Matlab software (2012a). From the experiment’s results, it is

evident that the dynamic BPDRM algorithm provides a superior performance in terms of training and it provides

faster training compared to the (BP) algorithm at same limited error.

Keywords: Artificial neural network, dynamic back propagation algorithm, dynamic momentum term, dynamic

training rate, speed up training

INTRODUCTION

The Back Propagation (BP) algorithm is commonly

used in robotics, automation and Global positioning
System (GPS) (Thiang and Pangaldus, 2009; Tieding
et al., 2009). The BP algorithm is used successfully in
neural network training with a multilayer feed forward
(Bassil, 2012, Abdulkadir et al., 2012, Kwan et al.,
2013, Shao and Zheng, 2009). The back propagation
algorithm led to a tremendous breakthrough in the
application of multilayer perceptions (Moalem and
Ayoughi, 2010, Oh and Lee, 1995). It has been applied
successfully in applications in many areas and it has an
efficient training algorithm for multilayer perception
(Iranmanesh and Mahdavi, 2009). Gradient descent is
commonly used to adjust the weight through the change

training errors, but the gradient descent is not

guaranteed to find the global minimum error, because
training is slow and converges easily to the local
minimum (Kotsiopoulos and Grapsa, 2009, Nand et al.,
2012, Shao and Zheng, 2009, Zhang, 2010). The main
problem of the BP algorithm is slow training; it needs a
long learning time to obtain the result (Scanzio et al.,
2010). However, stuck at a local minimum when Or, the
output training of hidden layers and Or, the output

training of output layer, extremely approaches 1 or 0
(Dai and Liu, 2012, Shao and Zheng, 2009, Zakaria
et al., 2010).

To overcome this problem, there are techniques for
increasing the learning speed of the BP algorithm or
escaping the local minimum, such as the flat spots
method, the gradient descent method through
magnifying the slope, or changing the value of gain in
the activation function, respectively. In addition, the
heuristics approach is one of them, which focuses on
the parameter training rate and momentum term. In this
study, we propose a dynamic function for each training
rate and momentum term.

However, this problem has been discussed
thoroughly by many researchers. More specifically, to
give the BP algorithm faster convergence through
modifying it by using some parameter as a modified
gain in the sigmoid function in back propagation Zhang
et al. (2008). In addition, the ∆wjk is affected by the
slope value. The small value of the slope makes back
propagation very slow during training. In addition, the
large value of the slope may make it faster in training.
The value of the gain and momentum parameter
directly influences the slope of the activation function,
so Nawi et al. (2011), adapts each parameter gain and
momentum to remove the saturation, but (Oh and Lee,

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015

190

1995), focuses on magnifying the slope. The objectives
of this study involve improving the speed of training of
the back propagation algorithm through adapting each
training rate and momentum by using a dynamic
function.

Current work for solving the slow training back

propagation algorithm is through adaptation of a

parameter (e.g., training rate and the momentum term),

which controls the weight of the adjustment along the

descent direction (Iranmanesh and Mahdavi, 2009),

Asaduzzaman at el., 2009). Improving the speed of the

back propagation algorithm through adapting each

training rate and momentum by dynamic function

Xiaozhong and Qiu (2008) has improved the back

propagation algorithm by adapting the momentum term.

For a new algorithm tested by XOR -2 dimensions, the

experiment results demonstrated that the new algorithm

is better than the BP algorithm. Burse et al., (2010)

proposed a new method for avoiding the local minimum

by adding the momentum term and PF term. Shao and

Zheng (2009) proposed new algorithm, PBP, is based

on adaptive momentum. The simulation result has

shown that the new algorithm has faster convergence

and smoothing oscillation. Zhixin and Bingqing (2010)

have improved the back propagation algorithm has

improved based on the adaptive momentum term. A

new algorithm was tested using the 2-dimensional

XOR. The simulation results show that the new

algorithm is better than the BP algorithm. On the other

hand, some studies focus on the adaptive training

rate Latifi and Amiri (2011) presented in a novel

method based on adapting the variable steep learning

rate to increase the convergence speed of the EBP

algorithm. The proposed convergence is faster than the

back propagation algorithm. Gong (2009) proposed a

novel algorithm (NBPNN) beside this is on the self-

adaptive training rate. From the experiment results, the

NBPNN gives more accurate results than the others.

Iranmanesh and Mahdavi, (2009) proposed different

training rate for different location for output layer.

Yang and Xu (2009) have proposed to modify the

training rate by a math formula based on a two-step

function. From the experiment results, the new

algorithm gives a superior performance compared to the

back propagation algorithm. Al-Duais et al. (2013)

improved BP algorithm by created the mathematic

formula of the training rate. The experiments results

show that the Dynamic BP algorithm gave a faster

training rate than the BP algorithm.

