ADVERTIZING, CONCENTRATION AND PROFITABILITY IN MALAYSIAN MANUFACTURING REVISITED: A SIMULTANEOUS EQUATION APPROACH

SHRI DEWI SUBRAMANIAM
Fakulti Ekonomi
Universiti Utara Malaysia

NOR GHANI MD. NOR
Fakulti Ekonomi
Universiti Kebangsaan Malaysia

AHMAD ZAINUDDIN ABDULLAH
Fakulti Ekonomi dan Pengurusan
Universiti Putra Malaysia

ABSTRACT

The original Structure-Conduct-Performance (SCP) paradigm that postulates a unidirectional relationship between concentration, advertizing and profitability had been used as the theoretical framework for many empirical works in industrial organizations before the mid seventies. Thereafter, doubts had begun to surface over the unidirectional postulate and there is new theory suggesting simultaneous interdependence. Unfortunately, not only are Malaysian studies in this area few and far between (exhaustive literature review yields only three published studies namely, Gan and Tham, 1977; Gan, 1978; and Rugayah, 1992), they also failed to incorporate the more recent theoretical development on the simultaneity of effects. This paper revisits the SCP paradigm as applied to the relationship among concentration, advertizing and profitability by conducting an empirical test that allows for simultaneous interdependence among variables. A set of three equations was estimated using three stage least squares (3SLS). The results provide considerable support to the feedforward and feedback effects between the three variables. Advertizing intensity exerts a significant influence on profit and concentration in the industry and there exists a feedback effect running from concentration to advertizing intensity. This finding suggests that advertizing does have an anti-competitive impact on the industry and therefore has a direct bearing on competition policy analysis.
ABSTRAK

INTRODUCTION

Prior to the mid seventies, a number of empirical studies conducted using data from the developed countries validated the structure-conduct-performance (SCP) paradigm by employing single equation model on various measures of market. Three Malaysian studies that employed similar methodology, could also be found in the literature namely, Gan and Tham (1977), Gan (1978) and Rugayah (1992). These studies have however, been criticized for the failure to account for the simultaneity of inter-relations among elements of industry structure, conduct and performance. To illustrate, it has generally been argued that advertizing creates brand loyalty and combined with economies of scale in advertizing generate product differentiation barriers to entry which enable established firms to obtain and maintain higher profit (Comanor & Wilson, 1974). However, according to the theoretical model on optimal advertizing strategy (Schmalensee, 1972; & Strickland and Weiss, 1976) there is a feedback effect running from profitability to advertizing intensity since the higher profit rate per demand unit, the greater is the impact of advertizing on profits. Empirical estimation
using single equation model is incapable of providing consistent parameter estimates. The underlying theory therefore suggests that these variables are more properly considered as simultaneously determined in a system of equations (Pagoulatos & Sorensen, 1981).

The problem of simultaneous relationship is not limited to profit and advertising alone. Simultaneous relationship is also envisaged between concentration and advertising through the existence of externalities in advertising on the one hand, and substantial economies of scale in advertising, on the other. This is to say that since advertising influences both overall industry demand and the firm’s individual demand, larger firms tend to advertise more since they can internalize a bigger proportion of the external industry effects. On the other hand, it could also be argued that the direction of causality may be the reverse since there may be substantial economies of scale in advertising and that advertising may enhance barriers to entry. Again, the simultaneous relationship between these variables within the traditional structure-conduct-performance (SCP) paradigm should thus be considered as jointly determined endogenous variables in a system.

The main purpose of this study is to examine the simultaneous interdependence between the three important industry variables (i.e. advertising intensity, concentration and profitability) with the potential of providing an alternative view on the inter-relationship between them to that found in the above-mentioned Malaysian studies. In doing so we revisit the issues raised in the earlier Malaysian studies and provide an update on the methodology employed to incorporate the more recent theoretical development on the simultaneous relationships among industry variables. In order to achieve this objective, we follow the broad methodology first applied by Pagoulatos and Sorensen (1981) in a study on the US food industry.

THE MODEL

There are three equations to be simultaneously estimated.

The Advertising Equation

Following Strickland and Weiss (1976), the price-cost margins (PCM) is included as one of the variables in the advertising equation. The sign of the coefficient is expected to be positive since a higher profit rate per unit sales implies greater benefits to be gained from increased sales through advertising. Similar arguments can be found in Schmalensee (1972), Comanor and Wilson (1974) and Berndt (1991).
For the purpose of this research, we adopt Gan and Tham’s (1977) method of measuring PCM where:

\[PCM = \frac{\text{value added - payroll (inclusive of supplemental employee cost) - rentals - advertizing and other purchased services}}{\text{total value of sales}} \]

Seller concentration is also included in the advertizing equation. As argued earlier, since advertizing influences overall industry demand and the firm’s individual demand, bigger firms would tend to advertize more since they are able to capture a larger proportion of industry effects. If this type of externalities really exists it is expected that advertizing intensity will increase with the level of concentration since firms with the larger market share could better internalize the external advertizing benefits. In this study we will be using the Herfindahl Index as a measure for industry concentration.

