An Experiment on the Performance of Shortest Path Algorithm

Simon Chan Yew Meng, Nur’ayuni Adnan, Syazwan Syafiqah Sukri, and Wan Mohd
Nazmee Wan Zainon

Universiti Sains Malaysia, Malaysia
{simon.ucom13; ayuni.ucom13; ssyafigah.ucom13}@student.usm.my, nazmee@usm.my

ABSTRACT

Shortest path algorithms are one of the main
algorithms used in most navigation system. By
implementing these algorithm, the related overall
costs such as time and work load can be minimized.
The main objective of this paper is to study and
experiment the different shortest path algorithm such
as Dijkstra’s algorithm, Symmetrical Dijkstra’s
algorithm, A* algorithm, Bellman-Ford algorithm,
Floyd-Warshall algorithm and Genetic algorithm in
solving the shortest path problem. In this paper, a
brief review on each of the shortest path algorithm
and its implementation method was discussed.
Explanation on how the experiment was conducted
and the sample data that involved in the experiment
were also presented. The result of the experiment
shows the overall performance of each algorithm in
solving shortest path problem in term of running time
and total distances. The analysis of result shows the
performance of each algorithm in order to suggest the
most efficient algorithm in solving the shortest path
problem.

Keywords: Dijkstra’s algorithm, Symmetrical
Dijkstra’s algorithm, Bellman-Ford algorithm, A*
algorithm, Floyd-Warshall algorithm, Genetic
algorithm

| INTRODUCTION
Shortest path problem is one of an interesting topic
and widely researched until these days. The shortest
path problem involve in finding shortest route from a
starting point to a destination point (Magzhan & Jani,
2013). This problem is widely applied for GPS
routing system, network routing system and logistic
automation (Beker et.al., 2012). The aim of solving
shortest path problem is to improve the productivity
as well as save cost and time. Currently there are
many shortest path algorithms that has been proposed
by the researcher to solve the shortest path problem.
Each of these proposed algorithms has its own
method to solve the problem and each algorithm has
its advantages and disadvantages over each other
depends on the situation it is used. Thus, it is
important to study about the characteristic of these
algorithms and able to choose the right algorithm that
suits each situation especially when users want to

implemented it to solve the shortest path problem
since using unsuitable algorithm could lead to time
wasting and inaccurate result. In this paper, there are
several shortest path algorithm that will be discussed:;

1) Dijkstra’s Algorithm

2) Symmetrical Dijkstra’s Algorithm

3) A* Algorithm

4) Bellman-Ford Algorithm

5) Floyd-Warshall Algorithm

6) Genetic Algorithm

The goal of this research is compare these six
algorithms in term of their performance, accuracy and
understand their characteristic. In the process, it will
try to determine the most efficient algorithm to solve
the shortest path problem. To achieve this, we have
conducted an experiment to test the performance of
the algorithm in different situation.

I LITERATURE REVIEW
As mention earlier, every shortest path algorithm has
its own unique characteristic and method in solving
the shortest path problem. In this section, the brief
description and implementations of six proposed
shortest path algorithm will be presented.

1) Dijkstra’s Algorithm: Dijkstra’s algorithm is a
shortest path algorithm discovered by E.W. Dijkstra
(Morris, 2016) (Zhang et. al., 2005), used to solve the
single-source shortest-path problem when all edges
have non-negative weights. In a graph, the algorithm
starts at the starting node and grows a tree that
ultimately spans all nodes reachable from the starting
node. The algorithm will works iteratively where in
each iterative it visits the node with shortest distance
path from the starting node and then revalue the path
distance of remaining unvisited node. This process
will keep repeated until the destination node was
visited (Zhang et. al., 2005). In overall, the Dijkstra’s
algorithm has running complexity of O(n?. One of
the advantage of Dijkstra’s algorithm is the algorithm
will be terminated once the destination node has
reached and without need to visit the remaining
unvisited node. In other hand, the disadvantage of
Dijkstra’s algorithm is difficult to be implemented on
computer program when the number of node is very
large because it will consume a lot of CPU memory in
order to compute it (Aghaei et. al., 2009).

