

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 203

Comparative Study of Apriori-variant Algorithms

Sofianita Mutalib, Ammar Azri Abdul Subar, Shuzlina Abdul-Rahman, and Azlinah Mohamed

Universiti Teknologi MARA (Shah Alam), Malaysia, {sofi, shuzlina, azlinah}@tmsk.uitm.edu.my

ABSTRACT

Big Data era is currently generating tremendous

amount of data in various fields such as finance,

social media, transportation and medicine. Handling

and processing this “big data” demand powerful data

mining methods and analysis tools that can turn data

into useful knowledge. One of data mining methods is

frequent itemset mining that has been implemented in

real world applications, such as identifying buying

patterns in grocery and online customers’ behavior.

Apriori is a classical algorithm in frequent itemset

mining, that able to discover large number or itemset

with a certain threshold value. However, the

algorithm suffers from scanning time problem while

generating candidates of frequent itemsets. This study

presents a comparative study between several

Apriori-variant algorithms and examines their

scanning time. We performed experiments using

several sets of different transactional data. The result

shows that the improved Apriori algorithm manage to

produce itemsets faster than the original Apriori

algorithm.

Keywords: Apriori, Association Rule Mining,

Frequent Itemset Mining

I INTRODUCTION
Frequent itemset mining is one of the popular
techniques in discovering interesting associations
among items in database. For example, the resulted
associations could be useful information for marketing
and determining good prices for products based on
customers’ needs. Frequent itemset mining has been
used widely in recommendation systems such as in
market basket analysis in hypermarket.
Recommendation systems are widely used to predict
what users are looking for on various kind of things,
such as books, movies, music and so on. In recent
years, recommendations can be generated from
algorithms, such as Apriori. The implementation of
recommendation and suggestion systems can be seen
in a lot of search tabs, such as in YouTube and
Amazon. Recommendation systems can reduce
searching time while clicking and scrolling the pages.

Apriori is a multi-pass algorithm; where candidate of
itemsets are formed while passing the database by
extending prior frequent itemsets with each
transaction items. However, lot of candidates of
itemset may be infrequent and the process of passing

the database is very time consuming. Apriori applied
downward closure property, which refers to an itemset
is frequent only if all its subsets are frequent. This
means that if {diaper} was found to be infrequent, we
can expect {diaper, pizza} to be equally or even more
infrequent. So in consolidating the list of popular
itemsets, we need not consider {diaper, pizza}, nor
any other itemset configuration that contains diaper.

Generally, Apriori uses a "bottom up" approach,
where the algorithm starts by finding frequent one
itemset and extending one item at a time through
candidate generation process. It generates candidate
itemsets of length k from item sets of length k-1. Then
it prunes the candidates which have an infrequent sub
pattern. Next, the groups of candidates are tested
against the database. It scans the transaction database
to determine frequent itemsets among the candidates.
The algorithm terminates when no further successful
extensions are found. Apriori uses breadth-first search
to count candidate item sets efficiently.

In this paper, we prepared an experimental study using
Apriori based algorithms in mining itemsets. The rest
of the paper is organized as follows. The description
of related studies in frequent itemset mining using
Apriori based algorithms is given in Section II.
Section III describes the experimental setup and
Section IV describes the results. Finally, the
conclusions are presented in Section V.

II FREQUENT ITEMSET MINING USING

APRIORI
The inspirations for association rule mining originally
came from market basket analysis. A market basket
basically consists of a collection of items purchased
by a customer in one transaction. If we investigate the
customers’ transactions, we will able to discover
group of items that were highly purchased by
customers. For example, we found a rule that if
customer A buys milk then customer A buys coffee
also. So, from this rule, there is a high chance that
customer B who buys milk, will also buy coffee.
Association rule mining can be generalized to the
analysis of sequences, which is called as sequence
mining.

The entire dataset, as shown in Table 1, is a sample of
transactional data. Association rule mining includes
two main processes:

 finding all frequent itemsets with certain support

value in the transactional data.