MATERIALS AND METHODS

This kind of this research belong the heuristic

method. Heuristic method included two parameter such

training rate and momentum term. This study will be

Fig. 1: Training of back propagation

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015

191

creating dynamic function for each training rate and

momentum term to increase speeding up back

propgation algorithm. There are many steps which

appear in follows:

NEURAL NETWORKS MODEL

In this section, we will propose the ANN model,

which consists of a three-layer neural network

composed of an input layer, a hidden layer and an

output layer. The input layer is considered as {x1, x2, ...,

xi} nodes, which depends on the kind or attribute of the

data. The hidden layer is made of two layers with four

nodes. The output layer is made of one layer with one

neuron. Of the three biases, two are used in the hidden

layers and one in the output layer, denoted by u0j, v0k
and w0r. Finally, the sigmoid function is employed as an

activation function, which is linear for the output layer

in (Hamid et al., 2012). The proposed neural network

can be defined as {I, T, W, A}, where, I denotes the set

of input nodes and T denotes the topology of NN,

which covers the number of hidden layers and the

number of neurons. Wjr denoted the set of weight and

A, denoted by the activation function as Fig. 1.

Before presenting the BPDRM algorithm, let us bri

efly define some of the notations used in the algorithm

as follows:

Zh :

First hidden layer for neuron h, h = 1, …, q

ZZr
: Second hidden layer for neuron j, j = 1,..., p

Or : Output layer for neuron r

uih : The weight between neuron i in the input

layer and neuron h in the hidden layer

u0h :

The weight of the bias for neuron j

vhj :

The weight between neuron h from hidden

layer z and neuron j from the hidden layer

ZZ

v0j :

The weight of the bias for neuron j

wjr

: The weight between neuron k from the

hidden layer ZZ and neuron r from the

output layer O

w0r : The weight of the bias for neuron r from the

output layer

∆w : The difference between the current and new

value in the next iteration

η :

The manual of training rate

α : The manual of momentum term

ηdmic : The dynamic training rate

αdmic :

The dynamic momentum term

�
(Or) : Differential of activation functions for

output layer Or at neuron r

ε : Absolute value

e : Error training

1.0 E-n : 1 power -n, n = 1, …, i,∀ i ∈ N

δr :

The error back propagation at neuron r

δj :

The error back propagation at neuron j

CREATING THE DYNAMIC FUNCTIONS FOR

THE TRAINING RATE AND

MOMENTUM TERM

One way to escape the local minimum and save

training time in the BP algorithm is by using a large

value of η in the first training instance. On the contrary,

the small value of η leads to slow training (Huang,

2007). In the BP algorithm, the training rate is selected

by depending on experience and a trail value between

(0, 1) in (Li et al., 2010, 2009). Despite this, there are

studies that have proposed techniques to increase the

value of η

to speed up the BP algorithm through

creating a dynamic function. However, the increasing

value of η becomes too large; it leads to oscillated

output training in (Negnevitsky, 2005). Even a large

value of η is unlikely for the training BP algorithm. The

weight update between neuron k from the output layer

and neuron j from the hidden layer is as follows:

()jkw t+1 w () (1)
()

jk

jk

E
t w t

W t
η α

∂
∆ = − + ∆ −

∂
 (1)

where, the ()jkw t∆ changes, the weight is updated for

each epoch from equation1, slow training or fast

depends on some parameter, which affects updating the

weight. The key for the convergence of the error

training is monotonicity function in (Zhang, 2009).

Many studies adapt the training rate and momentum by

using a monotonicity function such as (Shao and

Zheng, 2009, Yang and Xu, 2009), used exponentially

to increase the speed of the BP algorithm. The

exponential function is a monotonic function. We

propose a dynamic training rate as follows:

sin(1-o)
= + tan(log (e))

1- (o)

r
dmic

r
f

η ε
′

 (2)

Substituting αdmic
from Eq. (2) into Eq. (1) to obtain:

()jk

sin(1-o)
w t+1 w () [+ tan(log (e))] ()

1- (o)

r
jk jk

r

t w t
f

ε∆ = − ∆
′

(3)

Alternatively, we can extend the Eq. (1) by adding

a momentum term to become as follows:

()jk jkw 1 w (t) w () w (1)jk jkt t tη α+ = − ∆ + ∆ − (4)

In the back propagation algorithm, the value of the

momentum term and training rate are selected as a trial

value from the interval [0, 1] or 0<α≤1.

In this study, we proposed a new strategy, which

consists of two steps to avoid inflation in the gross

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015

192

weight when added for each training rate and

momentum term as a dynamic function. We proposed a

new strategy to avoid the gross weight of the fitting

producer by creating a relationship between the

dynamic training rate and the dynamic momentum, so

we placed an implicit momentum function in the

training rate

()
dmic dmic

fα η= , which was defined as the

implicit training rate proposed in Eq. 2. From the

previous decoction, we can propose the dynamic

function of the momentum term as follows:

1
dmic

dmic

α
η

= (5)

From Eq. 5 we see the relationship between αdmic
and ηdmic are inverse. By having this the weight is

moderator (no large value, no small value) for avoid the

gross the weight or according the overshooting of

training. Substituting ηdmic
from Eq. (2) into Eq. (5), the

dynamic of the momentum term is defended by Eq. (6)

as follows:

 1

sin(1-o)
 + tan(log (e))

1- (o)

dmic
r

rf

α
ε

=

′

 (6)

The value of dynamic of αdmic is located (0, 1) for

epoch. The small value of αdmic avoids the gross weight

for each equation (25, 26, 27, 28, 29, 30), while the

weight is updated.