Thus the advertizing equation is;

\[\frac{AD}{S} = \alpha_0 + \alpha_1 \text{PCM} + \alpha_2 \text{HI} + U_1 \]

(1)

where \(\frac{AD}{S} \) is advertizing to sales ratio, PCM is price-cost margin, HI is concentration and \(U_1 \) is the error term.

The Concentration Equation

Concentration is a measure of the degree to which a few large firms dominate total sales, production or capacity within an industry or market. Observed industry concentration is in turn, a function of several factors including market size, minimum efficient scale and the height of barriers to entry. Two popular measures of concentration employed in empirical works are the Herfindahl Index or Herfindahl Hirshmann Index (HI) and the four-firm concentration ratio (CR4). This index is adopted as a measure of concentration in this study and is defined as;

\[\text{HI} = \sum_{i=1}^{T} S_i^2 \]

where \(T \) = firms in the industry

\(S_i = \text{share of each firm weighted by itself} \)

We have four determinants of concentration. The first is simply a measure of the size of the market (SZ). The underlying reason for including this variable in the concentration equation is that, other things being constant, larger (smaller) markets allow more (fewer) optimally
sized firms to co-exist. The coefficient of this parameter is therefore expected to be negative.

The second variable is minimum efficient scale (MES). The MES is intended to provide an approximation on the minimum viable firm size in any industry. The larger is the required minimum viable size, the more concentrated is the industry. We use the popular Comanor and Wilson’s (1974) measure of the MES where it is defined as the average plant size among the largest plants that account for at least fifty percent of industry output and then further divided by total output. The coefficient for this variable is expected to be positive.

The third variable is cost disadvantage ratio (CDR). This variable is included to account for the cost penalties associated with operation of plants of less than minimum efficient size. It is calculated as the ratio of value added per employee in plants of less than minimum efficient size to that of the larger plants. The same measure was adopted by Caves, Khalizadah and Porter (1975). The expectation is that the greater the cost disadvantage of small-scale operation, (i.e. the steeper the slope of the average cost curve) the higher would be the level of concentration. It is therefore expected that the coefficient of this parameter would bear a negative sign.

The fourth variable included in the concentration equation is advertising intensity. The inclusion of this variable is predicated upon the hypothesis that advertising creates a barrier to entry that in turn leads to high industry concentration. The coefficient should therefore be positive if the hypothesis is correct.

Thus the concentration equation is:

$$HI = \beta_0 + \beta_1 SZ + \beta_2 MES + \beta_3 CDR + \beta_4 AD/S + U_2$$

where HI is concentration, SZ is size of firms in the industry, MES is minimum efficient scale, CDR is cost disadvantage ratio, AD/S is advertising to sales ratio and U_2 is the error term in the equation.

The Profit Equation

The measure of profitability used in the profit equation is the PCM. We adopt Gan and Tham’s (1977) operational definition of PCM where it is defined as the percentage gross return (before taxes, interest and depreciation) on sales for the industry. One advantage of using this measure of profitability is that under the assumption of constant long run average variable cost the PCM approximates the classic Lerner
index of monopoly power which is commonly employed as a summary indicator of the impact of market power on price.

The first right hand side variable in the profit equation is the capital output ratio (K/S). Since gross capital costs are included in the margin, it is necessary to include a variable that could control for the differences in capital intensity across industries. The capital output ratio is included for this purpose and is measured as the book value of depreciable assets divided by the value of sales.

The second variable included in the equation is concentration. There are strong theoretical grounds for believing that market structure does have an impact on PCM (Strickland & Weiss, 1976). Higher levels of concentration should increase the degree of firm interdependence and effectiveness of collusion thus the expectation is that concentration should exert a positive influence upon industry profit margins. As mentioned earlier this study uses the Herfindahl Index as a measure of industry concentration.

Advertizing intensity is also expected to have some influence on profitability. In theory, it can be seen as an element of industrial structure that operates as a barrier to entry, and thereby influencing performances. Comanor and Wilson (1976) examined the role of advertizing both in terms of an indicator of product differentiation, of raising the MES and as a general barrier to entry. They concluded that industries with high advertizing outlays earned on average profit rates that exceeded other industries by nearly four percentage points. This differential incidentally represented a fifty percent increase in profit rates.

Finally, the profit equation includes two variables to capture the impact of international trade factors on profitability. To the extent that actual or potential import competition keeps domestic firms from reaping monopoly gains, PCM will be lower in industries with a greater degree of competition from imports. Gan and Tham (1977) further argued that in an open economy, barriers to entry at the production stage alone could not sustain monopoly profits in the domestic market. The ratio of imports to industry sales (M/S) is therefore included in the profit margin equation to capture the control for the impact of import competition on profitability. Export opportunities could also affect the performance of firms in the domestic market. The relationship between export and performance (profit) is however ambiguous. It is a well known result that domestic pricing outcomes may be higher than the competitive levels if price discrimination is possible across
international markets. However, it may very well be argued that profits may in fact be lower for exporting firms that are unable to practice price discrimination.