Knowledge Management International Conference (KMICe) 2016, 29 — 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/

2) Symmetrical Dijkstra’s Algorithm: Symmetrical
Dijkstra’s algorithm was invented by Pohl where the
algorithm was derived from the Dijkstra algorithm
(Zhang et. al.,, 2005) by implementing the bi-
directional search method into it. The process of
Symmetrical Dijkstra’s algorithm was similar to the
original one with addition of a forward search from
the origin node to the destination node and a
backward search from the destination node to the
origin node. The process of algorithm will terminated
when forward search and backward search meet at
certain node. According to Pohl, this algorithm was
invented in attempt to reduce the running complexity
of Dijkstra’s algorithm from O(N") to O(N"?). But in
worst case scenario, the running complexity of the
algorithm could become two O(NP) searches.

3) A* Algorithm: A* algorithm was invented by Hart
and Nilsson (Mitchell, 1999) where the algorithm
implement the concept of integrating a heuristic into
the search procedure. The A* algorithm was working
as similar as the Dijkstra’s algorithm except for its
difference heuristic controls in choosing the node for
every iteration. Rather than choosing the node with
shortest distance path from starting node, the A*
algorithm will choose the node based on its distance
path from starting node with addition heuristic
estimation of its proximity to the destination node
(Beker et.al., 2012) (Cho et. al., 2013). The heuristic
estimation was evaluated by one of two main
evaluation functions, which were the Euclidean
distance and the Manhattan distance (Zhang et. al.,
2005). The Euclidean distance is calculated by the
length of straight line between the evaluated node and
the destination node, while the Manhattan distance
evaluated by the sum of distance in the X and Y
coordinates of both nodes. Through the usage of these
heuristic, the A* algorithm will cause the shortest
path tree expanded toward to the destination node
instead of expand the tree radially using the Dijkstra’s
algorithm. As results, A* algorithm has reduce the
search space require to reach the destination node
compare to Dijkstra’s algorithm. This shows that A*
algorithm will have better performance compare to
Dijkstra’s algorithm unless its heuristic was less
accurate.

4) Bellman-Ford Algorithm: Bellman-Ford algorithm
was developed by Richard E. Bellman and Lester R.
Ford, Jr (Stoimen, 2016). It is suitable to be
implemented to solve the shortest path problem when
the graph contains negative value edges (Beker et.al.,
2012) (Schrijver, 2012) (Glabowski et. al., 2013).
This algorithm works iteratively where its number of
iteration was based on the number of edges path from

starting node to destination node. For each iteration,
every of the last visited node will transverse to its
nearby node and label it with the most optimal
distance path from the starting node. The running
complexity of Bellman-Ford algorithm is O(NA)
where (N + 1) is the number of iterations and A is the
number of edges in the graph.

5) Floyd-Warshall ~ Algorithm: Floyd-Warshall
algorithm was discovered by Bernard Roy and
Stephen Warshall (Weisstein, 2016). It works by
finding the shortest distance path between all of pairs
of nodes in a graph (Beker et.al., 2012). The running
complexity of Floyd-Warshall algorithm is O(N®).
Besides that, Floyd-Warshall algorithm was also
explained as one of the few algorithms that able to
solve the shortest path problem in a graph that
contains negative values edges and without the
existed of negative edges cycle. The main advantage
of Floyd-Warshall algorithm is able to obtain the
shortest distance between any two nodes (Cho, 2013).
In other hand, this algorithm is simple and easy to
implement into the program but it was not suitable for
solving shortest path problem in large network
because its running complexity is too high for the
calculation.

6) Genetic Algorithm: Genetic algorithm was
invented by John Holland in the 1960s and then
developed by him and his students and colleagues at
the University of Michigan in the 1960s and the
1970s (Mitchell, 2016). This intelligent algorithm was
invented to solve the shortest path problem in a
flexible situation that has a very large search space
and constant changing environment (Magzhan & Jani,
2013). In addition, it also defines as a stochastic
search algorithm that based on the biological
evolution and used to produce a most optimizes
results. The genetic algorithm works by produce a set
of solution which is known as the population where
each of it was evaluated by its own fitness value.
Then, the population will goes through several
genetic operations such as selection, crossover and
mutation in order to generate a new generation of
population that supposed to have better fitness value
compare to the previous one. After going through
specific number of generations, the population with
the most optimal fitness value will be chosen as the
solution of the problem.

