
Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 7

An Experiment on the Performance of Shortest Path Algorithm

Simon Chan Yew Meng, Nur’ayuni Adnan, Syazwan Syafiqah Sukri, and Wan Mohd

Nazmee Wan Zainon
Universiti Sains Malaysia, Malaysia

{simon.ucom13; ayuni.ucom13; ssyafiqah.ucom13}@student.usm.my, nazmee@usm.my

ABSTRACT

Shortest path algorithms are one of the main

algorithms used in most navigation system. By

implementing these algorithm, the related overall

costs such as time and work load can be minimized.

The main objective of this paper is to study and

experiment the different shortest path algorithm such

as Dijkstra’s algorithm, Symmetrical Dijkstra’s

algorithm, A* algorithm, Bellman-Ford algorithm,

Floyd-Warshall algorithm and Genetic algorithm in

solving the shortest path problem. In this paper, a

brief review on each of the shortest path algorithm

and its implementation method was discussed.

Explanation on how the experiment was conducted

and the sample data that involved in the experiment

were also presented. The result of the experiment

shows the overall performance of each algorithm in

solving shortest path problem in term of running time

and total distances. The analysis of result shows the

performance of each algorithm in order to suggest the

most efficient algorithm in solving the shortest path

problem.

Keywords: Dijkstra’s algorithm, Symmetrical

Dijkstra’s algorithm, Bellman-Ford algorithm, A*

algorithm, Floyd-Warshall algorithm, Genetic

algorithm

I INTRODUCTION

Shortest path problem is one of an interesting topic

and widely researched until these days. The shortest

path problem involve in finding shortest route from a

starting point to a destination point (Magzhan & Jani,

2013). This problem is widely applied for GPS

routing system, network routing system and logistic

automation (Beker et.al., 2012). The aim of solving

shortest path problem is to improve the productivity

as well as save cost and time. Currently there are

many shortest path algorithms that has been proposed

by the researcher to solve the shortest path problem.

Each of these proposed algorithms has its own

method to solve the problem and each algorithm has

its advantages and disadvantages over each other

depends on the situation it is used. Thus, it is

important to study about the characteristic of these

algorithms and able to choose the right algorithm that

suits each situation especially when users want to

implemented it to solve the shortest path problem

since using unsuitable algorithm could lead to time

wasting and inaccurate result. In this paper, there are

several shortest path algorithm that will be discussed;

1) Dijkstra’s Algorithm

2) Symmetrical Dijkstra’s Algorithm

3) A* Algorithm

4) Bellman-Ford Algorithm

5) Floyd-Warshall Algorithm

6) Genetic Algorithm

The goal of this research is compare these six

algorithms in term of their performance, accuracy and

understand their characteristic. In the process, it will

try to determine the most efficient algorithm to solve

the shortest path problem. To achieve this, we have

conducted an experiment to test the performance of

the algorithm in different situation.

II LITERATURE REVIEW

As mention earlier, every shortest path algorithm has

its own unique characteristic and method in solving

the shortest path problem. In this section, the brief

description and implementations of six proposed

shortest path algorithm will be presented.

1) Dijkstra’s Algorithm: Dijkstra’s algorithm is a

shortest path algorithm discovered by E.W. Dijkstra

(Morris, 2016) (Zhang et. al., 2005), used to solve the

single-source shortest-path problem when all edges

have non-negative weights. In a graph, the algorithm

starts at the starting node and grows a tree that

ultimately spans all nodes reachable from the starting

node. The algorithm will works iteratively where in

each iterative it visits the node with shortest distance

path from the starting node and then revalue the path

distance of remaining unvisited node. This process

will keep repeated until the destination node was

visited (Zhang et. al., 2005). In overall, the Dijkstra’s

algorithm has running complexity of O(n2). One of

the advantage of Dijkstra’s algorithm is the algorithm

will be terminated once the destination node has

reached and without need to visit the remaining

unvisited node. In other hand, the disadvantage of

Dijkstra’s algorithm is difficult to be implemented on

computer program when the number of node is very

large because it will consume a lot of CPU memory in

order to compute it (Aghaei et. al., 2009).

