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Abstract 

 

This paper investigates methods to forecast future adjusted price of S&P 500 by 

using geometric Brownian motion (GBM) and geometric fractional Brownian 

motion (GFBM) for better investment decision. Four types of formulas are used to 

find the appropriate volatility measurement that may provide forecast value which 

closely resembling to actual movement of stock price. The evaluation of 

forecasting methods is computed by the mean absolute percentage error (MAPE). 

The findings showed high accuracy in all forecasting methods, with all MAPE are 

less than 10%, with the best forecasting method is GFBM with stochastic 

volatility which follow fractional Ornstein – Uhlenbeck (FOU) process. 
 
Keywords: Geometric Brownian motion, geometric fractional Brownian motion, 

volatility, fractional Ornstein- Uhlenbeck process, forecasting   
 

 Introduction 
 

Geometric Brownian motion is considered as one of the most important models 

and widely used in financial mathematics, in particular as the underlying process 

of a risky market and able to predict future share price in a short period of time 

[5]. The parameters in the model may be used in Black-Scholes Model for pricing 

of options. In recent development, such model evolved by considering the 

existence of memory, in which the needs to incorporate long memory parameter,  

http://www.google.com.my/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAA&url=http%3A%2F%2Fcca.sau.edu.sa%2F&ei=i4VlVNWZEIuAuwTY1oL4Bg&usg=AFQjCNHYGPZy7-ZyloHVTd4MwcIFnbnxHA&sig2=WkxZoJwxSPbC8o4-_4Ufvw
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namely the Hurst index (H) is discussed. Such enhancement of model is better 

known as the geometric fractional Brownian motion (GFBM). 

How best to measure the parameter, i.e., the volatility in the aforementioned 

model is of the interest in this work. 

Volatility is of interest as it discusses the variation in some phenomenon over 

time. In financial economics, volatility is defined as the standard deviation of the 

random Wiener driven component in a continuous time diffusion model. 

However, there are several types of volatility depending on how they are 

extracted. For example, implied volatility normally extracted from option pricing 

data, realized volatility from high frequency returns in a day, and historical data 

from daily returns. 

In this work we will forecast the stock market by using GBM and GFBM 

depending on historical volatility. The volatility measurements that will be used in 

this work are simple volatility (S), log volatility (L), high-low-closed (HL), and 

stochastic volatility (STO). Detail discussion on the volatility measurements is 

available in Subsection 4.2. 

 

 Derivation of Geometric Fractional Brownian Motion 
 

We begin this Subsection by constructing geometric Brownian motion, adapted 

from Abidin and Jaffar [1].  

Let 𝑆𝑖 be asset value on the i-th day, and  𝑅𝑖 be the return from i-th day to i+1 day 

which is define as  

                                   𝑅𝑖 =
𝑆𝑖+1−𝑆𝑖

𝑆𝑖
                                                                         (1)              

 

The mean of return or drift (𝜇)  can be defined as  

                                   𝜇 =
1

𝑛
∑ 𝑅𝑖

𝑛
𝑖=1 ,                                                                     (2) 

 

where n is the number of returns in the sample. The standard deviation or 

volatility, 𝜎 can be written as  

                                   𝜎 = √
1

(𝑛−1)
∑ (𝑅𝑖 − 𝜇)2 𝑛

𝑖=1 .                                                (3) 

 

Wilott (2000) uses standard normal variables, 𝜙 into the asset return model to 

standardize the normal distribution of asset return, i.e., 

 

                      𝑅𝑖 =
𝑆𝑖+1−𝑆𝑖

𝑆𝑖
= 𝑚𝑒𝑎𝑛 + 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 × 𝜙.                       (4) 

 

Let ∆𝑡 denotes to time step for one day. By assuming 𝜇 to be constant then: 

                                   𝑚𝑒𝑎𝑛 =  𝜇 ∆𝑡.                                                                   (5) 

 

