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Abstract 
Multivariate Exponential Weighted Moving Average (MEWMA) control chart is a popular statistical tool for 

monitoring multivariate process over time. However, this chart is sensitive to the presence of outliers arising from 

the use of classical mean vector and covariance matrix in estimating the MEWMA statistic. These classical 

estimators are known to be sensitive to the outliers. To address this problem, robust MEWMA control charts based 

on modified one-step M-estimator (MOM) and Winsorized modified one-step M-estimator (WM) are proposed. 

Their performance is then compared with the standard MEWMA control chart in various situations. The findings 

revealed that the proposed robust MEWMA control charts are more effective in controlling false alarm rates 

especially for large sample sizes and high percentage of outliers. 

Keywords: Multivariate Control Chart; Robust MEWMA control Chart; Outliers; Modified one-step M-estimator; Winsorized 

modified one-step M-estimator.  
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1. Introduction 
HotellingT

2
control chart is the earliest multivariate control chart developed and it is widely adopted in industries 

due to its simplicity and ease of implementation, which consider only current samples (Aparisi, 1996; Chen, 2007; 

Faraz  et al., 2016; Yeong  et al., 2016). This control chart is a multivariate version of the Shewhart control chart. 

However, the use of Hotelling T
2
and Shewhart control charts are limited to processes with random pattern. The 

existence of non-random pattern in the process, cause both control charts beunable to identify out-of-control signal 

precisely (Mason and Young, 2002). Therefore, we cannot just simply use the control chart designed for random 

process on non-random process, as this will increase the risk of obtaining misleading result regardless whether the 

process is in-control or out-of-control. Failing to detect the existence of any non-random patterns in the process, 

render the HotellingT
2
and Shewhart control charts less sensitive to a small process mean shift (Klein, 2000; Koutras  

et al., 2007; Niaki  et al., 2011; Rakitzis and Antzoulakos, 2016). 

Exponential weighted moving average (EWMA) control chart which was proposed by Roberts (1959) is one of 

the exponential smoothing time series methods that is capable of handling non-random pattern that exists in a 

univariate process. This method is believed to be the most effective way to smooth out the non-random fluctuations 

which exist in a process (Borror  et al., 1999). In addition to that, the EWMA control chart performs better than 

Shewhart control chart in detecting the shifts in process mean when the size of the shift is small as it considers the 

information from not only the current sample, but also from the samples taken previously (Saleh  et al., 2015; Serel 

and Moskowitz, 2008; Serel, 2009; Yang, 2013).  

In 1992, Lowry  et al. (1992) proposed multivariate EWMA (hereafter known as MEWMA) control chart as an 

extension of the original EWMA control chart to be used in multivariate settings. The MEWMA chart proposed by 

Lowry  et al. (1992) is based on the MEWMA statistic,E
2
. LetXirepresent p number of quality characteristics at time 

i. Then, theE
2
statistic forXiis estimated as:  

i
1

i

t
i

2
i

Z
Z

ΣZE 


,      (1) 

1-i
r)-(1

i
r

i
ZXZ 

,     (2) 

0r)(2

r

i
Σ

Z
Σ




,      (3) 

https://creativecommons.org/licenses/by/4.0/


The Journal of Social Sciences Research 

 

53 

whereZiis the MEWMA vectors,Σ Ziis the covariance matrix ofZi, r is a smoothing constant and Zi-1equal to a 

process mean vector,µ0. 

This chart gives an out-of-control signal when theE
2
statistic is greater than the upper control limit, h. The h 

value is the value used to achieve the desired false alarm rate, α. The MEWMA control chart designed by Lowry  et 

al. (1992) assumes known process mean vector,µ0 and covariance matrix,Σ 0, used in estimating theE
2
statistics as in 

Equation (1). However, these two parameters, µ0and Σ 0 are often unknown and are estimated from the sample 

mean vector,X and sample covariance matrix, S. When using sample mean vector and covariance matrix, Equation 

(1) can be rewritten as follows: 

)
i
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t)-
i

(2
i

E XZ
Z
SXZ 




,    (4) 

whereZi = rXi + (1-r) Z(i-1),Z0 =X and SZi = r/(2-r)S. 