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 8

2) Symmetrical Dijkstra’s Algorithm: Symmetrical

Dijkstra’s algorithm was invented by Pohl where the

algorithm was derived from the Dijkstra algorithm

(Zhang et. al., 2005) by implementing the bi-

directional search method into it. The process of

Symmetrical Dijkstra’s algorithm was similar to the

original one with addition of a forward search from

the origin node to the destination node and a

backward search from the destination node to the

origin node. The process of algorithm will terminated

when forward search and backward search meet at

certain node. According to Pohl, this algorithm was

invented in attempt to reduce the running complexity

of Dijkstra’s algorithm from O(Nb) to O(Nb/2). But in

worst case scenario, the running complexity of the

algorithm could become two O(Nb) searches.

3) A* Algorithm: A* algorithm was invented by Hart

and Nilsson (Mitchell, 1999) where the algorithm

implement the concept of integrating a heuristic into

the search procedure. The A* algorithm was working

as similar as the Dijkstra’s algorithm except for its

difference heuristic controls in choosing the node for

every iteration. Rather than choosing the node with

shortest distance path from starting node, the A*

algorithm will choose the node based on its distance

path from starting node with addition heuristic

estimation of its proximity to the destination node

(Beker et.al., 2012) (Cho et. al., 2013). The heuristic

estimation was evaluated by one of two main

evaluation functions, which were the Euclidean

distance and the Manhattan distance (Zhang et. al.,

2005). The Euclidean distance is calculated by the

length of straight line between the evaluated node and

the destination node, while the Manhattan distance

evaluated by the sum of distance in the X and Y

coordinates of both nodes. Through the usage of these

heuristic, the A* algorithm will cause the shortest

path tree expanded toward to the destination node

instead of expand the tree radially using the Dijkstra’s

algorithm. As results, A* algorithm has reduce the

search space require to reach the destination node

compare to Dijkstra’s algorithm. This shows that A*

algorithm will have better performance compare to

Dijkstra’s algorithm unless its heuristic was less

accurate.

4) Bellman-Ford Algorithm: Bellman-Ford algorithm

was developed by Richard E. Bellman and Lester R.

Ford, Jr (Stoimen, 2016). It is suitable to be

implemented to solve the shortest path problem when

the graph contains negative value edges (Beker et.al.,

2012) (Schrijver, 2012) (Glabowski et. al., 2013).

This algorithm works iteratively where its number of

iteration was based on the number of edges path from

starting node to destination node. For each iteration,

every of the last visited node will transverse to its

nearby node and label it with the most optimal

distance path from the starting node. The running

complexity of Bellman-Ford algorithm is O(NA)

where (N + 1) is the number of iterations and A is the

number of edges in the graph.

5) Floyd-Warshall Algorithm: Floyd-Warshall

algorithm was discovered by Bernard Roy and

Stephen Warshall (Weisstein, 2016). It works by

finding the shortest distance path between all of pairs

of nodes in a graph (Beker et.al., 2012). The running

complexity of Floyd-Warshall algorithm is O(N3).

Besides that, Floyd-Warshall algorithm was also

explained as one of the few algorithms that able to

solve the shortest path problem in a graph that

contains negative values edges and without the

existed of negative edges cycle. The main advantage

of Floyd-Warshall algorithm is able to obtain the

shortest distance between any two nodes (Cho, 2013).

In other hand, this algorithm is simple and easy to

implement into the program but it was not suitable for

solving shortest path problem in large network

because its running complexity is too high for the

calculation.

6) Genetic Algorithm: Genetic algorithm was

invented by John Holland in the 1960s and then

developed by him and his students and colleagues at

the University of Michigan in the 1960s and the

1970s (Mitchell, 2016). This intelligent algorithm was

invented to solve the shortest path problem in a

flexible situation that has a very large search space

and constant changing environment (Magzhan & Jani,

2013). In addition, it also defines as a stochastic

search algorithm that based on the biological

evolution and used to produce a most optimizes

results. The genetic algorithm works by produce a set

of solution which is known as the population where

each of it was evaluated by its own fitness value.