Let 𝜎 be a parameter in measuring the amount of randomness, so the standard 

deviation of the asset returns over time step ∆𝑡 can be written as: 
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                                   𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜎∆𝑡1/2.                                        (6) 

 

Consequently, 

                                   𝑅𝑖 =
𝑆𝑖+1−𝑆𝑖

𝑆𝑖
= 𝜇 ∆𝑡 + 𝜎 𝜙∆𝑡1/2.                                        (7) 

 

Equation (7) can be rewritten as  

                                   𝑆𝑖+1 − 𝑆𝑖 =  𝑆𝑖 𝜇 ∆𝑡 + 𝑆𝑖 𝜎 𝜙∆𝑡
1

2                                      (8) 

 

The left hand side in the Equation (8) represents the changes in the asset price, 

while the right hand side represents the random walk model in discrete time step.  

As highlighted by Wilmott [12], the stock markets are fluctuating continually over 

every small interval of time which follows the Brownian motion. Fama [4] argued 

that the behavior of stock market cannot be foreseen, in which should follow 

random walk process in GBM. By using the notation of Brownian motion, 

equation (8) can be written as: 

 

                                    𝑑𝑆(𝑡) = 𝑆(𝑡)𝜇 𝑑𝑡 +  𝑆(𝑡)𝜎𝑑𝑊𝑡.                                       (9)              

 

Equation (9) represents asset price model in continuous-time. 𝑑𝑊𝑡 represents 

random variable with mean zero and variance 𝑑𝑡 which follows  

 

                                   𝐸[𝑑𝑊𝑡] = 0     and     𝐸[𝑑𝑊𝑡
2] = 𝑑𝑡. 

 

The analytic solution of Equation (9) with initial value 𝑆0 can be illustrated as 

 

                                      𝑆(𝑡) =  𝑆0 𝐸𝑥𝑝 (𝜇𝑡 −
1

2
𝜎2𝑡 + 𝜎𝑊𝑡).                                   (10)               

 

In what followed, Mishura [7] used fractional Brownian motion, 𝐵𝐻(𝑡)  to replace 

the classical Brownian motion 𝑊𝑡 and further incorporate the existence of long 

memory in financial market. The suggested model is as follows 

 

                                   𝑑𝑆(𝑡) = 𝑆(𝑡)𝜇 𝑑𝑡 +  𝑆(𝑡)𝜎𝑑𝐵𝐻(𝑡),         𝐻 ∈ (
1

2
, 1)     

                                                                                                                             (11) 

 Analytic Solution of GFBM   
 

Since 𝐻 ≠
1

2
, 𝐵𝐻(𝑡) is not a semimartingale; thus we cannot apply the general 

theory of stochastic calculus on 𝐵𝐻(𝑡), instead Wick calculus is used.  

Now, we assume the initial condition 𝑆(0) = 𝑆0. The stochastic differential 

equation in Equation (11) can be written as:  

                                    
𝑑𝑆(𝑡)

𝑑𝑡
= 𝑆(𝑡) 𝜇 +  𝑆(𝑡) 𝜎

𝑑𝐵𝐻(𝑡)

𝑑𝑡
.                                      (12) 
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By using Wick calculus, Equation (12) can be rewritten in (𝒮)𝐻
∗  as:  

                                    
𝑑𝑆(𝑡)

𝑑𝑡
= 𝑆(𝑡)𝜇 +  𝑆(𝑡)𝜎 ⋄ 𝑊𝐻(t),                                     (13) 

or 

                                    
𝑑𝑆(𝑡)

𝑑𝑡
= ( 𝜇 +   𝜎 ⋄ 𝑊𝐻 (t))𝑆(𝑡).                                     (14) 

Integrate both sides of Equation (14) give 

                                    𝑆(𝑡) = 𝑆0𝐸𝑥𝑝 ⋄ ( 𝜇𝑡 +   𝜎 ∫ 𝑊𝐻(r)𝑑𝑟
𝑡

0
)                       (15) 