However, the problem arises when the classical sample mean vector and sample covariance matrix used in 

Equation (4) are very sensitive to outliers (Alfaro and Ortega, 2009; Ali and Syed Yahaya, 2013; Haddad  et al., 

2013; Vargas, 2003). Outlier as an observation that appears to deviate markedly from remaining data (Rousseeuw 

and Van Zomeren, 1990). The statistics based on the classical sample mean vector and covariance matrix are hardly 

able to detect all the multivariate outliers in a given sample with the consequence that any methods based on 

classical estimators are not suitable for general use, unless there is certainty that outliers are not present (Filzmoser  

et al., 2008). Asalternative, past researchers used robust location estimators in control chart and these charts are 

known as robust control charts. For example, the use of trimmed mean of the sample means, median of the sample 

means, mean of the sample medians, median of the sample medians and trimmed mean of the sample trimeans in 

EWMA control chart (Zwetsloot  et al., 2014); (Zwetsloot  et al., 2016). These EWMA and robust EWMA control 

charts were investigated under four different contaminated data such as localized shifts, diffuse shifts, structural 

shifts and random shifts. Their findings indicated that the EWMA control chart using median function or the trimean 

based estimators yield the best results under localized, structural or random shifts present in Phase I. However, none 

of the control charts performed well in the present of diffuse shifts.  

Alternatively, some researchers used robust scale estimators in EWMA control charts. For instance, Khoo and 

Sim (2006) compared the performance of EWMA control chart with robust EWMA control chart based on 

interquartile range. They concluded that the robust control chart is a superior alternative to the EWMA control chart 

in the presence of outliers. Another research proposed robust EWMA control charts based on six scale estimators 

such as Gini’s mean difference,G, median absolute deviation about the median, MAD, Qn, Sn, Tau τ


and FQn. The 

performance of the proposed robust EWMA control charts are evaluated under several normal and non-normal 

distributions such as gamma and exponential. Comparing the six robust scale estimators, the EWMA control chart 

based onQn estimator is relatively more sensitive in detecting the out-of-control signal for both normal and non-

normal processes (Saeed and Kamal, 2016). 

Meanwhile, in multivariate setting, (Midi and Shabbak, 2011) compared the performance of MEWMA control 

chart with their proposed robust MEWMA based on minimum volume ellipsoid (MVV) and minimum covariance 

determinant (MCD). They investigated the performance of all control charts under different percentage of outliers, ε 

= 5%, 10%, 15% and 20% and found that the robust control charts outperformed the MEWMA control chart, 

produced high probability of detection regardless of ε except for ε = 5%. Although the robust MEWMA control 

charts outperformed the MEWMA control chart, they produced low probability of detections which are less than 0.4. 

Trimmed mean, modified one-step M-estimator (MOM) and Winsorized MOM (WM) are among the best robust 

estimators adopted by past researchers (Alfaro and Ortega, 2009); (Haddad  et al., 2013); (Boente and Vahnovan, 

2017); (Nazir  et al., 2016). However, the trimmed mean is very problematic, owing to unnecessary or inadequate 

trimming which is common when adopting this estimator (Wilcox and Keselman, 2003). The ability of WM 

estimator in controlling the false alarm rates has been confirmed in Hotelling T
2
 control chart (Haddad  et al., 2013), 

but not yet tested on MEWMA control chart. Therefore, this paper proposed robust MEWMA control charts using 

MOM and WM robust estimators. The performance of proposed robust MEWMA control charts are evaluated in 

term of false alarm rate under various bivariate and multivariate contaminated data. Apart from that, their 

performance is also compared with the standard MEWMA control chart. 