1l EXPERIMENT IMPLEMENTATION
In this research, the experiment has been conducted
using a special application developed in Java. The
sample data that used to test the shortest path
algorithm is the existing bus route of Penang area.
This experiment stimulates the navigation system to

Knowledge Management International Conference (KMICe) 2016, 29 — 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/

find the shortest path from the origin to the
destination using the proposed algorithm. Through
this experiment, the proposed algorithm will be tested
in different situation such as using large sample data
versus small sample data, traveling long journey
versus short journey and implementation of genetic
algorithm with different number of generation. Figure
1 and 2 show the large sample data and small sample
data respectively.

''''''''''''
ariu

Figure 1. Large Sample Data

lelutong
i o i e
USM
N 5000
— o ;,_;‘A,' /7 Sungai
7 Taman /7 Sungai N ——-160— — Nibong
_Pekaka / _ Dua oo i
1750
/" Bulat *\ ram ' \
_jambul / ——7R25— { Airport } r@m0——i Queensbay

Figure 2. Small Sample Data

\% EXPERIMENT RESULT AND
ANALYSIS
In order to achieve accurate results, each algorithms
performed 20 times for each of the cases of the
experiment. Then, the average value was calculated as
the final result.

For large data versus small data cases, each algorithm
was tested with same origin and destination (Jelutong
to Airport) but using the different data set (large
sample data and small sample data). The Table 1

shows the performance of each algorithm to solve
shortest path problem in term of running time and
result distance. The result was divided into two
groups, which are large sample data and small sample
data.

Table 1. Comparison Of Performance Of Algorithm To
Solve Shortest Path Problem For Large Data Versus
Small Data Cases

Small Sample Large Sample
Data Data
Algorit | Runnin T(_)tal Runnin T(_)tal
. Dista . Dista
hm g Time g Time
nce nce
(nanose (mete (nanose (Mete
cond) cond)
r r
Dijkstra | soeee | 18240 | 321712 | 18240
Symme
trical 27632 18240 | 144080 | 18240
Dijkstra
A*
43816 18240 | 322501 | 18240
Bellma | /5057 | 18240 | 88816 | 18240
n-Ford
Floyd-
Warsha 61974 18240 | 584213 | 18240
Il
Genetic | ge3588 | 18240 | 865661 | 18240

The Figure 3 shows the chart to compare the running
time of each algorithm to solve shortest path problem
for large data and small data cases.

$G0000

g2 & & g
EEEEE
!

Running Tiee (nanosecond)

200000 +

100000

o

Smal Data

Large Data

B Dijistea @ Sysmmetrical Dijstrs Wl A* B Beliman Foed) Floyd Wanshall B Genetic

Figure 3. Chart Of Running Time Of Algorithm To
Solve Shortest Path Problem For Large Data Versus
Small Data Cases

Knowledge Management International Conference (KMICe) 2016, 29 — 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/

The chart shows that the algorithm solve the shortest
path problem using small sample data has much
shorter running time compare to using large sample
data. This is can be explain by the smaller the data
size leads to the lesser the operations of algorithm
require to be executing for solving the problem. The
genetic algorithm is the exception because its number
of operation was based on its generation number
rather than the data size. This explains why the
running time of genetic algorithm only has slightly
different between using large sample data and small
sample data.

In small data cases, the symmetrical Dijkstra’s
algorithm has the highest performance compare to
others. This was follow-up by the Bellman-Ford
algorithm, A* algorithm and Dijkstra’s algorithm. In
large data cases, the Bellman-Ford algorithm has the
shortest running time which was follow-up by the
symmetrical Dijkstra’s algorithm, Dijkstra’s algorithm
and A* algorihm. In both cases, the genetic algorithm
and Floyd-Warshall algorithm has the worst and
second worst performance respectively. The
performance of genetic algorithm can be explained by
its complex operation while the Floyd-Warshall
algorithm cases is due to its time complexity of O(n®).
In term of accuracy, the result shows that all
algorithms were able to produce the similar and most
optimum solution for both small and large data cases.

For long journey versus short journey cases, the
experiment was carried out for each algorithm was
tested to start at the same origin location and travel to
two different destinations, where one is the short
journey (Airport to Jelutong) while another one is the
long journey (Airport to Masjid Terapung). The Table
2 shows the performance of each algorithm to solve
shortest path problem in term of running time and
result distance. The result was divided into two
groups, which are short journey cases and long
journey cases.

