

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 18

GPU-Based Odd and Even Hybrid String Matching Algorithm

Ghazal Rahbari, Nur’Aini Abdul Rashid, and Wahidah Husain
Universiti Sains Malaysia,Malaysia, {ghazal.rahbari; nuraini; wahidah}@gmail.com

ABSTRACT

String matching is considered as one of the

fundamental problems in computer science. Many

computer applications provide the string matching

utility for their users, and how fast one or more

occurrences of a given pattern can be found in a text

plays a prominent role in their user satisfaction.

Although numerous algorithms and methods are

available to solve the string matching problem, the

remarkable increase in the amount of data which is

produced and stored by modern computational

devices demands researchers to find much more

efficient ways for dealing with this issue. In this

research, the Odd and Even (OE) hybrid string

matching algorithm is redesigned to be executed on

the Graphics Processing Unit (GPU), which can be

utilized to reduce the burden of compute-intensive

operations from the Central Processing Unit (CPU).

In fact, capabilities of the GPU as a massively parallel

processor are employed to enhance the performance

of the existing hybrid string matching algorithms.

Different types of data are used to evaluate the impact

of parallelization and implementation of both

algorithms on the GPU. Experimental results indicate

that the performance of the hybrid string matching

algorithms has been improved, and the speedup,

which has been obtained, is considerable enough to

suggest the GPU as the suitable platform for these

hybrid string-matching algorithms.

Keywords: Odd and Even, Hybrid String Matching,

GPGPU.

I INTRODUCTION
String matching is considered as one of the
fundamental problems in computer science which
involves finding one or more occurrences of a given
pattern in a text. Although numerous algorithms and
methods are available to solve this problem, many
researchers are still trying to achieve much more
efficient ways to deal with this issue. Hybrid string
matching algorithms, a combination of two or more
string matching algorithms, have received a great deal
of attention in recent years (Abdurrazaq, et al.
2014(Mustafa et al., 2012)). Positive features of the
existing string matching algorithms are combined to
form a new algorithm in order to improve the
searching process. Computer applications which
provide string matching utility for their users can take

advantage of this kind of string matching algorithms
(Almazroi, 2011). In addition, multi-core Central
Processing Units (CPUs) as well as many-core
Graphics Processing Units (GPUs) have gained an
extensive popularity over the last few years. This
development at the hardware level has made an
inevitable challenges for researchers who are
interested in the string matching problem. Existing
sequential string matching algorithms should be
redesigned in order to exploit computational power of
the modern processors. As a result, execution of the
parallelized string matching algorithms on these
processors helps decrease the searching time. How the
existing sequential hybrid string matching algorithms
can be parallelized and implemented on the GPU is
the focus of this research.

In this research we analyzed the Odd and Even hybrid
string matching algorithm in order to identify the
compute-intensive portions of the sequential code,
parallelize the hotspots of the selected hybrid string
matching algorithm and implement it on the GPU and
compare the performance of the sequential version on
the CPU with the parallel version on the GPU of the
selected hybrid string matching algorithm.

This paper presented the existing works in parallel
string matching algorithms in section II. The section
III discussed the detail hybrid Odd and Even
algorithms, followed by the design of the parallel Odd
and Even algorithm. Section V presented the results
of the research and we conclude the finding in section
VI.

II PARALLEL STRING MATCHING
We studied some of the important work in parallel
string matching algorithms (Table 1). Michailidis and
Margaritis (2001b) have implemented the Brute Force
exact string matching algorithm on a cluster of six
personal computers. Noticeable reduction in the
execution time has been achieved by using the SPMD
parallel programming model over the master-worker
paradigm. In their implementation, text is broken
down into several subtexts with an overlap of m-1
characters, where m is the length of the pattern. Then,
these subtexts are assigned to available processors,
which perform the string matching procedure
simultaneously on their corresponding data, and send
their final results to the master processor. They have
used a preprocessing allocation method to avoid the
load balancing problem which occurs when the
subtexts of the database do not have equal length
(Michailidis & Margaritis, 2001b).

