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ABSTRACT 

Big Data era is currently generating tremendous 

amount of data in various fields such as finance, 

social media, transportation and medicine. Handling 

and processing this “big data” demand powerful data 

mining methods and analysis tools that can turn data 

into useful knowledge. One of data mining methods is 

frequent itemset mining that has been implemented in 

real world applications, such as identifying buying 

patterns in grocery and online customers’ behavior. 

Apriori is a classical algorithm in frequent itemset 

mining, that able to discover large number or itemset 

with a certain threshold value. However, the 

algorithm suffers from scanning time problem while 

generating candidates of frequent itemsets. This study 

presents a comparative study between several 

Apriori-variant algorithms and examines their 

scanning time. We performed experiments using 

several sets of different transactional data. The result 

shows that the improved Apriori algorithm manage to 

produce itemsets faster than the original Apriori 

algorithm.   

Keywords: Apriori, Association Rule Mining, 

Frequent Itemset Mining 

I INTRODUCTION 
Frequent itemset mining is one of the popular 
techniques in discovering interesting associations 
among items in database. For example, the resulted 
associations could be useful information for marketing 
and determining good prices for products based on 
customers’ needs.  Frequent itemset mining has been 
used widely in recommendation systems such as in 
market basket analysis in hypermarket. 
Recommendation systems are widely used to predict 
what users are looking for on various kind of things, 
such as books, movies, music and so on. In recent 
years, recommendations can be generated from 
algorithms, such as Apriori. The implementation of 
recommendation and suggestion systems can be seen 
in a lot of search tabs, such as in YouTube and 
Amazon. Recommendation systems can reduce 
searching time while clicking and scrolling the pages. 

Apriori is a multi-pass algorithm; where candidate of 
itemsets are formed while passing the database by 
extending prior frequent itemsets with each 
transaction items. However, lot of candidates of 
itemset may be infrequent and the process of passing 

the database is very time consuming. Apriori applied 
downward closure property, which refers to an itemset 
is frequent only if all its subsets are frequent. This 
means that if {diaper} was found to be infrequent, we 
can expect {diaper, pizza} to be equally or even more 
infrequent. So in consolidating the list of popular 
itemsets, we need not consider {diaper, pizza}, nor 
any other itemset configuration that contains diaper. 

Generally, Apriori uses a "bottom up" approach, 
where the algorithm starts by finding frequent one 
itemset and extending one item at a time through 
candidate generation process. It generates candidate 
itemsets of length k from item sets of length k-1. Then 
it prunes the candidates which have an infrequent sub 
pattern. Next, the groups of candidates are tested 
against the database.  It scans the transaction database 
to determine frequent itemsets among the candidates. 
The algorithm terminates when no further successful 
extensions are found. Apriori uses breadth-first search 
to count candidate item sets efficiently.  

In this paper, we prepared an experimental study using 
Apriori based algorithms in mining itemsets. The rest 
of the paper is organized as follows. The description 
of related studies in frequent itemset mining using 
Apriori based algorithms is given in Section II. 
Section III describes the experimental setup and 
Section IV describes the results. Finally, the 
conclusions are presented in Section V. 

II FREQUENT ITEMSET MINING USING 

APRIORI 
The inspirations for association rule mining originally 
came from market basket analysis. A market basket 
basically consists of a collection of items purchased 
by a customer in one transaction. If we investigate the 
customers’ transactions, we will able to discover 
group of items that were highly purchased by 
customers. For example, we found a rule that if 
customer A buys milk then customer A buys coffee 
also. So, from this rule, there is a high chance that 
customer B who buys milk, will also buy coffee. 
Association rule mining can be generalized to the 
analysis of sequences, which is called as sequence 
mining.  

The entire dataset, as shown in Table 1, is a sample of 
transactional data. Association rule mining includes 
two main processes: 

 finding all frequent itemsets with certain support 

value in the transactional data. 
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 generating strong association rules from the 

frequent itemsets that meet confidence threshold. 
 

From both procesess, the itemsets and the set of rules 
will be discovered and can be evaluated as useful 
knowledge to the domain. Next, we reviewed Apriori 
algorithm for association rule mining. 

 

Table 1. Sample of Transactional Data, adapted from (Han & 

Kamber, 2006) 

Transaction Item 

1 i1, i2, i5 

2 i2, i4 

3 i2, i3 

4 i1, i2, i4 

5 i1, i3 

6 i2, i3 

7 i1, i2, i3, i4 

A. Apriori Algorithm 

Apriori algorithm was proposed in 1993 by Agarwal 
(1994). This algorithm is widely used because it is 
very simple and easy to be implemented in mining all 
frequent itemsets in database. The algorithm is 
basically generating candidate itemsets of a given size, 
k-itemsets, then scan the database to check, and counts 
the number of occurrence of each item in the database. 
Figure 1 shows the pseudo code for Apriori algorithm. 
The pseudo code for the algorithm is given below for 
a transaction database T, and a support threshold of 
minsup. Ck is the candidate set for level k. 