By using 
𝑑

𝑑𝑡
𝐵𝐻(𝑡) = 𝑊𝐻(𝑡) in (𝒮)𝐻

∗ , Equation (15) can be written as 

                                    𝑆(𝑡) = 𝑆0𝐸𝑥𝑝 ⋄ ( 𝜇𝑡 +   𝜎𝐵𝐻(𝑡))                                  (16) 

Now, we introduce Definition 1, Lemma 1, and Definition 2 from [3] to help with 

the later deduction. 

Definition 1: If 𝑌: ℝ → (𝒮)𝐻
∗  is a given function provided that 𝑌(𝑡) ⋄ 𝑊𝐻(𝑡) is 

integrable in (𝒮)𝐻
∗ , then we can define the fractional Wick –Ito integral of a 

function 𝑌 as: 

                                   ∫ 𝑌(𝑡)𝑑𝐵𝐻 = ∫ 𝑌(𝑡) ⋄ 𝑊𝐻(𝑡)
ℝℝ

𝑑𝑡                                 (17) 

 

Lemma 1:  ∫ 𝐵𝐻(𝑠)𝑑𝐵𝐻(𝑠) =
𝑡

0

1

2
𝐵𝐻

2 (𝑡) −
1

2
𝑡2𝐻                                                 (18) 

 

Definition 2: Let 𝑓 ∈ 𝐿𝐻
2 (ℝ), then  

 

                       𝐸𝑥𝑝 ⋄ (< 𝑤, 𝑓 >) = 𝜀(𝑓) = 𝐸𝑥𝑝(∫ 𝑓𝑑𝐵𝐻 −
1

2
 ‖𝑓‖𝐻

2 )                (19) 

 

By using Definition 2 and Lemma 1, we are ready to illustrate 𝑆(𝑡) of GFBM as 

                                    𝑆(𝑡) = 𝑆0𝐸𝑥𝑝(𝜇𝑡 +  𝜎𝐵𝐻(𝑡) −
1

2
𝜎2𝑡2𝐻)                       (20)  

          

Equation (20) represents analytic solution of GFBM based on Wick calculus 

provided that the volatility is constant. It is also used as asset price modeling that 

is able to predict asset price at a given time. However, such solution is acceptable 

given the scenario where volatility is constant. To date, there has yet analytic 

solution in the case of stochastic volatility.  

In this paper, we assume volatility a deterministic function 𝜎(𝑌𝑡) of stochastic 

process, 𝑌𝑡 which obeys fractional Ornstein-Uhlenbeck process. A more extensive  
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discussion on the proposed model is available in [2]. The proposed model is as 

follows: 

                                   𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎(𝑌𝑡)𝑆𝑡𝑑𝐵𝐻1
(𝑡)                                       (21) 

                                   𝑑 𝑌𝑡 = 𝛼(𝑚 − 𝑌𝑡 )𝑑𝑡 + 𝛽𝑑𝐵𝐻2
(𝑡)                                    (22) 

 

where 𝛼, 𝛽 and 𝑚 are constant parameters that represent mean reverting of 

volatility, volatility of volatility, and mean of volatility respectively. 𝐵𝐻2
(𝑡) is 

another fractional Brownian motion. We assume that 𝐵𝐻1
(𝑡) and 𝐵𝐻2

(𝑡) are 

independent. 

In the next section, we apply the proposed model in addition to three other models 

to forecast adjusted prices in S&P 500 and make some comparison among the 

different models.  

 

 Empirical Investigation  
 

4.1 Data  

We used data from S&P 500. The S&P 500 is selected for its preferred benchmark 

of stock market in the US, available online at http://finance.yahoo.com. The daily 

adjusted closed price from 15th of November 2013 to 31st of December 2013 are 

selected; with total observation of 30 days. The return series is considered to 

avoid high volatility in the data. 