 

2. Methodology 
2.1. Robust MEWMA Control Charts 

The sample mean vector and sample covariance matrix used in Equation 4 are sensitive to outliers Ali and Syed 

Yahaya (2013). To alleviate the problem, in this study, the classical mean vector and covariance matrix are replaced 

with robust estimators of mean vector and covariance matrix based on modified one-step M-estimator (MOM) and 

Winsorized MOM (WM).  

 

2.1.1. Robust MEWMA Control Chart based on MOM Estimator, RE
2

MOM 

The MOM estimator proposed by Wilcox and Keselman (2003) is defined as 
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where Xij = i
th

order statistic in j
th

quality characteristic variable. 

i1 = Number of Xijthat satisfies the criterion (Xij-
M


j< -K*MADnj) (6) 

i2 = Number of Xijthat satisfies the criterion (Xij -
M


j>K*MADnj) (7) 

nj= Number of observations in each j
th

quality characteristic variable. 

M


j= med {X1j, …,Xnj}, j = 1, ..., p 

MADnj= 1.4826*med {|Xij -
M


j|}      (8) 

For better efficiency and reasonably smaller standard error under normality, the constant K was adjusted to 2.24  

(Wilcox, 2003). The efficiency improved (i.e., 0.9 and 0.88) when the K value is equal to 2.24 for n = 20 and 10 

respectively. MADnis a scale estimator with the best possible breakdown point and bounded influence function 

(Rousseeuw and Croux, 1993). The simplicity of its formula and fast computation time are among other advantages 

of MADn. 

The robust MEWMA, RE
2

MOMstatistic for Xiis estimated as follows:  

RE
2

MOMi= (ZMOMi– MOM)
t
S

-1
ZPi(ZMOMi – MOM),                 (9) 

where ZMOMiis the robust MEWMA vectors and SZPiis the covariance matrix ofZMOMi. The estimators ZMOMi and 

SZPiare defined as in Equation 10 and Equation 11 respectively.   

ZMOMi= rXi+ (1-r) ZMOM(i-1),                                                                        (10) 

and 

SZPi = r/(2-r) SP,                                                                              (11) 

 

whereSP is the corresponding covariance matrix of MOM, estimated using the product of Spearman correlation 

coefficient, ρ and rescale median absolute deviation, MADn as per Equation 12: 

SP =
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2.1.2. Robust MEWMA Control Chart based on WM Estimator, RE
2

WM1 

The mean vector and covariance matrix of WM estimators given by Haddad  et al. (2013) are estimated as 

follows: 
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where Wij is Winsorized sample. The Winsorized sample is obtained through two-step process; first is to identify 

the existence of outlier based on trimming criterion used for MOM estimator as Equation (5) and then the data are 

Winsorized.  

After eliminating the outliers from each sample using criteria (6) and (7), the data are then Winsorized. For each 

random variable Xij= {X1j,...,Xnj}, j = 1, …, p, the sample is Winsorized as follows:   
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where 

i1: Number of the smallest outliers in the data 

i2: Number of the largest outliers in the data 
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Thus, the robust MEWMA RE
2
WM1 statistic for Xiis estimated as follows:    

RE
2

WM1i = (ZWMi – WM)
t
S

-1
ZWMi (ZWMi – WM),  (15) 

where ZWM1is the robust MEWMA vectors and SZWMiis the covariance matrix of ZWM1. The estimators ZWM1and 

SZWMiare defined as Equation 16 and Equation 17 respectively:  

 

ZWMi = rXi + (1-r) ZWM(i-1),      (16) 

and 

SZWMi = r/(2-r) SWM.        (17) 

   

2.1.3. Robust MEWMA Control Chart based on WM Estimator, RE
2

WM2 

TheRE
2
WM2 control chart is based on WM estimator as a mean vector and SPas its corresponding covariance 

matrix. The WM estimator and SPare obtained from Equation 13 and Equation 12 respectively. Then, the robust 

MEWMA RE
2

WM2statistic for Xiis estimated as follows:  

 