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 19

Parallel implementation of the Naïve, Karp and Rabin,
Zhu and Takaoka, Baker and Bird, and Baeza-Yates
and Regnier exact two dimensional pattern matching
algorithms has been presented by Kouzinopoulos and
Margaritis (2009a). These algorithms have been
implemented on a multi-core processor and a
homogeneous cluster of workstations as shared
memory as well as distributed memory parallel
platforms by using OpenMP and MPI APIs,
respectively. Master-worker distribution method has
been applied on both parallel systems. In the shared
memory parallelization, it has been shown that the
performance is increased when the assignment of the
loop iterations to the threads is performed by static
scheduling clause compared with dynamic as well as
guided scheduling clauses. Moreover, in order to
decrease the communication overhead in the
distributed memory parallelization, text and pattern
are located in the local memory of each processor,
which performs the searching process on the
corresponding section of the text. This section is
determined by the pointer, which has been sent from
the master process to the workers (Kouzinopoulos &
Margaritis, 2009a).

Table 1. Some of the works in Parallel String Matching Algorithm.

Parallel execution time of the Knuth-Morris-Pratt,
Boyer-Moore, Boyer-Moore- Horspool, Zhu-
Takaoka, Quick Search, Berry-Ravindran, Fast
Search, SSABS, TVSBS, ZTMBH and BRBMH
string matching algorithms have been compared by
Prasad and Panicker (2010). Implementation of these
algorithms has been performed on a Bewoulf-based
homogeneous cluster of workstations with 40 nodes
by using MPI API. Based on experimental results of
this research, the BRBMH algorithm has the lowest
parallel execution time for any pattern lengths as well
as text sizes (Prasad & Panicker, 2010).

The Naïve, Knuth-Morris-Pratt, Boyer-Moore-
Horspool and Quick Search string matching
algorithms have been implemented on the GPU using
the CUDA API (Kouzinopoulos & Margaritis,
2009b). In order to calculate the speedup, the
practical running time of the algorithms on different
data sets as well as different pattern lengths has been
measured which includes the preprocessing time, the
searching time and the time needed to transfer data
between the host and the device. The considerable
impact of using the shared memory of the GPU
instead of the global memory to store the pattern as
well as the pre-computed shift value table of the
mentioned algorithms has been illustrated in their
research. Moreover, it has been shown that the
practical running time reduces by increasing the
number of threads in order to keep the GPU entirely
utilized (Kouzinopoulos & Margaritis, 2009b). Ryan
(n.d.) has implemented the Boyer-Moore string
matching algorithm on the GPU using CUDA API.
The preprocessing phase of the algorithm is
performed on the CPU, while the searching phase is
carried out on the GPU. Moreover, the text, the
pattern and the pre-processed shift value tables are
transferred from the host to the device and stored in
global, constant and texture memories, respectively.
The performance of the parallel algorithm has been
analyzed by using the maximum number of available
blocks. Also, it has been shown that transferring the
data from the CPU to the GPU decreases the
searching time much more than using the page-
locked CPU memory which is accessible directly by
the CUDA kernel running on the GPU (Ryan, K.,
n.d.). Other works on parallelizing the string
matching algorithms include Naser, M. A. (2010),
Atheer Akram AbdulRazzaq et.al, (2013),
Abdulwahab and Nur'Aini (2011), Atheer , Nur'Aini
and Aziz Nasser Boraik Ali (2013) and Awsan et. al.
(2013).

Based on our study, the Odd and Even hybrid string
matching algorithms have been selected to be
parallelized and implemented on the CPU+GPU
parallel platform with the CUDA programming
interface. The Odd and Even hybrid string matching
algorithm makes an efficient use of the Berry-
Ravindran algorithm. It has been compared with the
BMH, the QS, the TVSBS, the BRFS, the BRBMH,
and the BRQS algorithms and provided better results
for searching any lengths of the pattern string and any
sizes of the character set (Naser, 2010). The
preprocessing phase of both mentioned algorithms is
executed once before the searching phase which
needs to be run repeatedly as a single program on a
huge amount of data. This part of the string matching
algorithms is capable of being parallelized to be
executed simultaneously on different sections of data
which leads to a better performance by decreasing the

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 20

searching time. Parallel version of each mentioned
algorithms is implemented on the GPU which is
based on the SPMD parallel programming model. Its
particular architecture is suitable for data parallel
applications which involve string matching
algorithms. The searching process can be accelerated
by using a large number of the GPU threads to
execute the searching phase of the string matching
algorithms concurrently on independent parts of the
text string. Although the BR algorithm has been
parallelized and implemented on the shared memory
as well as the distributed memory parallel platforms,
both mentioned algorithms have not been
implemented on the GPU before.