Thus the profit equation is;

\[PCM = \gamma_0 + \gamma_1 K/S + \gamma_2 HI + \gamma_3 AD/S + \gamma_4 X/S + \gamma_5 M/S + U_3 \]

(3)

where PCM is price-cost margin, K/S is capital to sales ratio, CR is concentration, AD/S is advertizing to sales ratio, X/S is export to sales ratio and M/S is import to sales ratio and U_3 is the error term in the equation.

ESTIMATION AND RESULTS

This relationships can be shown in a schematic diagram form as below;

![Diagram showing the relationships between advertising, concentration, and profitability](image)

According to the diagram, advertizing is influenced by concentration and profitability. Meanwhile concentration is only influenced by advertizing, and profitability by advertizing and concentration.

The relationship can also be represented in terms of the variables used in the three structural equations. PCM and HI appear as determinants in the advertizing equation, while advertizing appears as a determinant in concentration equation. Finally, in the PCM equation both advertizing and concentration appear as determinants. Since there are feedback and feedforward effects among these three variables, we must therefore treat these variables as endogenous whose values are jointly determined in a simultaneous equation system consisting of equation (1), (2) and (3).
This study utilizes data (year 1990) for 120 manufacturing industries at the five-digit level of MSIC. All variables were computed from both published and unpublished data obtained from Department of Statistics Malaysia. Data on imports and exports were based on Standard International Trade Classification (SITC) compiled from external trade statistics. In order to harmonize the MSIC and SITC data, systems classification from the Malaysian Customs and Excise were used.

The Hausman specification test indicates the presence of simultaneity problem while the exogeneity test could not reject that hypothesis that AD/S, CR and PCM are endogeneous variables. Note that equations (1), (2) and (3) are over-identified using the order condition.

Results of the 3SLS are shown in Table 1. The model gives some support to the hypothesized simultaneous interrelationships and feedback effects among advertising, concentration and profit margin. Particularly the results indicate that concentration and advertising intensity simultaneously exert a significant influence on each other. However, the hypothesized simultaneous relationship between advertising and profitability is not borne out by the result.

Estimation results for the advertising intensity equation shows that both PCM and HI positively affect advertising. Quite unexpectedly however, PCM is not statistically significant.

The estimated concentration equation indicates that advertising does exert a statistically significant positive influence on concentration. A 1% increase in advertising intensity leads to 0.14 unit increase in concentration. Concentration is positively related to the cost disadvantage ratio (CDR) and minimum efficient scale (MES). They (CDR and MES) are however not statistically significant.

The final estimated equation is the profitability equation. In contrast to the hypothesized relation, concentration shows a negative sign in the profit equation although the coefficient is not statistically significant. This result appears to contradict the findings of Strickland and Weiss (1976) and Pagoulatos and Sorensen (1981). Gan and Tham (1977) got the expected sign for the concentration variable but similar to our findings, found it insignificant. They reasoned that this could be due to multicollinearity problem. Profit margin increases in response to higher advertising intensity thus supporting Schmalensee (1972) conjecture that high advertising could act as an entry barrier thus allowing higher profits to incumbents. Since the PCM is measured in terms of gross return, the precise way to interpret the estimated
relationship is that for every unit increase in advertising intensity, profitability increases by an average of RM 8.94. The results also suggest that the foreign trade variables do not exert significant influence since both of them are not statistically significant. The hypothesis that the presence of foreign competition could discipline domestic producers to behave competitively is not supported in this study. Capital to sales ratio and advertising show the expected positive sign and is statistically significant.

Table 1
3SLS Results

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Intercept</th>
<th>PCM</th>
<th>HI</th>
<th>SZ</th>
<th>MES</th>
<th>CDR</th>
<th>AD/S</th>
<th>K/S</th>
<th>X/S</th>
<th>M/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD/S</td>
<td>-0.0055</td>
<td>0.019</td>
<td>0.060</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t statistics</td>
<td>-0.631</td>
<td>0.462</td>
<td>3.475*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI</td>
<td>0.0243</td>
<td>1.32E-10</td>
<td>1.41E-05</td>
<td>0.015</td>
<td>14.180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t statistics</td>
<td>0.255</td>
<td>0.358</td>
<td>0.312</td>
<td>0.851</td>
<td>2.287*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCM</td>
<td>0.104</td>
<td>-0.140</td>
<td>8.940</td>
<td>0.092</td>
<td>-0.002</td>
<td>0.0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t statistics</td>
<td>2.006*</td>
<td>-0.624</td>
<td>3.171*</td>
<td>2.868*</td>
<td>-1.109</td>
<td>0.545</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: * - indicates significance at the 5% level

CONCLUSION

This paper has examined the simultaneity in relationship between advertising, concentration and profitability. The system of equations was estimated using three stage least squares based on data for 120 industries classified at the 5 digit MSIC level. The three stage least squares (as opposed to single equation estimation) method was adopted in order to take cognizance of the relatively more recent theoretical development not incorporated in the three previous Malaysian studies on this subject. The result indicates that advertising intensity significantly influences price-cost margins and concentration in the industry thus suggesting that it may act as a barrier to entry. At the same time concentration also affects advertising intensity therefore providing support to the feedback relationships hypothesis.

REFERENCES

