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Abstract 

 

In this paper, we propose a threshold authenticated encryption scheme using both 

factoring and discrete logarithm problems. We apply the concept of threshold 

cryptography in the verification and message recovery phase, where t out of n 

recipients are required to verify and recover the message. Security analysis shows 

that our scheme will remain secure even if one of these problems can be solved.  
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1 Introduction 
 

An authenticated encryption scheme is a cryptographic scheme that ensures the 

confidentiality, integrity and authenticity of online documents or messages by 

allowing the user to sign and encrypt a message at the same time. In such a 

scheme, the receiver can not only recover the message sent, but also verify the 

message. By combining the digital signature scheme and the encryption scheme 

into a single scheme, communication and operation costs can be less than when 

performing both schemes separately [1]. 
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Diffie and Hellman’s [2] introduction of the concept of public-key 

cryptography has led to the development of a number of digital signature schemes 

based on various problems in number theory, such as factoring [3], discrete 

logarithm [4], quadratic residue [5], and elliptic curve [6, 7]. However, if one of 

the problems can be solved, then the single-problem scheme will not be secure. 

To overcome this problem, digital signature schemes using two problems have 

been proposed [8, 9, 10, 11, 12]. Furthermore, two-problem or hybrid-problem 

schemes are also suitable for applications that need long-term security [13]. 

The idea of developing an authenticated encryption scheme emerged from the 

modification of the digital signature. Nyberg and Rueppel [14] proposed a 

modified version of the Digital Signature Algorithm to facilitate message recovery. 

However, their scheme allowed only a single signer and a single verifier in the 

signing and verifying phases. Since then, the development of an authenticated 

encryption scheme has turned to multiple-participant society-oriented 

cryptography, also known as threshold cryptography [15, 16]. Hsu and Wu [17], 

for example, presented an authenticated encryption scheme with (t, n) shared 

verification, and Wang et. al. [18], Hsu et. al. [19], and Chen et. al [1] developed 

schemes with (t, n) signers and (k, l) verifiers. 

All authenticated encryption schemes reviewed here were developed using a 

single number theory problem. In this paper, considering the need for long-term 

security, we develop a threshold authenticated encryption scheme using two 

number theory problems: factoring and discrete logarithm. The security of our 

scheme arises from the difficulty of solving both problems simultaneously. We 

show that our scheme remains secure, even when one of the problems is solved. 

 

 

2 The Proposed Authenticated Encryption Scheme 
 

In this paper, a hybrid problem-based authenticated encryption scheme is 

proposed. Like all authenticated encryption schemes, the proposed scheme 

comprises the following phases: 

1. generating parameters and keys; 

2. signing and encrypting message; and 

3. verifying and decrypting the message. 

 

Phase 1: Generating parameters and keys 

 

In this phase, the system authority generates the keys that will be used 

throughout the scheme. Before s/he generates the secret and public keys for 

senders and receivers, s/he will set the following parameters: 

i.      - a 1024-bits prime. 

ii.      - a factor of    , where   and   are two safe primes. 

iii.  ̅   ̅ ̅ - a factor of    , where  ̅ and  ̅ are two safe primes. 

iv.  ( )  - Euler’s phi function of  . 



Threshold authenticated encryption scheme                          1501 

 

 

v.  ( ̅)  - Euler’s phi function of  ̅. 

vi.     - a generator of   
  of order  . 

 

In our scheme, a single sender and many receivers are involved in both 

signing/encrypting and verifying/decrypting phases. The system authority 

generates the secret and public keys for both sender and group of receivers, and 

then sets the threshold polynomial functions to share the secret keys for the 

receivers. In the key generation procedure, the system authority 

1. picks an integer     
  such that    (   ( ))    and then calculates   

from      (     ( )); 

2. picks another integer     ̅
  such that    (   ( ̅))    and then calculates 

  from      (     ( ̅)); 
3. constructs two threshold polynomial functions 

  ( )           
         

    (     ) 

  ( )            
         

    (     ) 

4. sets (     (  )   (  ))  for each recipient, where    is the public identity, 

while   (  ) and   (  ) are the secret shares for each recipient; 

5. sets a secret key for the group of recipients   (  )    , where      
  and 

the corresponding public key     
   (     ); and 

6. sets a secret key for the signer      
  and the corresponding public key                    

    
   (     ). 

 

The summary of secret and public keys for sender and receivers is given in 

Table 1. 

 

Table 1: Secret and public keys for sender and receivers 

  Secret keys Public keys 

Sender            

Receivers    (  )   (  )      

 

 

 

Phase 2: Signing and encrypting message 

 

To sign and encrypt a message  , the sender 

1. chooses a one-time secret integer   such that       and    (   )   ; 

2. calculates        (     ) and         (     ); 
3. generates the signature-ciphertext (        ), where 

  

     (   
  )  (     ), 

    
  (     ),  

     
  (     ̅); and 
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4. sends (        ) to the recipients. 

 

Phase 3: Verifying and decrypting message 

 

Upon receiving (        ) from the sender,   out of   recipients execute 

the following steps to verify and recover the message: 

1. From the individual secret key   (  ) and   (  ), each of them calculates 

 

     
  (  )  

  (  ) (     ) 
 

and then sends    along with the public identity    to the other participants 

through a secure channel. 