Figures (1) and (2) show the price and return series of the data set, respectively. 

 

 

 

 

 

 

  

 

4.2 Forecast of Stock Market 

In this subsection we forecast the adjusted prices introduced earlier using both 

GBM and GFBM models. Mathematica 10 software is used to estimate the value 

of Hurst index 𝐻 = 0.524. In this article, we calculate volatility using four 

different formulas – simple volatility (S), log volatility (L), high-low-closed 

volatility (HL), and volatility that assumed a deterministic function 𝜎(𝑌𝑡) = 𝑌𝑡 of 

stochastic process 𝑌𝑡 which obeys fractional Ornstein- Uhlenbeck process 

proposed in this article (STO). 
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Figure2: Daily returns series of S&P500 from 

15th of November 2013 to 31 of December 

2013 

 

Figure1: Daily adjust price series of S&P 500  

from 15th of November  2013 to 31 of 

December 2013 

http://finance.yahoo.com/
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All S, L and HL depend on constant volatility, whereas STO depends on 

stochastic volatility.  We refer to [12] and [1] for the formulation of S, L and HL:  

 

Simple volatility (S):        𝜎 = √
1

(𝑛−1)∆𝑡
∑ ( 𝑅𝑖 − �̅�)2𝑛

𝑖=1                                     (23)         

                             

Log volatility (L):            𝜎 = √
1

(𝑛−1)∆𝑡  
∑ ( 𝐿𝑜𝑔(𝑆𝑖) − 𝐿𝑜𝑔 ( 𝑆𝑖−1))2  𝑛

𝑖=1          (24)           

 

High-Low-Closed volatility (HL): 

𝜎 = √
1

(𝑛−1)∆𝑡
{∑ 0.5( 𝐿𝑜𝑔(𝐻𝑖) − 𝐿𝑜𝑔 ( 𝐿𝑖))2𝑛

𝑖=1 − ∑ 0.3( 𝐿𝑜𝑔(𝑆𝑖) − 𝐿𝑜𝑔 ( 𝑆𝑖−1))2}𝑛
𝑖=1   

                                                                                                                                         (25) 

 

where 𝑛 is the total of observation, ∆𝑡 is the time step, 𝑅𝑖 is the return at day 𝑖, 𝑆𝑖 

is the price stock at day 𝑖 , 𝐻𝑖 is the highest asset price at day 𝑖 and 𝐿𝑖 is the lowest 

asset price at day 𝑖. 
 

Volatility that obeys FOU (STO):    𝑑𝑌𝑡 = 𝛼(𝑚 − 𝑌𝑡)𝑑𝑡 + 𝛽𝑑𝐵𝐻2
(𝑡)              (26) 

 

Note that the parameters involved in (21) and (26) are as the follow: 𝐻1 =
0.5244, 𝐻2 = 0.5289, 𝜇 = 0.001024, 𝛽 = 2.9 × 10−9, 𝑚 = 0.000028 and 𝛼 =
1.62712. 

 

Table 1 illustrates different values of volatility according to the selected formula. 

 

Table 1: The values of volatility according to type 
Volatility 

type 

S L HL STO 

Value 0.0293275 0.0294989 0.392966 0.029138 

 

Next, we apply the mean absolute percentage error (𝑀𝐴𝑃𝐸) formulation in order 

to forecast the stock market based on each formulation (Sheldon, 2011) as follows 

                                                     𝑀𝐴𝑃𝐸 =
∑

|𝑌𝑖−𝐹𝑖|

𝑌𝑖

𝑛
𝑖=1

𝑛
                                         (27) 

 

Lawrence et.al in [6] determine the scale of judgment of forecast accuracy 

using  MAPE as follows: MAPE ≤ 10% (highly accurate), 11% ≤ MAPE ≤ 20% 

(good accurate), 21% ≤ MAPE ≤ 50% (reasonable forecast) and MAPE ≥  51 

(inaccurate). 