Then, the population will goes through several

genetic operations such as selection, crossover and

mutation in order to generate a new generation of

population that supposed to have better fitness value

compare to the previous one. After going through

specific number of generations, the population with

the most optimal fitness value will be chosen as the

solution of the problem.

III EXPERIMENT IMPLEMENTATION

In this research, the experiment has been conducted

using a special application developed in Java. The

sample data that used to test the shortest path

algorithm is the existing bus route of Penang area.

This experiment stimulates the navigation system to

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 9

find the shortest path from the origin to the

destination using the proposed algorithm. Through

this experiment, the proposed algorithm will be tested

in different situation such as using large sample data

versus small sample data, traveling long journey

versus short journey and implementation of genetic

algorithm with different number of generation. Figure

1 and 2 show the large sample data and small sample

data respectively.

Figure 1. Large Sample Data

Figure 2. Small Sample Data

IV EXPERIMENT RESULT AND

ANALYSIS

In order to achieve accurate results, each algorithms
performed 20 times for each of the cases of the
experiment. Then, the average value was calculated as
the final result.

For large data versus small data cases, each algorithm
was tested with same origin and destination (Jelutong
to Airport) but using the different data set (large
sample data and small sample data). The Table 1

shows the performance of each algorithm to solve
shortest path problem in term of running time and
result distance. The result was divided into two
groups, which are large sample data and small sample
data.

Table 1. Comparison Of Performance Of Algorithm To

Solve Shortest Path Problem For Large Data Versus

Small Data Cases

Algorit

hm

Small Sample

Data

Large Sample

Data

Runnin

g Time

(nanose

cond)

Total

Dista

nce

(mete

r)

Runnin

g Time

(nanose

cond)

Total

Dista

nce

(mete

r)

Dijkstra

55658 18240 321712 18240

Symme

trical

Dijkstra

27632 18240 144080 18240

A*

43816 18240 322501 18240

Bellma

n-Ford
42237 18240 88816 18240

Floyd-

Warsha

ll

61974 18240 584213 18240

Genetic

863688 18240 865661 18240

The Figure 3 shows the chart to compare the running

time of each algorithm to solve shortest path problem

for large data and small data cases.

Figure 3. Chart Of Running Time Of Algorithm To

Solve Shortest Path Problem For Large Data Versus

Small Data Cases

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 10

The chart shows that the algorithm solve the shortest
path problem using small sample data has much
shorter running time compare to using large sample
data. This is can be explain by the smaller the data
size leads to the lesser the operations of algorithm
require to be executing for solving the problem. The
genetic algorithm is the exception because its number
of operation was based on its generation number
rather than the data size. This explains why the
running time of genetic algorithm only has slightly
different between using large sample data and small
sample data.

In small data cases, the symmetrical Dijkstra’s
algorithm has the highest performance compare to
others. This was follow-up by the Bellman-Ford
algorithm, A* algorithm and Dijkstra’s algorithm. In
large data cases, the Bellman-Ford algorithm has the
shortest running time which was follow-up by the
symmetrical Dijkstra’s algorithm, Dijkstra’s algorithm
and A* algorihm. In both cases, the genetic algorithm
and Floyd-Warshall algorithm has the worst and
second worst performance respectively. The
performance of genetic algorithm can be explained by
its complex operation while the Floyd-Warshall
algorithm cases is due to its time complexity of O(n3).
In term of accuracy, the result shows that all
algorithms were able to produce the similar and most
optimum solution for both small and large data cases.

For long journey versus short journey cases, the

experiment was carried out for each algorithm was

tested to start at the same origin location and travel to

two different destinations, where one is the short

journey (Airport to Jelutong) while another one is the

long journey (Airport to Masjid Terapung). The Table

2 shows the performance of each algorithm to solve

shortest path problem in term of running time and

result distance. The result was divided into two

groups, which are short journey cases and long

journey cases.