III ODD AND EVEN ALGORITHM
The Odd and Even algorithm is a hybrid string
matching algorithm with a similar preprocessing
phase to the Berry-Ravindran algorithm. The
comparison between the text characters as well as the
pattern characters is performed from right to left with
a specific order which is described in the following
subsection. This characteristic of the OE algorithm
has a considerable impact on the performance.
Similar to the Berry-Ravindran algorithm, the
searching phase starts from the leftmost character of
the text without checking the possible starting search
point.

Table 2. Odd and Even Bad Character Shift Value Table.

A. Pre-processing

In the preprocessing phase of the OE algorithm, shift
values are computed based on each pair of characters
belonging to the pattern string. This feature makes the
preprocessing phase of the OE algorithm different
from the preprocessing phase of the Berry-Ravindran
algorithm although the former applies the same
formula as the latter to construct the bad character
shift value table. In other words, the preprocessing
phase of the Berry-Ravindran algorithm has been
enhanced in the OE algorithm which results in
reducing the total execution time as well as the
reserved memory size of the computer. The bad
character shift value table of the OE algorithm based
on a pattern string “gcagagag” of length 8 as well as a
character set (a,c,g,t) of size 4 is shown in Table 2.

B. Searching

In the searching phase of the OE algorithm, the
leftmost character of the pattern is aligned with the
leftmost character of the text. Then, the comparison

between the text characters as well as the pattern
characters is performed from right to left. Even
positions of the pattern are compared with the
corresponding text characters after the odd positions
of the pattern match the corresponding text
characters, or vice versa. In case of a mismatch or a
complete match, two consecutive characters next to
the right side of the window are used to achieve the
shift value from the bad character shift value table in
order to move the pattern along the text. This
procedure is repeated until the right end of the pattern
exceeds the right end of the text.

The searching process of a pattern string “gcagagag”
of length 8 through a text string
“tctgtgaggattgattgcagagag” of length 24 in one
attempt based on the bad character shift value table,
which has been constructed in the previous
subsection, is illustrated in Figure 1.

IV METHODOLOGY
The methodology of this research consists of five
steps. It starts with studying various existing hybrid
string matching algorithms. The Odd and Even hybrid
string matching algorithm, which has its own
advantages and disadvantages, has been selected to be
parallelized and implemented on the GPU (Samsudin,
2011),(Charras, & Lecroq, 2004),(Klaib & Osborne,
2009b). Similar to many other hybrid string matching
algorithms, the OE algorithm takes advantage of the
mentioned characteristic of the BR algorithm, but it
provides better results for searching any lengths of a
pattern string and any size of a character set
compared with them), (Klaib & Osborne, 2009b).

Figure 1. Searching Phase of Odd and Even Algorithm.

The second step involves analyzing the sequential
version of the selected hybrid string matching
algorithm to identify the compute-intensive portions
of the serial code. This sequential version is
considered as a baseline, which the parallel version is
compared with.

The third step consists of designing the parallel
version of the OE hybrid string matching algorithm.
In fact, hotspot of the sequential version of the
mentioned algorithm is parallelized.

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 21

In order to parallelize the string matching algorithm,
it is necessary to determine how the problem can be
decomposed into smaller parts. Data decomposition
technique is used to divide the data which the string
matching algorithm must deal with. Then, the
searching operation is performed on different parts of
the data which are independent of each other.
Partitioning the text string into the discrete subtexts
leads to a problem which occurs when the pattern
string is located in the boundary of adjacent subtexts.
Therefore, the pattern string cannot be detected, and a
false negative result is returned by the string matching
algorithm. An overlap of m-1 characters between
consecutive subtexts is used to solve the mentioned
problem, where m is the length of the pattern string.
Since the searching function is performed on all
subtexts of the text string simultaneously, Single
Program Multiple Data (SPMD) as the most
appropriate parallel programming model is used here.