Table 2 compares the actual prices to the forecast values by using GBM and 

GFBM model with its four type of volatility and its MAPE.  
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Note that in Table 2 Fsimple  denoted to forecasting using simple volatility, Flog 

denoted to forecasting using log volatility, FHLC denoting to Forecasting using 

high-low-closed volatility and FSto. denoting to forecasting using stochastic 

volatility. 

Table 3 represent the best to the worst of forecasting methods considered in this 

paper. 

Table 2 and Table 3 suggested that most values of MAPE are relatively close, with 

the values of less than 10%, indicating that both GBM and GFBM models have 

highly accurate forecasting. However, we can observe that GFBM model is 

significantly more accurate than GBM model in all cases of different type of 

volatility. These finding are consistent with [9], [10] and [11] that suggested long 

memory model to best suited empirical analysis. From the finding, we also learnt 

that the model proposed in this article produced the most accurate performance 

whereas GBM model with log volatility performed the worst. 

We also noted that all GFBM models performed better in every type of volatility 

involved. Among different type of volatility in GFBM model, stochastic volatility 

surpass in its performance as oppose to simple volatility, log volatility and high-

low volatility.  

 

 Discussion  
 

In this article, a review of derivation of GFBM is presented by adopting the Wick 

calculus. A new model of GFBM is introduced, where its volatility is assumed to 

be a deterministic function 𝜎(𝑌𝑡) of a stochastic process, 𝑌𝑡 which obeys 

fractional Ornstein-Uhlenbeck process as illustrated in Equation (21) and (22). 

We then forecasted prices of S&P 500 using GBM and GFBM model and 

investigate its performance. The volatility of the said models follows formulations 

of simple volatility, log volatility, high-low-closed volatility and volatility of 

stochastic process. MAPE were computed to evaluate each forecasts.  

The findings showed that the proposed method in this article provides the best 

forecast suggested by its minimum value of 𝑀𝐴𝑃𝐸. Furthermore, the findings also 

suggested that GFBM model is significantly more accurate than GBM model, may 

be due to its long memory property. All forecasting methods also portray high 

accuracy since all MAPE are less than 10%. The results are illustrated in Table 2 

and Table 3. 

Such promising findings motivate more extensive future works on promoting 

stochastic volatility, GFBM model and long memory in the financial 

environments.  
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Table 2:  Forecast Prices and Actual Prices of S&P 500 with 𝑀𝐴𝑃𝐸 

 
Date 𝑭𝒔𝒊𝒎𝒑𝒍𝒆 𝑭𝒍𝒐𝒈 𝑭𝑯𝑳𝑪 𝑭𝑺𝒕𝒐.  