BACK PROPAGATION WITH DYNAMIC

TRAINING RATE AND MOMENTUM

(BPDRM) ALGORITHM

The back propagation algorithm, BP, is trained

with a trial value of the training rate between a range of

0<η≤1 l and 0<α≤1. Many techniques for enhancing the

BP algorithm neglect speeding up the training, using

flat-spot, gradient descent and the heuristics technique,

which include the training rate and the momentum

term. The weight update for every epoch or iteration in

the new algorithm BPDRM between any neurons {j, k,

…, r} from any hidden layer or output layer is as

follows:

Forward propagation: In the feed forward phase, each

input unit xi receives an input signal xi and broadcasts

this signal to the next layer until the end layer in the

system.

Equation 6 indicted the update to the weight for a

new algorithm that we denote as BPDRM. The best

value of the ε at ε = 0.0042:

1

n

inh oh i ih

i

z u x u−

=

= +∑
 (7)

Then, each hidden unit computes its activation to

get the signal Zh:

()h inpz f z−=
 (8)

It then sends its output signal to all the units in the

second hidden layer. And each hidden unit (zzj j = 1, 2,

…, p) calculates the input signal:

– in j 0 j h h j

1

 Z Z v z v
i

i =

= +∑
 (9)

It also calculates the output layer of hidden zz:

()
jj inzz f zz−= (10)

It sends out layer zz to output layer or then

calculates the input layer for the out layer:

inro−

0

1

p

inr r j jr

j

O w zz w− +

=

= ∑
 (11)

Finally, it computes the output layer signal:

()r inro f o−=
 (12)

Backward propagation: This step starts when the

output of the last hidden layer or feed forward reaches

the end step then starts the feedback that is obvious in

Fig. 1. The information provides feedback to allow the

adjustment of the connecting weights between each

layer. The goal of the BP is to get the minimum error

training between the desired output and actual data, as

Eq. (13):

1

()
n

r r r

r

e t o
=

= −∑ (13)

Calculate the local gradient for an output derivative

of the activation function of Or to get:

()inro_ r re fδ ′= , () ()inr inr inro_ o_ 1 o_f ′ = −
 (14)

Calculates the weight correction term (used to

update wjr latter):

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015

193

sin(1-o) 1
[+ tan(log (e))] [] (1)

sin(1-o)1- (o)
+ tan(log (e))

1- (o)

r
jr r j jr

rr

r

w zz w t
f

f

ε δ

ε

∆ = − + ∆ −
′

′

 (15)

Calculate, the bias correction term (used to update the news w0r:

0 0

sin(1-o) 1
[+ tan(log (e))] [] (1)

sin(1-o)1- (o)
+ tan(log (e))

1- (o)

r
r r r

rr

r

w w t
f

f

ε δ

ε

∆ = − + ∆ −
′

′

 (16)

And then sends δr to hidden units

ach hidden unite (zzj, j = 1, …, p)

Sums weighted input from the units in the layer above to get:

 jr

1

w
m

inj r

r

δ δ−

=

= ∑
 (17)

Calculate the local gradient for hidden layer (zzj) to get:

() inj inj zz-j fδ δ − −
′=

 (18)

Calculate weight correction term (used to update the news

vhj):

hj hj

sin (1-o)1
v [] v () [+ tan (log (e))] (1)

sin(1-o) 1- (o)
 + tan(log (e))

1- (o)

r
hj

r r

r

t v t
f

f

ε
ε

= − ∆ + ∆ −
′

′

 (19)

Calculates the bias collection term (used to update �� newest):

0 0

sin(1-o) 1
v [+ tan(log (e))] [] (1)

sin(1-o)1- (o)
 + tan(log (e))

1- (o)

r
j j j

rr

r

v t
f

f

ε δ
ε

∆ = − + ∆ −
 (20)

It then sends δj to hidden unit, each hidden unit’s (Zh h = 1, …, q) sum is the weighted input from the unit in the

layer above and gets:

inh

1

b

j hl

j

vδ δ−
=

=∑
 (21)

Calculate the local gradient of hidden layer zh (expressed in terms of xi):

()h inh inh z fδ δ − −
′= , ()inh z (1) inh inhf z z− − −

′ = − (22)

Calculates the weight correction (update
ih

u newest):

sin(1-o) 1
[+ tan(log (e))] [] (1)

sin(1-o)1- (o)
 + tan(log (e))

1- (o)

r
ih h i ih

rr

r

u x u t
f

f

ε δ
ε

∆ = − + ∆ −
′

′

 (23)

Calculates the bias weight corrective term (used to update the news

u0h):

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015

194

0 0

sin(1-o) 1
[+ tan(log (e))] [] (1)

sin(1-o)1- (o)
+ tan(log (e))

1- (o)

r
h h h

rr

r

u u t
f

f

ε δ

ε

∆ = − + ∆ −
′

′

 (24)

Update the weight: The weight adjustment stage for all the layers are adjusted simultaneously. The adjustment of

the weight is based on the above calculated factor in this cases the formal of update the weight is given by as below:

For each output layer (j = 0, 1, 2, … p; r = 1…, m):

The weight update for every layer according of the equations below:

()jk jkw 1 w (t) (-) w () w (1)jk jkt t tη α+ = + ∆ + ∆ −

Then the weight update dynamically for every layer under effect of the Eq. (2) and (6), as follows:

()jr

sin(1-o) 1
W t+1 () [+ tan(log (e))] [] (1)

sin(1-o)1- (o)
+ tan(log (e))

1- (o)

r
jr r j jr

rr

r

w t zz w t
f

f

ε δ
ε

= + + ∆ −
′

′

(25)

For the bias:

()0r 0

sin(1-o) 1
W t+1 () [+ tan(log (e))] [] (1)

sin(1-o)1- (o)
+ tan(log (e))

1- (o)

r
jr r r

rr

r

w t w t
f

f

ε δ
ε

= + + ∆ −
′

′

 (26)

()hj

sin(1-o) 1
v t+1 () [+ tan(log (e))] [] (1)

sin(1-o)1- (o)
 + tan(log (e))

1- (o)

r
hj j h hj

rr

r

v t z v t
f

f

ε δ
ε

= + + ∆ −
′

′
 (27)

For the bias:

0j 0 0

sin (1-o)1
v (t+1) () [] [+ tan (log (e))] (1)

sin(1-o) 1- (o)
 + tan(log (e))

1- (o)

r
j j j

r r

r

v t v t
f

f

δ ε
ε

= + + ∆ −
′

′

(28)

For each hidden layer, () i 0, , n ; h 1,..., q hZ = … = :

()ih

sin(1-o) 1
u t+1 () [+ tan(log (e))] [] (1)

sin(1-o)1- (o)
+ tan(log (e))

1- (o)

r
ih h i ih

rr

r

u t x u t
f

f

ε δ
ε

= + + ∆ +
′

′

 (29)

For the bias:

()0h 0 h 0

sin(1-o) 1
u t+1 () [+ tan(log (e))] [] (1)

sin(1-o)1- (o)
+ tan(log (e))

1- (o)

r
h h

rr

r

u t u t
f

f

ε δ

ε

= + + ∆ −
′

′

 (30)

IMPLEMENTATION OF THE BPDRM ALGORITHM WITH XOR-2BIT AND BUBA DATE SET

In this section, we implement the Dynamic BPDRM algorithm with the XOR problem is famous use of training

in BP algorithm. XOR problem gives the response true if exactly one of them in put value is true otherwise the

response is false. XOR problem it has two input with four patterns. Also buba data is famous data which consist 6

inputs with 345 patterns. In this case, the structure of the BP and BPDRM algorithm is 2:2:1 with XOR problem.

However, the structure of the BPDRM algorithm and BP algorithm is 6:2:1 with buba data.

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015

195

Steps of implementation for the BPDRM algorithm:

Step 0: For XOR problem, read initialize weight W1
=

[0.5-0.1; -0.3 0.2], W2= [0.3-0.5; -0.4 0.3] W3

= [0.3; 0.7], b1 = [0.1; -0.2], b2 = [-0.3; -0.2],

b3 = [0.4].

For buba data set, read weight W1 = rand (2, 6,

'double'); W2 = rand (2, 2, 'double'), W3 = rand (2, 1,

'double') b1 = rand (2, 1, 'double'), b1 = rand (2, 1,

'double'), b3 = rand (1,'double').

Step 1: Read the number of the neuron hidden layer

Step 2: Read the pattern from XOR-2Bit, get to find

the target and the limited error = 10 power-6

Step 3: Read the dynamic training rate and

momentum

Step 4: While (MSE>limited error), do steps 5-18

Step 5: For each training pair, do steps 6-17 Forward

Propagation

Step 6: Compute the input layer of hidden layer Z

using Eq. (7) and output value using Eq. (8).

Step 7: Compute the input layer of hidden layer ZZ

using Eq. (9) and output value using Eq. (10).

Step 8: Compute the input layer of hidden layer Or

using Eq. (11) and output value using Eq.

(12).

Back propagation:

Step 9 : Calculate the error training using Eq. (13)

Step 10: Computing the error signal δr at neural r using

Eq. (14).

Step 11: Calculate the weight correction for each
jrw∆

and bias

0r
w∆ using Equations 15 and 16,

respectively.

Step 12: Send δk
to zzj

and calculate the error signal

jin
δ− and local gradient of error signal δj using

Eq. (17) and (18), respectively.

Step 13: Calculate the weight correction for each
hjv∆

and bias
0 jv∆ using Eq. (19) and (20),

respectively

Step 14: Send δj

to zh
and calculate the error signal

hinδ− and local gradient of error Signal δh,

using Eq. (21) and (22), respectively.

Step 15: For layer zh, calculate the weight correction for

each
ih

u∆ and bias
0hu∆ using Equations 23

and 24, respectively.

Step 16: The weight update for each layer:

Output layer Or using Eq. (25) and Eq. (26),

respectively

Hidden layer zzj using Eq. (27) and Eq. (28),

respectively

Hidden layer zh
using Eq. (29) and Eq. (30),

respectively

Step 17: Calculate the Mean Square error, MSE =

2

1

1
0.5 ()

n i

kp kp

p k

t o
p =

−∑∑

Step 18: Test the conditional

EXPERIMENTS RESULTS

In this section, we report the results obtained when

experimenting with our proposed method with the 2-bit

XOR parity problem and the iris data as a benchmark.