 

 

Figure 1. Apriori Algorithm (Han & Kamber, 2006) 

 

At each step, the algorithm is assumed to generate the 
candidate sets, A from the large itemsets. The count of 
s(A), support of itemset A is obtained while scanning 
T.   

 All single itemsets are candidates in the first pass. 

Any item with support value less than the specific 

minimum support is eliminated from the pool of 

candidate itemsets. 

 The single itemsets are combined to form two 

members candidate itemsets. Support values of 

these candidates are then determined by scanning 

the database again. Same as before, candidates 

that has value less than minimum support will be 

eliminated in becoming frequent two itemsets.  

 The next phase, candidates of three itemsets are 

created. This whole process stops only when all 

frequent itemsets are found and no further 

candidate itemset generation is possible.  

 All these frequent itemsets are then used to 

generate association rules and only rules which 

satisfied the minimum confidence will be stored. 

B. Defining Support Measure 

Let I = {i1, i2, . . ., im} be a set of m elements called 
items. A rule is defined as an implication of the form 

X →Y,  where  X, Y  I and X  Y = .The left-hand 
side of the rule is named antecedent and the right-hand 
side is named consequent. Therefore, the association 
rules can be presented as below and the items are {i2, 
i4}: 

i2  i4 [s = 40%, conf = 60%] 

When a specific association satisfies the minimum 
support threshold, then i is identified as a frequent 
itemset.   

Definition 1 (Support). Let i  T be a set of items 

from database, T. The support of an itemset i in T, 

denoted by s(i), is the proportion of transactions that 

contain i, Eq. (1): 

 

s(i) =   # of transactions contains i 

# of transactions 

(1) 

 

If the support of an itemset i is more than minimum 

support, minsup, then i is a frequent itemset. 

 

C. Apriori Algorithm Improved 1 

Shirgaonkar et al. (2010) has implemented an 
application using the improved Apriori algorithm for 
book loan transactional database of a university 
library. This improvised version of Apriori is solely to 
increase the efficiency of Apriori in term of time taken 
for execution. Despite being a simple and easy 
algorithm, original Apriori algorithm suffers from vast 
and large generated number of candidates. This has 
led to highly cost of memory and time taken for each 
of the execution. The improved Apriori algorithm by 
Shirgaonkar et al. (2010) included a process to remove 
the transaction that do not have any frequent itemsets 
prior to mining process. This algorithm safely 
assumed the transaction/sample that does not have any 
frequent itemsets would not be considered as a 
frequent set. This follows the downward property in 
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Apriori algorithm that if the subset of the item is 
infrequent, so the superset cannot be frequent. The 
illustration of the improved algorithm is shown in 
Figure 2.  The improved Apriori algorithm by 
Shirgaonkar et al. (2010) can be summarized as 
follows: 

 All single itemsets are candidates in the first pass. 
Any item that has support values of less than 
specified minimum support is eliminated from the 
pool of candidate itemsets resulting in frequent 
one item set. 

 For every row in transaction database where 
second item is 0 and first item is infrequent or 
second item is infrequent and third item is zero, 
delmark = 0 is marked. (Assume that the end of 
items in each row is marked with a zero). 

 The single itemsets are combined to form two 
members candidate itemsets. Support values of 
these candidates are then determined by scanning 
the database again. Again, only the candidates 
above the pre-specified minimum support value 
are retained to get frequent two item set. 

 For every row in transaction database where 
delmark = 1, scan it and determine if third item is 
0 and first and second items are infrequent or 
fourth item is 0 and first and second items are 
infrequent or fourth item is 0 and second and third 
items are infrequent then mark delmark = 0. 

 The next pass creates 3-member candidate 
itemsets and the process is repeated. This process 
stops only when all frequent itemsets are found 
and no further candidate itemset generation is 
possible. 

 The frequent itemsets constitute the set of frequent 
items. These frequent item sets are then used to 
generate association rules which have confidence 
values greater than or equal to the specified 
minimum confidence values greater than or equal 
to the specified minimum confidence. Rules for 
frequent itemsets are then created. 
 

Due to multiple scanning in the database, the input 
output equipment becomes heavy. The time taken is 
normally increasing the efficiency of the Apriori 
algorithm. However, when the algorithm removes the 
infrequent items from the original transactional 
database, the time taken for efficiency may be 
reduced. 

 
Figure 2. Flow of the Improved Algorithm 1. 

 

D. Apriori Algorithm Improved 2 

Another variant of Apriori was proposed by Kaur 
Gurneet (2014). The algorithm by Gurneet used a 
simple approach to decrease the time taken and 
memory used for the execution. This improvise 
version of Apriori used optimized method by reducing 
the size of database along with the number of itemsets 
generated, similarly to Shirgaonkar et al. (2010). 
Furthermore, this algorithm introduced a parameter, 
SizeOfTransaction (SOT), that stored the number of 
items for each of the transaction. If the value of SOT 
matches the value of k, then the transaction will be 
deleted. Figure 3 shows the improved algorithm 2 and 
the pseudocode for this algorithm is shown as below 
(Gurneet, 2014).   