Table 2: Comparison Of Performance Of Algorithm To
Solve Shortest Path Problem For Long Journey Versus
Short Journey Cases

Short Journey Long Journey
Algori Running T(_)tal Runnin Tc_;tal
gorit Time Dista Time Dista
hm nce | J nce
(nanosec (nanose
(mete (mete
ond) N cond) N
Dijkstr
a 48553 1824 323291 3546
0 9
Symme
trical 37500 18024 219474 3594 6
Dijkstr

a
*
A 63947 18024 230527 22944
Bell -

“oer | 100264 18024 89606 22944
Floyd- 1824 2244
e | w2371 | 1924 | sgaaso | 2%
Geneti

c 797766 18024 1100531 28999

The Figure 4 and 5 shows the chart to compare each
algorithm to solve shortest path problem in term of
running time for long journey and short journey cases
and result distance for long journey cases
respectively.

The chart shows that each algorithm except Floyd-
Warshall algorithm and Bellman-Ford algorithm,
solves the short journey cases of shortest path
problem has better performance compare to long
journey. The different in performance of algorithm
was due to different in path distance between short
journey and long journey which resulting the
algorithm in short journey cases require to traverse
less node in order to reach the destination compare to
long journey. The Floyd-Warshall algorithm and
Bellman-Ford has the similar running time for both
cases due to its requirement to traverse all nodes
before able to product the solution.

1200000

- 7

600000

Rurwing Time {ranssecond)

400000

200000

Short loumay

Long Jowney

B Dijatra 8 Symmetricd Dijlatts BA* 8 Sellmanford [Floyd-Warshall B denetic

Figure 4. Chart of Running Time of Algorithm to Solve
Shortest Path Problem for Long Journey Versus Short
Journey Cases

In short journey cases, the symmetrical Dijkstra’s
algorithm was shows to have the shortest running

Knowledge Management International Conference (KMICe) 2016, 29 — 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/

10

time while the second runner up was Dijkstra’s
algorithm. The rest is follow by the A* algorithm and
Bellman-Ford algorithm. In long journey cases, the
chart shows that Bellman-Ford algorithm has the best
performance compare to others. The result was
follow-up by symmetrical Dijkstra’s algorithm, A*
algorithm and Dijkstra’s algorithm. In both cases, the
genetic algorithm has the worst performance follow-
up by the Floyd-Warshall algorithm. Similar to large
data versus small data case, the performance of
genetic algorithm and Floyd-Warshall algorithm was
due to the complex operation and time complexity of
O(n®) respectively.

Based on Table 2, the result shows that the solutions
of all algorithms are similar and optimum for short
journey cases. For long journey cases, the chart shows
that A* algorithm, Bellman-Ford algorithm and
Floyd-Warshall algorithm have produce the most
optimum solution which is follow-up by the genetic
algorithm. For Dijkstra’s algorithm and symmetrical
Dijkstra’s algorithm, both have produced the least
optimum solution. The reason Bellman-Ford
algorithm and Floyd-Warshall algorithm able produce
better solution was because both algorithms able to
generate all the possible solution before making
comparison to get the best solution. In other hand, the
A* algorithm cases can be explained by its
implementation of heuristic search.

algorithm with implementation of different number of
generation to solve the shortest path algorithm.

Table 3: Comparison Of Performance Of Genetic
Algorithm With Implementation Of Different Number
Of Generation To Solve Shortest Path Problem

Number of Running Time Total
Generation (nanosecond) Distance
(meter)

5 37106 32359
10 62369 28999
15 63158 22449
20 70263 28999
25 82500 22449
30 94342 19609

Total Distance [meinn

Long loumey

B Oifatrs B Symmesical Ofkata B A% B Bellmanferd [Flopd Wasthall 0 Genetic

Figure 5. Chart of Result Distance of Algorithm to
Solve Shortest Path Problem for Long Journey Cases

The next experiment was to test the performance of
genetic algorithm to solve shortest path problem of
same cases (Airport to KOMTAR) with
implementation of different number of generation.
The Table 3 shows the performance of genetic

The Figure 6 shows the graph to compare the
performance of genetic algorithm with
implementation of different number of generation to
solve the shortest path algorithm.