2. After all participants receive    and    from the other participants, they 

calculate 

 

  ∏   
  

 

   
 (     ) 

 

and 

 

     
  (     ̅) 

 

where 

   ∏
   
     

 

   
   

 (     )  

3. Then, the message   can be recovered by computing 

 

      
   (     )  

 

The recovered   can be verified by checking the validity of the redundancy 

within it. 

Theorem 1. If the algorithms in Phases 1 and 2 run smoothly, then the decryption 

of the encrypted message in Phase 3 is correct. 

 

Proof: 

 

All equations in Phase 3 are true for all (        ) since: 

 

1. Calculation of  . 

∏   
  

 

   
 ∏ (  

  (  )    
  (  ))

  
 

   
 ∏   

  (  )     
  (  )  

 

   
 

 ∏   
  (  )  

 

   
∏   

  (  )  
 

   
   

∑   (  )  
 
      

∑   (  )  
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   (   
  )   (  )                 (     )  

 

2. Calculation of  . 

  
  (  )

 
  (     ̅)  

 

3. Recovering the message. 

    
                                      (     )  

 

3 Security Analysis 

 
 In this section, we show that our scheme is heuristically secure against some 

cryptographic attacks. We consider the following attacks: 

 

Attack 1 

(i) Suppose that the adversary (Adv) tries to obtain the secret keys for the sender 

(    ) from the equations      (     ( ̅)) and     
   (     ). It 

is clearly infeasible due to the difficulty of solving factoring and discrete 

logarithm problems. 

(ii) Adv also might try to derive the secret keys for the recipients (    ) from 

the equations      (     ( ))  and     
   (     ) . However, 

without solving factoring and discrete logarithm problems, s/he will never 

succeed in deriving the secret keys from both equations. 

 

Attack 2 

Adv discovers the value of   from the equation     
  (     ̅) and then tries 

to obtain the secret key    from the equation         (     ). Since   is 

a one-time secret integer and   can only be discovered if both factoring and 

discrete logarithm problems are solvable, extracting the secret key    from the 

equation         (     ) will always be infeasible. 

 

Attack 3 

Assume that the factoring problem is solvable. 

(i) Adv could find the secret key for the sender   and try to generate the 

signature-ciphertext (        )  of a fake message. However, without 

knowing another secret key   , which can only be obtained if the discrete 

logarithm problem is solvable, Adv cannot calculate   and fails to generate 

   from the signature-ciphertext. 

(ii) Adv also could find the secret key   and try to recover the message from the 

signature-ciphertext (        ) . However, without solving the discrete 

logarithm problem, s/he cannot find another secret key   . Thus, the value of 

  remains concealed and Adv’s attempt to recover the message from the 

equation       
   (     ) fails. 
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Attack 4 

Assume that the discrete logarithm problem is solvable. 

(i) Adv knows the secret    and tries to generate the signature-ciphertext 
(        ). Since the factoring problem remains unsolved, Adv does not 

know the other secret key   and so fails to generate    from the 

signature-ciphertext. 

(ii) With the information about the signature-ciphertext (        )  and the 

secret key   , Adv tries to verify and recover the message. In this case, he 

tries to calculate the value of   from the equation     
   

  (     ). 
However, without solving the factoring problem and finding the value of  , 

s/he cannot calculate   and so fails to recover the message from the equation 

      
   (     ). 

 

 

 

4 Performance Evaluation 
 

It has been shown that the proposed authenticated encryption scheme is secure 

against some attacks. In this section, the efficiency of this scheme is evaluated, in 

terms of the number of secret and public keys, computational complexity, and 

communication cost. The following notations are used to analyze the efficiency of 

this scheme. 

 SK and PK are the number of secret and public keys, respectively. 

      is the time complexity for executing the modular exponentiation 

computation. 

      is the time complexity for executing the modular multiplication 

computation. 

      is the time complexity for executing the modular inverse computation. 

 | | denotes the bit length of  . 

   is the number of recipients involved in verifying and decrypting message 

phase. 

 

The performance of this scheme is shown in Table 2. 

 

In Table 2, we show the performance of our new scheme. In this paper, we do not 

compare the performance with other schemes because to our knowledge, this is 

the first threshold authenticated encryption scheme developed using two number 

theoretical problems. However, compared with a single problem-based scheme, 

our scheme is less efficient since it needs more computation for two problems.  

Nevertheless, this is the best hybrid problem-based scheme that we can develop. 
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TABLE 2. Performance of the proposed authenticated encryption scheme 

 

Criteria  Evaluation 

No. of keys SK      

 PK 

 
  

Computational 

complexity 

Sign/Encrypt 

 

 

 

Verify/Decrypt 

 

  

                

 (    )      

 

 
(    )      

 (       )      
 (    )      

 

Size of parameters / 

Communication cost 

 (   )| |    | ̅| 
 (   )| | 

 

 

5 Conclusion 
 

In this paper, we propose a threshold authenticated encryption scheme using 

two common number theoretical problems used in cryptography, namely, 

factoring and discrete logarithm. Security analysis shows that our scheme remains 

secure even if one of the problems is solved. In performance evaluation, it is 

shown that this is the best hybrid problem-based scheme that we can develop. 

Although this scheme appears to perform well, future development will be needed 

to develop a more efficient threshold authenticated encryption scheme using 

hybrid problems. 
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