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 204

 generating strong association rules from the

frequent itemsets that meet confidence threshold.

From both procesess, the itemsets and the set of rules
will be discovered and can be evaluated as useful
knowledge to the domain. Next, we reviewed Apriori
algorithm for association rule mining.

Table 1. Sample of Transactional Data, adapted from (Han &

Kamber, 2006)

Transaction Item

1 i1, i2, i5

2 i2, i4

3 i2, i3

4 i1, i2, i4

5 i1, i3

6 i2, i3

7 i1, i2, i3, i4

A. Apriori Algorithm

Apriori algorithm was proposed in 1993 by Agarwal
(1994). This algorithm is widely used because it is
very simple and easy to be implemented in mining all
frequent itemsets in database. The algorithm is
basically generating candidate itemsets of a given size,
k-itemsets, then scan the database to check, and counts
the number of occurrence of each item in the database.
Figure 1 shows the pseudo code for Apriori algorithm.
The pseudo code for the algorithm is given below for
a transaction database T, and a support threshold of
minsup. Ck is the candidate set for level k.

Figure 1. Apriori Algorithm (Han & Kamber, 2006)

At each step, the algorithm is assumed to generate the
candidate sets, A from the large itemsets. The count of
s(A), support of itemset A is obtained while scanning
T.

 All single itemsets are candidates in the first pass.

Any item with support value less than the specific

minimum support is eliminated from the pool of

candidate itemsets.

 The single itemsets are combined to form two

members candidate itemsets. Support values of

these candidates are then determined by scanning

the database again. Same as before, candidates

that has value less than minimum support will be

eliminated in becoming frequent two itemsets.

 The next phase, candidates of three itemsets are

created. This whole process stops only when all

frequent itemsets are found and no further

candidate itemset generation is possible.

 All these frequent itemsets are then used to

generate association rules and only rules which

satisfied the minimum confidence will be stored.

B. Defining Support Measure

Let I = {i1, i2, . . ., im} be a set of m elements called
items. A rule is defined as an implication of the form

X →Y, where X, Y I and X Y = .The left-hand
side of the rule is named antecedent and the right-hand
side is named consequent. Therefore, the association
rules can be presented as below and the items are {i2,
i4}:

i2 i4 [s = 40%, conf = 60%]

When a specific association satisfies the minimum
support threshold, then i is identified as a frequent
itemset.

Definition 1 (Support). Let i T be a set of items

from database, T. The support of an itemset i in T,

denoted by s(i), is the proportion of transactions that

contain i, Eq. (1):

s(i) = # of transactions contains i

of transactions

(1)

If the support of an itemset i is more than minimum

support, minsup, then i is a frequent itemset.

C. Apriori Algorithm Improved 1

Shirgaonkar et al. (2010) has implemented an
application using the improved Apriori algorithm for
book loan transactional database of a university
library. This improvised version of Apriori is solely to
increase the efficiency of Apriori in term of time taken
for execution. Despite being a simple and easy
algorithm, original Apriori algorithm suffers from vast
and large generated number of candidates. This has
led to highly cost of memory and time taken for each
of the execution. The improved Apriori algorithm by
Shirgaonkar et al. (2010) included a process to remove
the transaction that do not have any frequent itemsets
prior to mining process. This algorithm safely
assumed the transaction/sample that does not have any
frequent itemsets would not be considered as a
frequent set. This follows the downward property in

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 205

Apriori algorithm that if the subset of the item is
infrequent, so the superset cannot be frequent. The
illustration of the improved algorithm is shown in
Figure 2. The improved Apriori algorithm by
Shirgaonkar et al. (2010) can be summarized as
follows:

 All single itemsets are candidates in the first pass.
Any item that has support values of less than
specified minimum support is eliminated from the
pool of candidate itemsets resulting in frequent
one item set.

 For every row in transaction database where
second item is 0 and first item is infrequent or
second item is infrequent and third item is zero,
delmark = 0 is marked. (Assume that the end of
items in each row is marked with a zero).

