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Abstract. This paper will discuss  a new method of Ball  surface generation from prescribed boundaries based on the 
partial differential operator. In particular, we focus on the construction of a bicubic Said-Ball surface using biharmonic 
partial differentiation equation. The main result  is that the use of biharmonic Said-Ball surface would enable the overall 
surface to be generated and controlled based on the boundary curves rather than a set of control points. We illustrate the 
new method by using several graphical examples. 
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INTRODUCTION 

The PDE based on the Laplacian operator and fourth order equation are widely used  for surface modeling in 
CAGD. For example, [1] and [2] constructed the harmonic and biharmonic Bézier surface bounded by the given 
boundary curves. [3] presents the construction of biharmonic and tetra harmonic Bézier surface  with respect to 
boundary curves and the tangent conditions along them. [4] discussed the  methods for designing triangular Bézier 
PDE surfaces for given different sets of prescribed control points and including the special cases of harmonic and 
biharmonic surfaces. Currently, [5] presents a new approach to construct surfaces bounded by line of curvature or 
geodesics based on fourth order PDE. Generally, PDE-based surface modeling has the advantages over the free-form 
surface modeling based on finding control points because the entire surfaces can be constructed subject to a given 
set of boundary curves only. 

In this paper we will discuss biharmonic surface construction based on Ball surface representation instead of  
using Bézier representation as stated in  the previous researches. We will develop a boundary based intuitive surface 
design technique for Said-Ball surfaces ([6], [7])  which are one of the basic types of surfaces that are used in 
Computer Aided Geometric Design (CAGD). The main idea is to find Said-Ball solutions to some natural PDEs 
which can only be controlled through the boundary control points and those adjacent to them. 

The construction of a lower dimension of biharmonic Said-Ball surface of degree 3 by 3 which consists of 16 
control points where twelve of them are boundary control points will be discussed. Using the biharmonic PDE, we 
shall derive a relationship between inner control points with the given boundary control points. 

SAID-BALL SURFACE 

Degree m by n Said-Ball patch S  is defined as 
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with bij are the control points and 
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where 2/n   and 2/n   denote the greatest integer less than or equal to n/2 and the least integer greater than or 
equal to n/2, respectively. 

BIHARMONIC EQUATION  

Biharmonic equation for parametric surface X(u,v) is defined as the differential equation obtained by applying 
the biharmonic operator  also known as the bilaplacian, that is the differential operator defined by 224 )(  where 
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is the Laplacian and setting to zeros.  In general, for rectangular system of coordinates can be written as, 
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CONSTRUCTION OF BIHARMONIC SAID-BALL SURFACE DEGREE 3 BY 3 

Let X: [0,1] x [0, 1] to be a bicubic Said-Ball surface (m = n = 3) as given in (1)  represented in matrix form as 

                                                UMVvuX ),(                                                                                                       (5)  
where 
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M

is the control points matrix.  

Assume that, boundary control points bi0, b0j, bi3,b3j i, j =  0,...,3 are given. We need to determine the  function X
which satisfy the biharmonic condition as in   (4).  In order to fullfil these conditions, we will derive the inner points, 
b11,b12, b21, b22  of bicubic Said-ball surface in term of boundary control points. For the bicubic Said-Ball surface, 
the first and third terms in (4) will be eliminated, leaving only the second term to be considered. Thus, from (4) and 
(5), we obtain, 

                                               RMS = 0                                                                                                                    (6) 
where 

                   .]21248122[],21248122[ TvvSuuR
By expanding  (6), we obtain the system of  four  linear equations in four unknowns and is given as follows: 
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where 
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is a full rank coefficient matrix, TbbbbY ][ 22211211 and B is a constant column vector given by 
TbbbB ]0[ 321  with 

              )4816488161648164( 3332313023201310030201001 b + b+b - b + b + b +b  - b - b + b + b - b-b
              )24242424 232013102 b  - b - b + b= -(b
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Thus, the solution of (7) is 

               /4)2222(-= 333130131003010011  bbbbbbbbb
               4)2222(- 333230131003020012 /bbbbbbbb=b
               4)2222(- 333130232003010021 /bbbbbbbb=b
               )/4.2222(-= 333230232003020022 bbbbbbbbb

The above result shows that the boundaries of a biharmonic Said-Ball surface enables us to fully construct the 
entire surface. 

GRAPHICAL EXAMPLES 

To generate the biharmonic Said-Ball surface, we have chosen three sets of boundary conditions. First set of 
control points is taken from [3], 

)1,1,3(),3,2/3,0(),0,0,3(),3,0,2/3(),3,0,2/3(),0,0,0( 310130201000 bbbbbb
).0,3,3(),1,3,2(),1,3,1(),0,3,0(),1,2,3(),3,2/3,0( 332313033202 bbbbbb

Using the above boundary points, the inner control points of  biharmonic Said-Ball surface are, 
b11 = (5/4, 5/4, -3), b12 =  (5/4, 7/4, 0), b21= (7/4, 5/4, 0) and b22 = (7/4, 7/4, 3).     

Second example, two boundary curves are defined approximately as semi-circular arcs with radius 1 and 0.5 
respectively, while two more boundary curves define on the curves connecting both arcs as given by the following 
control points. 

).1,0,1(),1,72.0,1(),1,1,5153.0(
),1,0,1(),75.0,0,575.0(),75.0,0,575.0(),45.0,0,425.0(

),45.0,0,425.0(),0,0,5.0(),0,36.0,5.0(),0,4.0,2577.0(),0,0,5.0(

332313

03320231

0130201000

bbb
bbbb

bbbbb
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The inner control points are calculated as, b11 = (0.3865, 0.7, 0.45), b12 =  (0.3865, 0.7, 0.75), b21= (-0.75, 0.54, 0.45) 
and b22 = (-0.75, 0.54, 0.75).  

For the last example, we use the following control points, 

).1,853.2,9271.0(),1,853.2,9271.0(
),1,9271.0,853.2(),1,853.2,9271.0(),55.0,9976.0,3241.0(

),6.0,133.1,368.0(),3.0,608.1,5225.0(),35.0,343.1,4364.0(
),0,853.2,9271.0(),0,763.1,427.2(),0,0,3(),0,853.2,9271.00(

3323

130332

023101

30201000

bb
bbb

bbb
bbbb

and the inner control points are obtained as, 

 b11 = (-2.8834, -0.59605, 0.325),  b12 =  (-2.9485, -0.39585, 0.575), 

b21= (-1.634,  -2.4405, 0.325) and b22 = (-1.699, -2.2403, 0.575). 

Figures 1(a)-3(a) show the control polygons together with its common boundary cuves for Said-Ball of degree 3,  
while Figures 1(b)- 3(b) show the bicubic Said-Ball surfaces resulting from the biharmonic solution along with the 
boundary control points. Clearly seen that, the shape of  constructing surfaces reproduce the shapes of the boundary 
curves.

CONCLUSION 

In this work, we have constructed a biharmonic Said-Ball surface of degree 3, where the inner control points  
depend on boundary control points fullfill the harmonicity conditions of PDE. We show that for a given cubic Said-
Ball boundary curve, there exists a unique solution of the biharmonic equation with that boundary. The use of 
biharmonic Said-Ball surface would enable the overall surface to be generated and controlled based on the boundary 
curves rather than a set of control points. 
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