Table 2: Comparison Of Performance Of Algorithm To

Solve Shortest Path Problem For Long Journey Versus

Short Journey Cases

Algorit

hm

Short Journey Long Journey

Running

Time

(nanosec

ond)

Total

Dista

nce

(mete

r)

Runnin

g Time

(nanose

cond)

Total

Dista

nce

(mete

r)

Dijkstr

a

48553
1824

0
323291

3546

9

Symme

trical

Dijkstr

37500
1824

0
219474

3546

9

a

A*

63947

1824

0
230527

2244

9
Bellman-

Ford 100264
1824

0
89606

2244

9

Floyd-
Warshall 572371

1824

0
581450

2244

9

Geneti

c

797766
1824

0
1100531

2899

9

The Figure 4 and 5 shows the chart to compare each

algorithm to solve shortest path problem in term of

running time for long journey and short journey cases

and result distance for long journey cases

respectively.

The chart shows that each algorithm except Floyd-

Warshall algorithm and Bellman-Ford algorithm,

solves the short journey cases of shortest path

problem has better performance compare to long

journey. The different in performance of algorithm

was due to different in path distance between short

journey and long journey which resulting the

algorithm in short journey cases require to traverse

less node in order to reach the destination compare to

long journey. The Floyd-Warshall algorithm and

Bellman-Ford has the similar running time for both

cases due to its requirement to traverse all nodes

before able to product the solution.

Figure 4. Chart of Running Time of Algorithm to Solve

Shortest Path Problem for Long Journey Versus Short

Journey Cases

In short journey cases, the symmetrical Dijkstra’s

algorithm was shows to have the shortest running

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 11

time while the second runner up was Dijkstra’s

algorithm. The rest is follow by the A* algorithm and

Bellman-Ford algorithm. In long journey cases, the

chart shows that Bellman-Ford algorithm has the best

performance compare to others. The result was

follow-up by symmetrical Dijkstra’s algorithm, A*

algorithm and Dijkstra’s algorithm. In both cases, the

genetic algorithm has the worst performance follow-

up by the Floyd-Warshall algorithm. Similar to large

data versus small data case, the performance of

genetic algorithm and Floyd-Warshall algorithm was

due to the complex operation and time complexity of

O(n3) respectively.

Based on Table 2, the result shows that the solutions

of all algorithms are similar and optimum for short

journey cases. For long journey cases, the chart shows

that A* algorithm, Bellman-Ford algorithm and

Floyd-Warshall algorithm have produce the most

optimum solution which is follow-up by the genetic

algorithm. For Dijkstra’s algorithm and symmetrical

Dijkstra’s algorithm, both have produced the least

optimum solution. The reason Bellman-Ford

algorithm and Floyd-Warshall algorithm able produce

better solution was because both algorithms able to

generate all the possible solution before making

comparison to get the best solution. In other hand, the

A* algorithm cases can be explained by its

implementation of heuristic search.

Figure 5. Chart of Result Distance of Algorithm to

Solve Shortest Path Problem for Long Journey Cases

The next experiment was to test the performance of

genetic algorithm to solve shortest path problem of

same cases (Airport to KOMTAR) with

implementation of different number of generation.

The Table 3 shows the performance of genetic

algorithm with implementation of different number of

generation to solve the shortest path algorithm.

Table 3: Comparison Of Performance Of Genetic

Algorithm With Implementation Of Different Number

Of Generation To Solve Shortest Path Problem

Number of

Generation

Running Time

(nanosecond)

Total

Distance

(meter)

5 37106 32359

10 62369 28999

15 63158 22449

20 70263 28999

25 82500 22449

30 94342 19609

The Figure 6 shows the graph to compare the

performance of genetic algorithm with

implementation of different number of generation to

solve the shortest path algorithm.

Figure 6. Graph Of Performance Of Genetic Algorithm

With Implementation Of Different Number Of

Generation To Solve Shortest Path Algorithm

The graph shows that the running time of genetic

algorithm increase with its number of generation.