 The single itemsets are combined to form two
members candidate itemsets. Support values of
these candidates are then determined by scanning
the database again. Again, only the candidates
above the pre-specified minimum support value
are retained to get frequent two item set.

 For every row in transaction database where
delmark = 1, scan it and determine if third item is
0 and first and second items are infrequent or
fourth item is 0 and first and second items are
infrequent or fourth item is 0 and second and third
items are infrequent then mark delmark = 0.

 The next pass creates 3-member candidate
itemsets and the process is repeated. This process
stops only when all frequent itemsets are found
and no further candidate itemset generation is
possible.

 The frequent itemsets constitute the set of frequent
items. These frequent item sets are then used to
generate association rules which have confidence
values greater than or equal to the specified
minimum confidence values greater than or equal
to the specified minimum confidence. Rules for
frequent itemsets are then created.

Due to multiple scanning in the database, the input
output equipment becomes heavy. The time taken is
normally increasing the efficiency of the Apriori
algorithm. However, when the algorithm removes the
infrequent items from the original transactional
database, the time taken for efficiency may be
reduced.

Figure 2. Flow of the Improved Algorithm 1.

D. Apriori Algorithm Improved 2

Another variant of Apriori was proposed by Kaur
Gurneet (2014). The algorithm by Gurneet used a
simple approach to decrease the time taken and
memory used for the execution. This improvise
version of Apriori used optimized method by reducing
the size of database along with the number of itemsets
generated, similarly to Shirgaonkar et al. (2010).
Furthermore, this algorithm introduced a parameter,
SizeOfTransaction (SOT), that stored the number of
items for each of the transaction. If the value of SOT
matches the value of k, then the transaction will be
deleted. Figure 3 shows the improved algorithm 2 and
the pseudocode for this algorithm is shown as below
(Gurneet, 2014).

 Firstly, SOT column is added to the database.

 In the first iteration, each item is a member of
candidate 1-itemset, C1. The algorithm simply
scans the database to count the occurrences of
each item.

 The algorithm will then generate number of items

in each transaction as a new parameter, namely;

SizeOfTransaction (SOT).

 Depends on the minimum support, for example

min_supp = 2, the set of frequent 1-itemset, L1

can be determined.

 After L1 were generated, the value of k becomes
2. Those records of transaction that have SOT = 1
in T were deleted. These records do not exist in
any elements of C2.

 After that, the process is repeated until there is no
candidate that can be generated.

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 206

Figure 3. Flow of the Improved Algorithm 2

In order to find the efficient algorithm, we designed a
comparative study of time execution in discovering all
itemsets that are frequent. This particular method has
been applied by various researches that interested in
improving the frequent itemset mining algorithm
(Bashir et al., 2006, Ahirwal et al., 2012, Yakop et al.,
2015).

III EXPERIMENTAL SETUP
In this study, the comparative study was performed to
investigate the original Apriori algorithms with two
variants of Apriori algorithm, the improved Apriori
algorithm by Shirgaonkar et al. (2010) as improved
Apriori algorithm 1 and improved Apriori algorithm
by Kaur Gurneet (2014) as improved Apriori
algorithm 2. We were interested to know the outcome
of these experiments, due to lack of result findings
described in each paper. The experiment was done by
varying minimum support value and number of
transactions in dataset. The value of minimum support
was adjusted and the number of scanning and time of
execution were recorded. The numbers of transaction
in database were set to 400, 600, 800 and 1000
respectively, and the minimum support are 0.1, 0.3,
0.5, 0.7 and 0.9. Table 2 shows the datasets used and
Table 3 summarizes the testing on the algorithms.
This experiment was conducted using Windows 8.1
64-bit operating system, Intel(R) Core i5 3.0Hz and
8.00GB RAM.

Table 2. Datasets Used in Experiments

Dataset # of transactions # of items

D1 400 1808

D2 600 2357

D3 800 2781

D4 1000 3182

Table 3. Testing of the Algorithms

Experiments Parameter to be recorded

Different

numbers of

transaction

Time taken for each of the

execution depends on

scanning time.