2014 GBM GFBM GBM GFBM GBM GFBM GBM GFBM Actual 

2-Jan 1846.98 1848.29 1850.63 1848.29 1846.86 1848.61 1846.98 1848.28 1833.21 

3-Jan 1852.12 1849.07 1855.88 1849.08 1853.78 1849.68 1852.09 1849.06 1832.31 

6-Jan 1844.69 1847.61 1848.43 1847.61 1843.79 1847.69 1844.71 1847.61 1828.71 

7-Jan 1849.95 1847.68 1853.83 1847.68 1850.86 1847.81 1849.93 1847.67 1837.9 

8-Jan 1844.1 1852.02 1847.75 1852.04 1842.99 1853.66 1844.13 1851.99 1839 

9-Jan 1847.25 1851.99 1850.97 1852.02 1847.16 1853.56 1847.25 1851.97 1840.06 

10-Jan 1849.76 1850.54 1853.42 1850.56 1850.55 1851.59 1849.74 1850.52 1841.26 

13-Jan 1849.75 1847.47 1853.28 1847.47 1850.52 1847.45 1849.74 1847.47 1821.36 

14-Jan 1848.01 1844.81 1851.46 1844.79 1848.2 1843.9 1848.01 1844.83 1840.52 

15-Jan 1849.87 1847.54 1853.48 1847.54 1850.64 1847.57 1849.86 1847.54 1847.99 

16-Jan 1850.29 1848.86 1854.02 1848.86 1851.24 1849.31 1850.27 1848.85 1844.23 

17-Jan 1848.09 1844.08 1851.71 1844.06 1848.33 1842.98 1848.08 1844.1 1841.05 

21-Jan 1846.08 1848.96 1849.9 1848.97 1845.62 1849.48 1846.09 1848.95 1844.71 

22-Jan 1852.46 1848.31 1856.09 1848.31 1854.18 1848.61 1852.43 1848.3 1842.29 

23-Jan 1849.55 1847.73 1853.57 1847.73 1850.25 1847.82 1849.54 1847.73 1826.96 

24-Jan 1847.81 1846.07 1851.55 1846.06 1847.92 1845.6 1847.81 1846.08 1791.03 

27-Jan 1848.64 1850.03 1852.24 1850.04 1849.05 1850.93 1848.63 1850.02 1783 

28-Jan 1849.2 1851.22 1852.87 1851.24 1849.79 1852.51 1849.19 1851.2 1790.15 

29-Jan 1846.53 1848.23 1850.11 1848.23 1846.18 1848.51 1846.54 1848.22 1777.17 

30-Jan 1843.45 1850.3 1846.98 1850.32 1842.06 1851.25 1843.48 1850.28 1790.88 

31-Jan 1845.21 1845.65 1849. 1845.64 1844.49 1845.02 1845.23 1845.66 1782.68 

3-Feb 1847.74 1846.49 1851.47 1846.49 1847.81 1846.15 1847.74 1846.5 1743.82 

4-Feb 1851.68 1845.19 1855.46 1845.18 1853.09 1844.43 1851.65 1845.21 1753.38 

5-Feb 1849.5 1847.37 1853.32 1847.37 1850.16 1847.37 1849.49 1847.38 1752.99 

6-Feb 1852.62 1847.61 1856.23 1847.61 1854.36 1847.65 1852.59 1847.61 1776.01 

7-Feb 1849.67 1851.77 1853.42 1851.8 1850.39 1853.28 1849.65 1851.75 1796.2 

10-Feb 1848.41 1846.85 1852.08 1846.85 1848.75 1846.65 1848.41 1846.86 1800.45 

11-Feb 1852.08 1850.62 1856.05 1850.64 1853.65 1851.72 1852.06 1850.6 1820.12 

12-Feb 1846.67 1849.32 1850.35 1849.33 1846.39 1849.93 1846.68 1849.31 1814.82 

13-Feb 1853.2 1847.55 1856.8 1847.55 1855.13 1847.59 1853.17 1847.55 1828.46 

14-Feb 1844.17 1852. 1847.81 1852.03 1843. 1853.54 1844.2 1851.98 1839.03 

𝑴𝑨𝑷𝑬 0.019259 0.019206 0.021217 0.019209 0.019457 0.019388 0.019256 0.019204  
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Table 3: The order of 𝑀𝐴𝑃𝐸 and the corresponding methods of forecasting 

 
 𝑭𝑺𝒕𝒐. 𝑭𝒔𝒊𝒎𝒑𝒍𝒆 𝑭𝒍𝒐𝒈 𝑭𝑺𝒕𝒐. 𝑭𝒔𝒊𝒎𝒑𝒍𝒆 𝑭𝑯𝑳𝑪 𝑭𝑯𝑳𝑪 𝑭𝒍𝒐𝒈 

GFBM GFBM GFBM GBM GBM GFBM GBM GBM 

𝑴𝑨𝑷𝑬 1.9204% 1.9206% 1.9209% 1.9256% 1.9259% 1.9388% 1.9457% 2.1217% 
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