We use Matlab software R2012a running on a

Windows machine. There are no theories to determine

the value of the limited error, but the range of the

limited error effects the training time (Kotsiopoulos

and Grapsa, 2009) determines the error tolerance by l

to a power of -5. The convergence rate is very slow

and it takes 500000 epochs, but (Cheung et al., 2010)

determined the limited error by less than 3 to a power

of -4. The convergence rate is very slow and it takes

1000 epochs.

Experiments the BPDRM algorithm: We run the

BPDRM algorithm, which is given in Eq. (2) and (6).

Ten experiments have been done at the limited error

1.0E-05. The average time for training and the epoch

for all experiment results are tabulated in Table 1.

From Table 1 above, the formula proposed in Eq.

(5) and (6) helps the back propagation algorithm to

reduce the time for training. Whereas t = 1.0315 sec,

the average value of the MSE performance is a very

small value for every epoch training. Training is shown

in Fig. 2.

From Fig. 2 the training curve as a beginner is a

slightly vibrating curve during the first training, then

the curve decays with an inverse of the index of epoch.

From the figure above, the training curve is smooth and

convergence is quickly at global minimum.

Experiments on the BP algorithm: We are going to

run the BP algorithm, which is given in equation 1 with

trial or manual values for each training rate and

momentum term. The value of η and α are chosen ∈ [0,

1]. The experiments’ result is tabulated in Table 2.

From Table 2, the best performance of the BP

algorithm is a achieved at η = α = 0.9, whereas the time

training was 9.3020 sec. The worst performance of the

BP algorithm was achieved at η = α = 1, whereas the

training time was 1920 sec. The range of the time

training is located 1920≤t≤9.3020 sec. We consider the

1920 sec as the maximum training time and the value

9.3020 as the minimum training time. In addition,

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015

196

Table 1: Average time training of BPDRM algorithm with XOR

problem

Average time-sec Average MSE Average Epoch

1.0315 5.05E-07 504

Table 2: Average time training of BP algorithm with XOR problem
Value of

η α Time-Sec MSE Epoch

0.1 0.1 904.1690 1.00 E-05 538028
0.2 0.2 398.0140 1.00 E-05 237289
0.3 0.3 227.9380 1.00 E-05 137566
0.4 0.4 150.8910 1.00 E-05 87969
0.5 0.5 103.1740 9.99 E-06 58389
0.6 0.6 62.71000 9.99 E-06 38783
0.7 0.7 45.36400 1.00 E-05 24877
0.8 0.8 24.90300 9.99 E-06 14492
0.9 0.9 9.302000 9.99 E-06 6512
1.0 1.0 1920.000 0.096000 1259443

Table 3: Average time training of BPDRM algorithm with buba

training set

Limited error
Average
Time-Sec Average MSE

Average
Epoch

0.000001 4.8689 9.96 E-07 119

Table 4: Average Time Training of BP algorithm with buba-training

set
Value of

η α
Average
Time-Sec

Average
MSE

Average
Epoch

0.1 0.1 196.3241 1.00 E-06 4591
0.2 0.2 80.15617 1.00 E-06 2017
0.3 0.3 47.94164 1.00 E-06 1164
0.4 0.4 32.77282 1.00 E-05 747
0.5 0.1 36.00864 9.99 E-07 907
0.6 0.5 16.61182 9.99 E-07 410
0.7 0.2 22.43927 9.99 E-07 581
0.8 1.0 21.66527 9.99 E-07 571
0.9 0.99 21.66527 0.500000 124769
1.0 1.0 17.72250 9.99 E-07 459

Table 5: Average Time Training of BPDRM algorithm with buba-

testing set

Limited error
Average
Time-Sec Average MSE

Average
Epoch

0.000001 7.2813 9.96328 E-07 180

the value of MSE and the number of epochs at η = α = 1
whereas the value of MSE = 0.0960 and number or
epoch is 1259443. The large value of MSE at η = 0.9, η
= 0.1. That means the weight change is very slight or
equal for every epoch. The figure training is shown in
Fig. 3.

BPDRM Algorithm experiments using the data
training set: We test the performance of our
contribution, created in Eq. (2) and (6), by using 178
patterns as a form of training. Ten experiments have
been done; the simulation results are tabulated in
Table 3.

From Table 3, we are shown the average of the
training time is very short and also the epoch number is
very small. That indicates the dynamic training rate and
momentum term to help the back propagation
algorithm to remove the saturation training and reach
the global minimum training. The training curve of the
BPDRM algorithm on buba data is as shown in Fig. 4.

Fig. 2: Training curve of BPDRM algorithm

From Fig. 4, we can see that the BP starts training

with a small value for a training error, whereas MSE is

4.5 power-3, then the MSE decays quickly with an

inverse index of the epoch number. At around 10

epochs, the value of MSE = 0.005 then reaches the

global minimum.

Experiments of the BP algorithm with buba-training

set: In this part, we test the performance using 180

patterns as a form of training. 100 experiments have

been done and then taken average of the experiments.

The results are tabulated in the Table 4.