Varying

number of

support value

Time taken for each of the

execution depends on the

minimum support use.

IV RESULTS

Figure 4-7 show the result of three Apriori based
algorithms by using various support values between
0.1 and 0.9.

Figure 4. Time Taken for Different Support Value for D1.

Figure 5. Time Taken for Different Support Value for D2

0

20

40

60

0.1 0.3 0.5 0.7 0.9

Execution Time for D1

Apriori

Apriori Improved 1

Apriori Improved 2

0

10

20

30

40

50

60

70

80

0.1 0.3 0.5 0.7 0.9

Execution Time for D2

Apriori Ap. Improved 1

Ap. Improved 2

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 207

Figure 6. Time Taken Using Different Support Value for D3

Figure 7. Time Taken Using Different Support Value for D4

As can be seen in all these four figures (Figure 4 until
7), there is an obvious difference in time taken for the
execution of frequent itemset mining between the
original Apriori and the improved Apriori algorithms.
Original Apriori algorithm used more time for each of
the execution compare to the improved Apriori
algorithm. For example, when the experiment was
carried out by using 400 transactions and 0.3
minimum support, original Apriori algorithm took
36.62 seconds, while improved Apriori algorithm 1
took 25.43 seconds and improved Apriori algorithm 2
took 35.07 seconds to be executed.

The comparison between Apriori Improved 1 and
Apriori Improved 2 has shown that the latter algorithm
seems need more time in finding the frequent itemsets.
The Apriori Improved 1 algorithm shows a consistent
behaviour with different set of transaction numbers. It

shows that the strategy in deleting the item that less
than the given support value from the transaction
database could help the processing time. Scanning the
new processed database without infrequent items does
save a lot of time. Meanwhile, Apriori Improved 2
algorithm that uses a parameter that represent the
number or items in each transaction, that is SOT does
contributes the positive merit on processing time. This
newly created parameter helps to find transaction that
consist adequate item number.

V CONCLUSION
In this paper, the efficiency of the original Apriori
algorithm and improved Apriori algorithms with
various values of minimum support and number of
transaction has been analysed. The results for each of
the experiment have been recorded and comparisons
have been made. Classical Apriori always need more
time, as compared to the Improved Apriori algorithm.
The improved algorithm 1 is outperfomed algorithm 2
in terms of less processing time and consistently
giving good results. Further research using other
improved Apriori algorithms on various parameters
value can be done. There are several others improved
Apriori algorithm (Mohammed & Bassam, 2014; Liao
2009) to be investigated, so that the good strategy can
be always applied in proposing a new algorithm.

ACKNOWLEDGMENT

The authors would like to thank to the Ministry of

Higher Education, Malaysia for the research grant

FRGS 156/2013 and also to Research Management

Centre, Universiti Teknologi MARA, Selangor,

Malaysia for the support.

REFERENCES

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association
rules. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proc. 20th
int. conf. very large databases, VLDB (pp. 487–499). Morgan
Kaufman. 12–15.

Aher, S. B., & Lobo, L. M. R. J. (2013). Combination of machine learning
algorithms for recommendation of courses in E-Learning System
based on historical data. Knowledge-Based Systems, 51, 1-14.

Ahirwal, R., Kori, N. K, and Jain, Y. K, (2012). Improved Data mining

approach to find Frequent Itemset Using Support Count Table.

International Journal of Emerging Trends & Technology in Computer

Science (IJETTCS), 1(2), 195-201.

Bashir, S., Shuaib, Sultan, M. Y, Baig, Rauf (2006). Improving Frequent
Itemset Mining Algorithms. 2nd International Conference on
Emerging Technologies. Pp 257-262.

Burke, R. (2002). Hybrid Recommender Systems: Survey and
Experiments. User Modeling and User-Adapted Interaction, Journal
User Modeling and User-Adapted Interaction, 12(4), pp. 331-370.