100000
90000 /
80000 /

70000 e
60000

50000
40000 /

30000 B

20000 -

10000

¢
5 10 15 0 5 30

Number of Generation
+qu!1r‘g|g Time "‘-,"‘",”“",“” -0-13:1# Destance !me(evl 7
Figure 6. Graph Of Performance Of Genetic Algorithm
With Implementation Of Different Number Of
Generation To Solve Shortest Path Algorithm

The graph shows that the running time of genetic
algorithm increase with its number of generation.
This is due to increase in number of operation
required to perform by genetic algorithm in order to
solve the shortest path problem. In other hand, the
graph also shows that the solution provided by the
genetic algorithm is inconsistent for each number of
generations because the solution produce by the
genetic algorithm can be random sometime. As the
number of generation increase further, the solution
produce by the genetic algorithm was shown to
improved and more optimum.

Knowledge Management International Conference (KMICe) 2016, 29 — 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/

11

\Y CONCLUSION AND FUTURE
WORK

Based on the experiment results, it shows that most
algorithms will achieve better performance when it
solves the short journey shortest path problem and
using small data size. In exception, the data size will
not affect the performance of genetic algorithm. In
other hand, the Bellman-Ford algorithm and Floyd-
Warshall algorithm will still retain its performance
for both short journey and long journey cases. This
show that the performance of algorithm can be
different in various situations depends on the nature
of data and method of algorithm to solve the shortest
path problem. In overall, the experiment result shows
that the Bellman-Ford algorithm was able to produce
the optimum solution using short running time. The
result also shows that the performance of Bellman-
Ford algorithm was superior to other algorithm in
most situations. This clearly indicates that the
Bellman-Ford algorithm is the most efficient shortest
path algorithm compare to others. In other hand, the
genetic algorithm was shown to have highest running
time but able to produce the optimum solution in
most situation. The experiment shows that
performance of genetic algorithm was affected by its
number of generation where the larger the number of
generation, the higher the running times as well as the
better the solution. Thus, it is important to adjust the
number of generation until the optimum running time
to solution ratio was achieved so that the genetic
algorithm can be used in the most efficient manner.

REFERENCES

Magzhan, K., Jani, H.M. (2013) “A Review and Evaluations of Shortest
Path Algorithm”, International Journal of Scientific & Technology
Research Volume 2, Issue 6.

Beker, 1., Jevtic, V., Dobrilovic, D. (2012) “Shortest-path algorithm as a
tools for inner transportation optimization”, International Journal of
Industrial Engineering and Management (IJIEM), Vol.3 No 1, pp. 39-
45,

Schrijver, A., (2012) “On The History Of The Shortest Path Problem”,
Documenta Mathematica, extra volume ISMP, pp. 155-167.

Glabowski, M., Musznicki, B., Nowak, P., and Zwierzykowski, P., (2013)
“Efficiency Evaluation of Shortest Path Algorithms”, AICT 2013:
The Ninth Advanced International Conference on
Telecommunications.

Cho, T., Kim, L., Yoon, W., and Choi, S., (2013) “A Hybrid Routing
Algorithm for an Efficient Shortest Path Decision in Network
Routing”, International Journal of Multimedia and Ubiquitous
Engineering, Vol. 8, No. 4.

Zhang, F., Qiu, A., and Li, Q., (2005) “Improve on Dijkstra Shortest Path
Algorithm for Huge Data". Chinese academy of surveying and
mapping

Aghaei, M.R.S., Zukarnain, Z.A., Mamat, A., Zainuddin, H., (2009) “A
Hybrid Algorithm for Finding Shortest Path in Network Routing”,
Journal of Theoretical and Applied Information Technology.

Morris, J., (2016, February 15) 10.2 Dijkstra’s Algorithm. Available from:
https://www.cs.auckland.ac.nz/software/AlgAnim/dijkstra.html.

Engineer F. (2001) Fast Shortest Path Algorithms for Large Road
Networks. In: Proceedings of 36" annual ORSNZ conference.

Mitchell, M. (1999) An Introduction to Genetic Algorithms. Cambridge,
Massachusetts: Massachusetts Institute of Technology.

Stoimen. (2016, February 10) Bellman-Ford Shortest Path in a Graph.
Available from: http://www.stoimen.com/blog/2012/10/22/computer-
algorithms-bellman-ford-shortest-path-in-a-graph/

Weisstein, E.,. (2016, January 22) Floyd-Warshall Algorithm. Available
from: http://mathworld.wolfram.com/Floyd-Warshall Algorithm.html

Knowledge Management International Conference (KMICe) 2016, 29 — 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/

12