From Table 4, the best performance of the BP

algorithm is achieved at, η =

0.6, α = 0.5, whereas the

training time is 16.61482 sec. The worst performance of

the BP algorithm was achieved at η = 0.9, α = 0.99,

whereas the training time is 4750.909 sec. The range of

the average training time is located between

16.61482≤t≤4750.909 sec. We consider that 4750.909

sec is the maximum amount of training time and the

value 16.61482 is the minimum amount of training

time. The BP algorithm suffers the highest saturation at

a value for each η and momentum term α at a value of

1. The curve of training as shown in Fig. 5.

Experiments of the BPDRM algorithm with buba-

testing set: In this section, we implement the BPDRM

algorithm using the buba data testing set. A hundred

and twenty patterns were used as a test set. The input

layer equals the attribute of the data. The structure of

the BPDRM algorithm becomes 6:2:1. All experiments

are illustrated in the Table 5.

From Table 5, the dynamic training rate and

momentum reduces the time for training and enhancing

the convergence of MSE. The average training time is

7.2813 sec at an epoch of 180. The curve of training as

shown in Fig. 6.

From Fig. 6 we can see the training curve of the

back propagation as it starts training with a small value

of training error. The average value of MSE decays fast

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015

197

Fig. 3: Training curve of BP algorithm

Fig. 4: Training curve of the BPDRM algorithm with buba-

training set

Fig. 5: Training curves of BP algorithms

Fig. 6: Training curve for the BPDRM algorithm for the

buba-testing set

Table 6: Average Time Training of BP algorithm with buba-testing

set

Value of
--------------------- Average

Time-Sec
Average
MSE

Average
Epoch η α

0.1 0.1 268.4603 1.00 E-06 6937
0.2 0.2 125.2125 9.998 E-07 3216
0.3 0.3 96.71273 1.00 E-06 1804
0.4 0.4 45.75273 1.00 E-06 1133
0.5 0.5 30.50627 9.99 E-07 763
0.6 0.5 24.69000 9.99 E-07 636
0.7 0.4 26.58618 9.99 E-07 687
0.8 0.3 26.44518 9.99 E-07 674
0.9 1.0 4330.909 0.500000 100183
1.0 1.0 3834.545 0.500000 100617

with the inverse index of number epoch. Around 5
epochs are the value of MSE = 0.001, which then
reaches global minimum.

Experiments on the BP algorithm for the buba-
testing set: We implement the BP algorithm using 120
patterns, which represents the test data set. A hundred
experiments have been done on matlab. The experiment
results are tabulated in Table 6.

From Table 6, the best performance of the BP
algorithm was achieved at η = 0.6 and α = 0.5. In
addition, the BP algorithm provides fast training at the
same point, whereas the training time = 24.69 sec. The
worst performance of the BP algorithm is achieved at η
= 0.9, α = 1 whereas the training time = 4330.909 and
MSE = 0.5. The range of the average training time
location is 24.69≤t≤4330.909 sec. We consider that
4330.909 sec is the maximum of training time and the
value 24.69 is the minimum training time. The BP
algorithm suffers the highest saturation at a value for
each η = 0.9 and momentum term α = 1.

DISCUSSION

In this part, we discuss and compare the BPDRM

algorithm with consider the BP algorithm on three

criteria: the training time, MSE and the number of

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015

198

epoch. According to (Saki et al., 2013; Nasr and

Chtourou, 2011; Scanzio et al., 2010) we calculate

speed up training by formulae as follow:

Speed up =
��������� ���� �� �� ��� !"#$%

��������� ���� �� ��&'(��� !"#$%

For XOR problem the dynamic propagation

provides better training which is show in the Table 7.
From Table 7, it is evident that the BPBRM

algorithm provides superior performance over the BP
algorithm. The BPDRM algorithm is better for training,
whereas the BPDRM algorithm is 1861.36699≈ 1862
times faster than the BP algorithm as a maximum
training. In addition, the BPDRM algorithm is 9.019≈ 9
times faster than the BP algorithm as a minimum
training time.

For buba training set we compare the BPDRM
algorithm and the BP algorithm on three criteria:
training time, MSE and number of epochs to discover
which gives the superior training. The comparison
between them is Table 8.

From Table 8, it is clear that the BPDRM

algorithm has superior performance over the BP

algorithm, whereas the BPDRM algorithm is 40.32≈ 40

times faster than the BP algorithm as a maximum

training in the same way as the BPDRM algorithm is

3.6398≈ 4 time faster than the BP algorithm as a

minimum training time.

For iris testing set the dynamic propagation

provides better training that is show in the Table 9.

From Table 9, it is evident that the BPDRM

algorithm has a superior performance compared to the

BP algorithm. Whereas the BPDRM algorithm is

Table 7: Speeding up BPDRM versus BP algorithm with XOR

Algorithm

Value of

η α
Time-Sec MSE Epoch

Speed up rate
BP/BPDRM

BDRM 1.031500 5.05 E-07 504
BP 0.1 0.1 904.1690 1.00 E-05 538028 876.55
 0.2 0.2 398.0140 1.00 E-05 237289 385.85

 0.3 0.3 227.9380 1.00 E-05 137566 220.97
 0.4 0.4 150.8910 1.00 E-05 87969 74.27
 0.5 0.5 103.1740 9.99 E-06 58389 100.02
 0.6 0.6 62.71000 9.99 E-06 38793 60.79
 0.7 0.7 45.36400 1.00 E-05 24877 43.97
 0.8 0.8 24.90300 9.99 E-06 14492 12.25
 0.9 0.9 9.302000 9.99 E-06 6512 9.01
 1.0 1.0 1920.000 0.096000 1259443 186136