Borges, L. C., Marques, V. M., & Bernardino, J. (2013). Comparison of
data mining techniques and tools for data classification. Proceedings
of the International C* Conference on Computer Science and
Software Engineering, 113-116. Doi:10.1145/2494444.2494451

Chen, Chia‐Chen, & Chen, An‐Pin. (2007). Using data mining technology
to provide a recommendation service in the digital library. The
Electronic Library, 25(6), 711-724. doi:
doi:10.1108/02640470710837137

0

20

40

60

80

100

120

0.1 0.3 0.5 0.7 0.9

Execution Time for D3

Apriori Apriori Improved 1

Ap. Improved 2

0

20

40

60

80

100

120

140

0.1 0.3 0.5 0.7 0.9

Execution Time for D4

Apriori Apriori Improved 1

Apriori Improved 2

Knowledge Management International Conference (KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

http://www.kmice.cms.net.my/ 208

Chesnevar, C., Maguitman, A., & González, M. (2009). Empowering
Recommendation Technologies Through Argumentation. In G.
Simari & I. Rahwan (Eds.), Argumentation in Artificial Intelligence
(pp. 403-422)

Chhavi Rana, S. K. J. (2012). Building a Book Recommender system
using time based content filtering. WSEAS Transactions On
Computers, Issue 2, Volume 11, February 2012, pp 27-33.

De Pessemier, T., Dooms, S., & Martens, L. (2013). Comparison of group
recommendation algorithms. Multimedia Tools and Applications,
72(3), 2497-2541.

Kaur, G. (2014). Improving The Efficiency of Apriori Algorithm In Data
Mining. International Journal of Science, Engineering And
Technology, Volume 02 Issue 05 June- 2014, pp 315-326.

Han, J. and Kamber, M. (2006). Data Mining: Concepts and Techniques.
2nd Edition, Morgan Kaufmann Publishers.

LakshmiPriya, G., & Hariharan, Shanmugasundaram. (2012). An efficient
approach for generating frequent patterns without candidate
generation. Paper presented at the Proceedings of the International
Conference on Advances in Computing, Communications and
Informatics, Chennai, India.

Liao, B. (2009). An Improved Algorithm of Apriori. In Z. Cai, Z. Li, Z.
Kang & Y. Liu (Eds.), Computational Intelligence and Intelligent
Systems (Vol. 51, pp. 427-432)

Mohammed Al-Maolegi, B. A. (2014). An Improved Apriori Algorithm
for Association Rules. Natural Language Computing. International

Journal on Natural Language Computing (IJNLC) Vol. 3, No.1,
February 2014, pp. 21-29

Mohammad-Arsyad, M.Y, Sofianita, M., Shuzlina Abdul-Rahman,
Azlinah, M. (2015). Data Projection Effects in Frequent Itemsets
Mining. Soft Computing in Data Science, Volume 545 of the series
Communications in Computer and Information Science, 23-32.

Mettouris, C., & Papadopoulos, G. A. (2013). Ubiquitous recommender
systems. Computing, 96(3), pp. 223-257.

Pazzani, M., & Billsus, D. (2007). Content-Based Recommendation
Systems. In P. Brusilovsky, A. Kobsa & W. Nejdl (Eds.)

Rajola, F. (2013). Data Mining Techniques Customer Relationship
Management in the Financial Industry (pp. 109-125)

Resnick, P. and Varian, H.R. Recommender Systems. Communications of
the ACM, Vol. 40, No. 3, 1997, pp. 56–58

Shirgaonkar, S., Rajkumar, T., & Singh, V. (2010). Application of
improved Apriori in University Library. Proceedings of the
International Conference and Workshop on Emerging Trends in
Technology, Mumbai, Maharashtra, India. Pp 535-
540, do:>10.1145/1741906.1742027

Xujing, B., & Weixiang, X. (2013). The Research of Improved Apriori
Algorithm. In Z. Zhang, R. Zhang & J. Zhang (Eds.), LISS 2012 (pp.
1007-1012): Springer Berlin Heidelberg.