The CUDA API provides different ways to allocate
memory on the CPU as well as the GPU. The CPU
pageable memory is allocated by the malloc()
function, while the CPU page-locked memory is
allocated by the cudaMallocHost() function. In this
implementation, the CPU memory allocation is
performed by the malloc() function. Although the
page-locked memory is accessed by the GPU with
higher bandwidth than the pageable memory, the
system performance can be reduced if an excessive
amount of page-locked memory is allocated by the
CUDA subroutine which results in decreasing the
amount of physical memory available to the operating
system for paging. Moreover, the cudaMalloc()
function is used to allocate the GPU memory in order
to store the text string of both string matching
algorithms. Data transfer between the host and the
device is performed by the cudaMemcpy() function.
The text string which is needed to be shared by all the
GPU threads is transferred from the CPU to the GPU
by the mentioned synchronous CUDA subroutine
which blocks the CPU threads until the data has been
transferred completely and stored in the GPU global
memory space. The cudaMemcpyToSymbol()
function is used to copy the pattern string of both
string matching algorithms from the host to the device
which is located in the GPU constant memory space.
The character set of both string matching algorithms
is also transferred from the host to the device by the
cudaMemcpyToSymbol() function and resides in the
constant memory space. Similar to the text string, the
pattern string and the character set are needed to be
accessed by all the GPU threads. Finally, the texture
memory space of the GPU is used to store the shift
value table which is constructed by the preprocessing
function on the CPU. Therefore, each thread can
achieve the corresponding shift value through the
texture memory which can be read by all the GPU

threads during the execution of the searching
function. In addition, the result of the searching
function which includes the number of occurrences of
the given pattern string in the text string is transferred
from the GPU to the CPU. The GPU memory
allocation which is used for the implementation of the
parallel the Odd and Even hybrid string matching
algorithms is shown in Figure 2.

On the NVIDIA Tesla C2050, which is used in this
implementation, data is transferred between the CPU
and the GPU through the PCIe × 16 Gen2 bus with
the theoretical maximum bandwidth of 8 GBps. This
program has been executed with the pageable CPU
memory space against the NVIDIA Tesla C2050.

In this implementation, the preprocessing function
which calculates the shift values of the string
matching algorithm is executed sequentially on the
CPU, while the searching function is executed N
times by N threads in parallel on the GPU. The device
function, which is specified by the two parameters
inside the triple angle brackets, is called from the host
code. These two parameters represent the number of
blocks and the number of threads. The maximum
number of these two parameters depends on
capabilities of the GPU on which the device code is
executed.

Figure 2. GPU Memory Allocation in the String Matching Problem.

Threads within a same block can communicate with
each other through the shared memory which is not
accessible by threads in other blocks. In the
implementation of the parallel Odd and Even hybrid
string matching algorithms, each thread of a single
block executes the searching function independently
and writes the number of occurrences of the given
pattern string in its corresponding subtext in the
shared memory. In order to avoid the wrong result,
threads within a same block must be synchronized
which is performed by the __syncthreads() function

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 22

before the total number of occurrences is computed.
Furthermore, the atomicAdd() function is used to
compute the final result of the device code by adding
the total number of occurrences of the given pattern
string which has been calculated by each block. This
function is used to prevent race condition from
happening. Implementation of the parallel Odd and
Even hybrid string matching algorithms on the
CPU+GPU parallel platform is shown in Figure 3.

The fourth step involves implementing the parallel
version of the selected hybrid string matching
algorithm on the CPU+GPU parallel platform. CUDA
programming interface, which has been designed for
only NVIDIA’s GPUs, is used in this implementation.
Karimi, Dickson, and Hamze (2011) have compared
the performance of CUDA as well as OpenCL
programming interfaces in terms of data transfer
times, kernel execution times, and application
execution times by using almost identical kernels and
have suggested CUDA as a better choice.

Finally, the sequential version as well as the parallel
version of the OE hybrid string matching algorithm
are tested on the standard data types which consist of
English text, protein sequence, and DNA sequence.
Execution time, speedup, and percentage of
performance gain which are considered as the
performance metrics of the parallel system will be
calculated and evaluated in this step. The execution
time is divided into serial runtime and parallel
runtime. They are the execution time of the sequential
algorithm and the parallel algorithm, respectively.
The speedup is used to determine how much faster
the parallel code executes in comparison with the best
sequential code, while the percentage of performance
gain is applied to specify how much performance is
obtained by parallelizing the sequential algorithm
(Grama, Gupta, Karypis, & Kumar, 2003), (Naser,
2010).

V RESULTS AND DISCUSSION

The correctness of the parallel version of the Odd and

Even algorithm has been checked by comparing the

number of occurrences of a given pattern string in a

text string with the result which has been obtained by

executing the sequential version of the mentioned

algorithm with the same pattern as well as the same

text.

Figure 3. Implementation of the String Matching Algorithm on GPU.