Table 8: Speed up BPDRM versus BP Algorithm with bub-Training set

Algorithm

Value of

η α Average Time-Sec Average MSE
Average
Epoch

Speed up rate
BP/BPDRM

BDRM 4.869000 9.96 E-07 119
BP 0.1 0.1 196.3241 1.00 E-06 4591 40.32
 0.2 0.2 80.15617 1.00 E-06 2017 16.46

 0.3 0.3 47.94164 1.00 E-06 1164 9.84
 0.4 0.4 32.77782 9.99 E-07 747 6.73
 0.5 0.1 36.00864 9.99 E-07 907 7.39
 0.6 0.5 16.61182 9.99 E-07 410 3.41
 0.7 0.2 22.43927 9.99 E-07 581 4.60
 0.8 1.0 21.66527 9.99 E-07 571 4.44
 0.9 0.99 4750.909 0.5000000 124769 975.74
 1.0 1.0 17.72250 9.99 E-07 459 3.63

Table 9: Speeding BPDRM versus BP algorithm with buba-Testing set

Algorithm

Value of

η α Average Time-Sec Average MSE
Average
Epoch

Speed up rate
BP/BPDRM

BDRM 7.281300 9.96328E-07 180
BP 0.1 0.1 268.4603 1.00 E-06 6937 36.86
 0.2 0.2 125.2125 9.998E-07 3216 125.12
 0.3 0.3 69.71273 1.00 E-06 1804 9.57

 0.4 0.4 45.75273 9.99 E-07 1133 6.28
 0.5 0.1 30.50627 9.99 E-07 763 4.18
 0.5 0.5 24.69000 9.99 E-07 636 3.39
 0.4 0.2 26.58618 9.99 E-07 687 3.65
 0.3 1.0 26.44518 9.99 E-07 674 3.63
 1.0 0.99 4330.909 0.5000000 100183 594.79
 1.0 1.0 3834.545 0.5000000 100617 526.62

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015

199

594.7988≈ 595 times faster than the BP algorithm

maximum training time, on the other hand, the BPDRM

algorithm is 3.3908≈ 3.4 time faster than the BP

algorithm as a minimum training time.

CONCLUSION

The back propagation BP algorithm is widely used

in many tasks such as robot control, GPS and image

restoration, but it suffers from slow training. To

overcome this problem, there are many techniques for

increasing the speed of the back propagation algorithm.

In this study, we focused on a heuristic method, which

included two parameters, the training rate and the

momentum term. This study introduces the BPDRM

algorithm, which is training by creating the dynamic

function for each training rate and momentum. The

dynamic function influenced the weight for each hidden

layer and output layer. One of the main advantages of

dynamic training and the momentum term is a reduction

in the training time, error training and number of

epochs. All algorithms were implemented on Matlab

software R2012 a. The XOR problem and buba data

were used as benchmarks. For the XOR problem, in the

experiments result, the BPDRM algorithm is 1862

times faster than the BP algorithm at a maximum time.

In addition, the BPDRM algorithm is 9 times faster than

the BP algorithm at a minimum training time. For the

buba data training set, the BPDRM algorithm is 976

times faster than the BP algorithm at the maximum

time. For the buba data testing set, the BPDRM

algorithm is 595 times faster than the BP algorithm at

the maximum time.

REFERENCES

Al-Duais, M.S., A.R. Yaakub and N. Yusoff, 2013.

Dynamic training rate for back propagation

learning algorithm. Proceeding of IEEE Malaysia

International Conference on Communications

(MICC), pp: 277-282.

Asaduzzaman, M.D., M. Shahjahan and K. Murase,

2009. Faster training using fusion of activation

functions for feed forward neural networks. Int. J.

Neural Syst., 6: 437-448.

Abdulkadir, S.J., S.M. Shamsuddin and R. Sallehuddin,

2012. Three term back propagation network for

moisture prediction. Proceeding of International

Conference on Clean and GreenEnergy, 27: 103-

107. Bassil, Y., 2012. Neural network model for

path-planning of robotic rover systems. Int. J. Sci.

Technol., 2: 94-100.

Burse, K., M. Manoria and V.P. Kirar, 2010. Improved

back propagation algorithm to avoid local minima

in multiplicative neuron model. World Acad. Sci.

Eng. Technol., 72: 429-432.

Cheung, C.C., S.C. Ng, A.K. Lui and S.S. Xu, 2010.
Enhanced two-phase method in fast learning
algorithms. Proceeding of the International Joint
Conference on Neural Networks, pp: 1-7.

Dai, Q. and N. Liu, 2012. Alleviating the problem of
local minima in back propagation through
competitive learning. Neurocomputing, 94:

152-158.
Gong, B., 2009. A novel learning algorithm of back-

propagation neural network. Proceeding of
International Conference on Control, Automation
and Systems Engineering, pp: 411-414.

Hamid, N.A., N.M. Nawi, R. Ghazali, M. Salleh and M.
Najib, 2012. Improvements of back propagation
algorithm performance by adaptively changing
gain, momentum and learning rate. Int. J. Database
Theor. Appl., 4: 65-76.