This is due to increase in number of operation

required to perform by genetic algorithm in order to

solve the shortest path problem. In other hand, the

graph also shows that the solution provided by the

genetic algorithm is inconsistent for each number of

generations because the solution produce by the

genetic algorithm can be random sometime. As the

number of generation increase further, the solution

produce by the genetic algorithm was shown to

improved and more optimum.

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 12

V CONCLUSION AND FUTURE

WORK

Based on the experiment results, it shows that most

algorithms will achieve better performance when it

solves the short journey shortest path problem and

using small data size. In exception, the data size will

not affect the performance of genetic algorithm. In

other hand, the Bellman-Ford algorithm and Floyd-

Warshall algorithm will still retain its performance

for both short journey and long journey cases. This

show that the performance of algorithm can be

different in various situations depends on the nature

of data and method of algorithm to solve the shortest

path problem. In overall, the experiment result shows

that the Bellman-Ford algorithm was able to produce

the optimum solution using short running time. The

result also shows that the performance of Bellman-

Ford algorithm was superior to other algorithm in

most situations. This clearly indicates that the

Bellman-Ford algorithm is the most efficient shortest

path algorithm compare to others. In other hand, the

genetic algorithm was shown to have highest running

time but able to produce the optimum solution in

most situation. The experiment shows that

performance of genetic algorithm was affected by its

number of generation where the larger the number of

generation, the higher the running times as well as the

better the solution. Thus, it is important to adjust the

number of generation until the optimum running time

to solution ratio was achieved so that the genetic

algorithm can be used in the most efficient manner.

REFERENCES

Magzhan, K., Jani, H.M. (2013) “A Review and Evaluations of Shortest
Path Algorithm”, International Journal of Scientific & Technology
Research Volume 2, Issue 6.

Beker, I., Jevtic, V., Dobrilovic, D. (2012) “Shortest-path algorithm as a
tools for inner transportation optimization”, International Journal of
Industrial Engineering and Management (IJIEM), Vol.3 No 1, pp. 39-
45.

Schrijver, A., (2012) “On The History Of The Shortest Path Problem”,
Documenta Mathematica, extra volume ISMP, pp. 155-167.

Glabowski, M., Musznicki, B., Nowak, P., and Zwierzykowski, P., (2013)
“Efficiency Evaluation of Shortest Path Algorithms”, AICT 2013:
The Ninth Advanced International Conference on
Telecommunications.

Cho, T., Kim, L., Yoon, W., and Choi, S., (2013) “A Hybrid Routing
Algorithm for an Efficient Shortest Path Decision in Network
Routing”, International Journal of Multimedia and Ubiquitous
Engineering, Vol. 8, No. 4.

Zhang, F., Qiu, A., and Li, Q., (2005) "Improve on Dijkstra Shortest Path
Algorithm for Huge Data". Chinese academy of surveying and
mapping

Aghaei, M.R.S., Zukarnain, Z.A., Mamat, A., Zainuddin, H., (2009) “A
Hybrid Algorithm for Finding Shortest Path in Network Routing”,
Journal of Theoretical and Applied Information Technology.

Morris, J., (2016, February 15) 10.2 Dijkstra’s Algorithm. Available from:
https://www.cs.auckland.ac.nz/software/AlgAnim/dijkstra.html.

Engineer F. (2001) Fast Shortest Path Algorithms for Large Road

Networks. In: Proceedings of 36th annual ORSNZ conference.

Mitchell, M. (1999) An Introduction to Genetic Algorithms. Cambridge,
Massachusetts: Massachusetts Institute of Technology.

Stoimen. (2016, February 10) Bellman-Ford Shortest Path in a Graph.

Available from: http://www.stoimen.com/blog/2012/10/22/computer-
algorithms-bellman-ford-shortest-path-in-a-graph/

Weisstein, E.,. (2016, January 22) Floyd-Warshall Algorithm. Available

from: http://mathworld.wolfram.com/Floyd-WarshallAlgorithm.html