The searching phase of the algorithm has been
parallelized. Therefore, the sequential runtime and the
parallel runtime of the algorithm, which are compared
together, do not include the preprocessing phase. The
elapsed time from the start to the end of the searching
function on the sequential platform is measured as the
sequential runtime. The parallel runtime includes the
time of the data transfer from the CPU to the GPU,
execution of the searching function on the parallel
platform, and the data transfer from the GPU to the
CPU.

The program is executed five times, and the average
of the obtained values, which are shown in Appendix
D, is calculated in order to decrease the random
variation. In addition, the sequential and the parallel
versions of the algorithm are tested on English text,
protein sequence, and DNA sequence data types with
five different sizes of 100, 200, 300, 400, and 500
MB (Naser, 2010). The program is executed with an
8-character pattern string which is selected randomly
from the corresponding text string (Samsudin,
2011).The character set of the pattern string has been
obtained by running the program which can be used
to achieve all the different characters of the pattern
string as well as the size of the character set.

The number of blocks per grid and the number of
threads per block as the kernel parameters are set to
14 and 768, respectively. Selected kernel parameters
have been tested by the NVIDIA Corporation’s
occupancy calculator and resulted in 100%
occupancy.

Experimental results of this research, as shown in
Table 3. which indicates the performance of Odd and
Even string matching algorithms on different standard
data types has been enhanced considerably by using
the CPU+GPU parallel platform.

The performance improvement of Odd and Even is
more than 90 percent on English text and protein
sequence and between 80 and 90 percent on DNA
sequence data types.

Unavoidable flow control instructions of the parallel

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 23

OE algorithm which leads to the thread divergence
problem prevent it from running faster and have good
speed-up.

Experimental results of running the sequential and the
parallel versions of the Odd and Even hybrid string
matching algorithm has been evaluated. Sequential
and parallel version of this algorithm has been
executed on English text, protein sequence, and DNA
sequence data types as the standard benchmark with
different sizes. Then, execution time, speedup, and
percentage of performance gain have been calculated
in order to determine the impact of parallelization on
the performance of these hybrid string matching
algorithms.

Obtained results confirm that the parallel version of
the algorithm runs faster on the GPU than its
sequential version on all three mentioned data types.
Therefore, GPU capabilities can be exploited to
enhance the performance of the hybrid string
matching algorithms. Moreover, in order to make
better use of the GPU, the flow control instructions
must be used as less as possible in the device code to
avoid the thread divergence problem, which has a
substantial influence on the performance of the
program.

Table 3. Perfomance Improvement of Odd and Even Algorithm.

Figure 4. Parallel Speed-up of the GPU-Based Odd and Even

Algorithm

VI CONCLUSION
In this paper, we have presented a GPU –based
parallel Odd and Even Algorithm. The searching
phase of the Odd and Even algorithm were redesign
to suit the parallel nature of the GPU processor.
Experimental results show that the parallel algorithm
has a substantial speed up over the sequential version.

ACKNOWLEDGMENT

We would like to acknowledge the School of

Computer Sciences, Universiti Sains Malaysia for the

financial support in the publication of this paper.

REFERENCES

Accreditation Commission for Programs in Hospitality Administration.
(n.d.). Handbook of accreditation. Retrieved from http://www.acpha-
cahm.org/forms/acpha/acphahandbook04.pdf

Billson, C. J. (1892). The Easter hare. Folklore, 3, 441-466. Retrieved
from http://www.jstor.org

Bower, B. (2008, Feb. 9). Dawn of the city: Excavations prompt a
revolution in thinking about the earliest cities. Science News, 173(6),
90-92. Retrieved from http://www.sciencenewsmagazine.org/

Elementary school math instruction questionnaire results. Most
significantly improved schools. (n.d.). Retrieved from
http://www.sharingsuccess.org/code/highperf/2002-
03/es_math/msi/index.htm

Fuchs, D., Fuchs, L. S., Al Otaiba, S., Thompson, A., Yen, L., McMaster,
K. N., Yang, N. J. (2001). K-PALS: Helping kindergartners with
reading readiness: Teachers and researchers in partnerships. Teaching
Exceptional Children, 33(4), 76-80. Retrieved from
http://www.cec.sped.org/content/navigationmenu/publications2/teachi
ngexceptionalchildren/

Goyen, A. (2007, February 22). Downtown Marquette dog sled races
[Video file]. Retrieved from
http://www.youtube.com/watch?v=gW3CNCGGgTY

Hartley, J. T., Harker J. O., & Walsh, D. A. (1980). Contemporary issues
and new directions in adult development of learning and memory. In
L. W. Poon (Ed.), Aging in the 1980s: Psychological issues (pp. 239-
252). Washington, DC: American Psychological Association.