Huang, Y., 2007. Advances in artificial neural
networks-methodological development and
application. Algorithms, 3: 973-1007.

Iranmanesh, S. and M.S. Mahdavi, 2009. A differential
adaptive learning rate method for back-propagation
neural networks. World Acad. Sci. Eng. Technol.,
50: 285-288.

Kwan, L., S. Shao and K. Yiu, 2013. YOA new
optimization algorithm for single hidden layer feed
forward neural networks. Appl. Soft Comput. J.,
13: 2857-2862.

Kotsiopoulos, A.E. and N. Grapsa, 2009. Self-scaled
conjugate gradient training algorithms.
Neurocomputing, 72: 3000-3019.

Latifi, N. and A. Amiri, 2011. A novel VSS-EBP
algorithm based on adaptive variable learning rate.
Proceeding of 3rd International Conference on
Computational Intelligence, Modelling and
Simulation, pp: 14-17.

Li, J., Lian and M.E. Min, 2010. An accelerating
method of training neural networks based on vector
epsilon algorithm function. Proceeding of
International Conferences on Information and
Computing, pp: 292-295.

Li, Y., Y. Fu, H. Li and S.W. Zhang, 2009. The
improved training algorithm of back propagation
neural network with self-adaptive learning rate.
Proceeding of International Conference in
Computational Intelligence and Natural
Computing, pp: 73-76.

Moalem, P. and S.A. Ayoughi, 2010. Improving

backpropgation via an efficient combination of a
saturation suppression method. Neural Network

World, 10: 207-22.

Nand, S., P.P. Sarkar and A. Das, 2012. An improved

gauss-newtons method based back-propagation

algorithm for fast convergence. Int. J. Comput.

Appl., 39: 1-7.
Nawi, N.M., N.M. Hamid and R.S. Ransing, 2011.

Enhancing back propagation neural network

algorithm with adaptive gain on classification

problems. Int. J. Database Theor. Appl., 2: 65-76.

Res. J. Appl. Sci. Eng. Technol., 9(3): 189-200, 2015

200

Negnevitsky, M., 2005. Multi-layer neural networks
with improved learning algorithms. Proceeding of
International Conference on Digital Image
Computing: Techniques and Applications, (2005),
pp: 34-34.

Nasr, M. B. and M. Chtourou, 2011. A self-organizing
map-based initialization for hybrid training of
feedforward neural networks. Applied Soft
Computing, 11(8): 4458-4464.

Oh, S. and Y. Lee, 1995. A modified error function to
improve the error back-propagation algorithm for
multi-layer. ETRI J., 1: 1-22.

Scanzio, S., S. Cumani, R. Gemello, F. Mana and F.P.
Laface, 2010. Parallel implementation of artificial
neural network training for speech recognition.
Pattern Recogn. Lett., 11: 1302-1309.

Shao, H. and G. Zheng, 2009. A new BP algorithm with
adaptive momentum for FNNs training. Proceeding
of WRI Global Congress on Intelligent Systems
(GCIS '09), pp: 16-20.

Saki, F., A. Tahmasbi, H. Soltanian-Zadeh and S. B.
Shokouhi, 2013. Fast opposite weight learning
rules with application in breast cancer diagnosis.
Computers in biology and medicine, 43(1): 32-41.

Thiang, H.K. and R. Pangaldus, 2009. Artificial neural
network with steepest descent back propagation
training algorithm for modeling inverse kinematics
of manipulator. World Academy of Science,
Engineering and Technology, 60: 530-533.

Tieding, L., Z. Shijian, G. Yunlan and T. Chengfang,
2009. Application of Improved BP Neural Network
to GPS Height Conversion. In Information
Engineering and Computer Science, 2009. ICIECS
2009. International Conference on IEEE, pp: 1-4.

Xiaozhong, L. and L. Qiu, 2008. A parameter
adjustment algorithm of BP neural network.
Proceeding of 3rd International Conference on
Intelligent System and Knowledge Engineering
(ISKE), pp: 892-895.

Yang, C. and R.C. Xu, 2009. Adaptation learning rate
algorithm of feed-forward neural networks.
Proceeding of International Conference on
Information Engineering and Computer Science
(ICIECS), pp: 4244-4994.

Zakaria, Z., N. Ashidi, M. Isa and S.A. Suandi, 2010. A

study on neural network training algorithm for

multi-face detection in static images. World Acad.

Sci. Eng. Technol., 62: 170-173.

Zhang, Z., 2010. Convergence analysis on an improved

mind evolutionary algorithm. Proceeding of 6th

International Conference on Natural Computation

(ICNC), pp: 2316-2320.

Zhang, C., W. Wu, X.H. Chen and Y. Xiong, 2008.

Convergence of BP algorithm for product unit

neural networks with exponential weights.

Neurocomputing, 72: 513-520.

Zhang, N., 2009. An online gradient method with

momentum for two-layer feed forward neural

networks q. Appl. Math. Computat., 2: 488-498.

Zhixin, S. and Bingqing, 2011. Research of improved

back-propagation neural ! network algorithm.

Proceeding of 12th IEEE International Conference

on Communication Technology (ICCT), pp:

763-766.