 Firstly, SOT column is added to the database. 

 In the first iteration, each item is a member of 
candidate 1-itemset, C1. The algorithm simply 
scans the database to count the occurrences of 
each item. 

 The algorithm will then generate number of items 

in each transaction as a new parameter, namely; 

SizeOfTransaction (SOT). 

 Depends on the minimum support, for example 

min_supp = 2, the set of frequent 1-itemset, L1 

can be determined.  

 After L1 were generated, the value of k becomes 
2. Those records of transaction that have SOT = 1 
in T were deleted. These records do not exist in 
any elements of C2. 

 After that, the process is repeated until there is no 
candidate that can be generated. 
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Figure 3. Flow of the Improved Algorithm 2 

 

In order to find the efficient algorithm, we designed a 
comparative study of time execution in discovering all 
itemsets that are frequent. This particular method has 
been applied by various researches that interested in 
improving the frequent itemset mining algorithm 
(Bashir et al., 2006, Ahirwal et al., 2012, Yakop et al., 
2015).  

III EXPERIMENTAL SETUP 
In this study, the comparative study was performed to 
investigate the original Apriori algorithms with two 
variants of Apriori algorithm, the improved Apriori 
algorithm by Shirgaonkar et al. (2010) as improved 
Apriori algorithm 1 and improved Apriori algorithm 
by Kaur Gurneet (2014) as improved Apriori 
algorithm 2. We were interested to know the outcome 
of these experiments, due to lack of result findings 
described in each paper. The experiment was done by 
varying minimum support value and number of 
transactions in dataset. The value of minimum support 
was adjusted and the number of scanning and time of 
execution were recorded. The numbers of transaction 
in database were set to 400, 600, 800 and 1000 
respectively, and the minimum support are 0.1, 0.3, 
0.5, 0.7 and 0.9.  Table 2 shows the datasets used and 
Table 3 summarizes the testing on the algorithms.  
This experiment was conducted using Windows 8.1 
64-bit operating system, Intel(R) Core i5 3.0Hz and 
8.00GB RAM. 

Table 2. Datasets Used in Experiments 

Dataset # of transactions # of items 

D1 400 1808 

D2 600 2357 

D3 800 2781 

D4 1000 3182 

 

Table 3. Testing of the Algorithms 

Experiments Parameter to be recorded 

Different 

numbers of 

transaction 

Time taken for each of the 

execution depends on 

scanning time. 

Varying 

number of 

support value 

Time taken for each of the 

execution depends on the 

minimum support use. 

 

IV RESULTS 
 

Figure 4-7 show the result of three Apriori based 
algorithms by using various support values between 
0.1 and 0.9.  

 

Figure 4. Time Taken for Different Support Value for D1. 

 

 

 

Figure 5. Time Taken for Different Support Value for D2 
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Figure 6. Time Taken Using Different Support Value for D3 

 

 

 

Figure 7. Time Taken Using Different Support Value for D4 

 

As can be seen in all these four figures (Figure 4 until 
7), there is an obvious difference in time taken for the 
execution of frequent itemset mining between the 
original Apriori and the improved Apriori algorithms. 
Original Apriori algorithm used more time for each of 
the execution compare to the improved Apriori 
algorithm. For example, when the experiment was 
carried out by using 400 transactions and 0.3 
minimum support, original Apriori algorithm took 
36.62 seconds, while improved Apriori algorithm 1 
took 25.43 seconds and improved Apriori algorithm 2 
took 35.07 seconds to be executed.    

The comparison between Apriori Improved 1 and 
Apriori Improved 2 has shown that the latter algorithm 
seems need more time in finding the frequent itemsets. 
The Apriori Improved 1 algorithm shows a consistent 
behaviour with different set of transaction numbers. It 

shows that the strategy in deleting the item that less 
than the given support value from the transaction 
database could help the processing time. Scanning the 
new processed database without infrequent items does 
save a lot of time.  Meanwhile, Apriori Improved 2 
algorithm that uses a parameter that represent the 
number or items in each transaction, that is SOT does 
contributes the positive merit on processing time. This 
newly created parameter helps to find transaction that 
consist adequate item number.  

V CONCLUSION 
In this paper, the efficiency of the original Apriori 
algorithm and improved Apriori algorithms with 
various values of minimum support and number of 
transaction has been analysed. The results for each of 
the experiment have been recorded and comparisons 
have been made. Classical Apriori always need more 
time, as compared to the Improved Apriori algorithm. 
The improved algorithm 1 is outperfomed algorithm 2 
in terms of less processing time and consistently 
giving good results. Further research using other 
improved Apriori algorithms on various parameters 
value can be done. There are several others improved 
Apriori algorithm (Mohammed & Bassam, 2014; Liao 
2009) to be investigated, so that the good strategy can 
be always applied in proposing a new algorithm. 
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