Herculano-Houzel, S., Collins, C. E., Wong, P., Kaas, J. H., & Lent, R.
(2008). The basic nonuniformity of the cerebral cortex. Proceedings
of the National Academy of Sciences 705, 12593-12598. doi: 1 0.1
073/pnas.08054171 05

Hipp, E. (2000). Understanding the human volcano: What teens can do
about violence [Monograph]. Retrieved from http://www.eric.ed.gov/

Inness, S. A. (Ed.). (1998). Delinquents and debutantes: Twentieth-
century American girls’ cultures. New York, NY: New York
University Press.

Katz, I., Gabayan, K., & Aghajan, H. (2007). A multi-touch surface using
multiple cameras. In J. Blanc-Talon, W. Philips, D. Popescu, & P.
Scheunders (Eds.), Lecture Notes in Computer Science: Vol. 4678.
Advanced Concepts for Intelligent Vision Systems (pp. 97-108).
Berlin, Germany: Springer-Verlag. doi:10.1007/978-3-540-74607-
2_9

Langdon, S. W., & Preble, W. (2008). The relationship between levels of
perceived respect and bullying in 5th through 12th graders.
Adolescence, 43, 485-503. Retrieved from http://find.galegroup.com

Larson, G. W., Ellis, D. C., & Rivers, P. C. (1984). Essentials of chemical
dependency counseling. New York, NY: Columbia University Press.

Lemay, L. (1997). Teach yourself web publishing with HTML 4 in a week
(4th ed.). Indianapolis, IN: Sams.net.

Limb, G. E., & Hodge, D. R. (2008). Developing spiritual competency
with Native Americans: Promoting wellness through balance and
harmony. Families in society, 89, 615-622. doi:10.1606/1044-
3894.3816

Lopez, J. (2005). Characteristics of selected multilingual education
programs from around the world: A review of the literature
(Unpublished master's thesis). Dominican University of California,
Retrieved from ERIC database. (ED491402)

http://www.acpha-cahm.org/forms/acpha/acphahandbook04.pdf
http://www.acpha-cahm.org/forms/acpha/acphahandbook04.pdf
http://www.sharingsuccess.org/code/highperf/2002-03/es_math/msi/index.htm
http://www.sharingsuccess.org/code/highperf/2002-03/es_math/msi/index.htm

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 24

Moriarty, L. J., & Carter, D. L. (Eds.). (1998). Criminal justice technology
in the 21st century. Springfield, IL: Charles C. Thomas.

Russo, C. A., & Jiang, H. J. (2006). Hospital stays among patients with
diabetes, 2004 (Statistical Brief #17). Retrieved from Agency for
Healthcare Research & Quality website: http://www.hcup-
us.ahrq.gov/reports/statbriefs/sb17.jsp

Shaw, K., O'Rourke, P., Del Mar, C., & Kenardy, J. (2005). Psychological
interventions for overweight or obesity. The Cochrane Database of
Systematic Reviews, (2). doi:10.1002/14651858.CD003818.pub2

Simon, C. E. (1995). Information retrieval techniques: The differences in
cognitive strategies and search behaviors among graduate students in
an academic library (Doctoral dissertation, Wayne State University).
Retrieved from http://www.eric.ed.gov/

Symonds, P. M. (1958). Human drives. In C. L. Stacey & M. DeMartino
(Eds.), Understanding human motivation (pp. 11-22).
doi:10.1037/11305-002

U.S. Department of the Interior, National Park Service. (2004). Pictured
rocks national lakeshore, Michigan final general management plan,
wilderness study, environmental impact statement. Washington, DC:
Author.

Wilens, T. E., & Biederman, J. (2006). Alcohol, drugs, and attention-
deficit/hyperactivity disorder: A model for the study of addictions in
youth. Journal of Psychopharmacology, 20, 580-588.
doi:10.1177/0269881105058776

http://www.hcup-us.ahrq.gov/reports/statbriefs/sb17.jsp
http://www.hcup-us.ahrq.gov/reports/statbriefs/sb17.jsp
http://www.hcup-us.ahrq.gov/reports/statbriefs/sb17.jsp