RE
2
WM2i = (ZWMi – WM)

t
S

-1
ZPi (ZWMi – WM).                     (18) 

 

2.2. Control Limitsof MEWMA Control Charts 
The control limits of the standard and robust MEWMA control charts are estimated using the Monte Carlo 

simulation method. In this study, Phase I involves the simulation of 5000 data sets from standard multivariate normal 

distribution MVNp (0, Ip) when false alarm rate, α = 0.05. Then, the classical and robust mean vector and covariance 

matrix for each data set were calculated. Next, in Phase II, we generated an additional observation for each data set 

and calculated the MEWMA statistics for these observations using the corresponding estimators from Phase I. The 

control limits for all MEWMA control charts were computed by taking the 95
th

 percentile of 5000 values of 

MEWMA statistics. Table I reported the upper control limit, h values at α = 0.05 of all the investigated MEWMA 

control charts for different p, n with a given smoothing constant, r = 0.2. 

 

2.3. Simulation Design 
The MEWMA control charts were investigated and compared in terms of false alarm rate under various 

conditions to accentuate the strength and weakness of the investigated control charts. Group sizes n = 30, 50, 200 

and 400 observations with p = 2, and n = 50, 70, 200 and 400 observations with p = 10 number of dimensions were 

generated from the mixture normal distribution. The p = 2 and p = 10 number of dimensions represent the bivariate 

and multivariate data respectively. The mixture of normal distribution suggested in [34]is as follows: 

)1,1(pN)0,0(p)N(1 ΣμεΣμε 
   (19) 

whereε is the proportion of outliers; µ0andΣ 0are the in-control parameters; while µ1andΣ 1are the out-of-

control parameters. The covariance matrix,Σ 0and Σ 1in Equation 19 represent the identity matrix of p dimensions 

(Ip), as we assume contamination with shift in the mean but no changes in covariance structure. Two different values 

of percentage of outliers, ε = 5% and 20% and four values of process mean shift, µ1 = 0.5,1.0,1.5 and 2.0 are 

considered in creating various conditions. The manipulation of the ε and µ1produced 8 types of contaminated data 

distributions, with estimated control limits shown in Table 1. 

The following steps represent the simulation method used in Phase I and Phase II in establishing MEWMA 

control charts. The in-control parameters which are used together with control limits to develop the control chart are 

estimated in Phase I control chart. The simulation procedure is as follows: 

1. Generate 1000 dataset with n = 30, 50, 200 and 400 and n = 50, 70, 200 and 400 for p = 2 and 10 

respectively from the models defined in Equation 18. 

2. Then, compute the classical and robust mean vector and covariance matrix for each dataset. 

Meanwhile, in Phase II, the false alarm rate based on the estimations in Phase I are determined through the 

following steps:  

1. Randomly generate a new observation from the in-control parameter, MVNp (0, Ip)in Equation 18 and 

calculate the MEWMA statistics for each new observation using mean vector and covariance matrix 

obtained in Phase I. 

2. Compare the values in step 1 against the control limits obtained in the simulation procedure. 

3. The false alarm rate is calculated as the proportion of MEWMA statistics obtained in step 1 that is greater 

than the control limit in 1000 replications. 

 

3. Results and Discussion 
The comparison of empirical results of false alarm rates for E

2
, RE

2
MOM, RE

2
WM1 and RE

2
WM2control charts under 

various conditions are presented in Table 2 and 5. The Bradley’s liberal criterion of robustness is used to evaluate the 

robustness of the control charts. According to this criterion, a control chart is considered robust if its empirical false 

alarm rate is within the robust interval of 0.5α to 1.5α (Bradley, 1978). Therefore, when the nominal value is set at α 

= 0.05, the control chart is considered robust if its false alarm rate is within robust interval, 0.025 to 0.075. In each 

table, the false alarm rate values that lie within the robustness interval are bolded. The best control chart is the one 

that is capable to control the false alarm rates within robust interval and produces the closest false alarm rate to 
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nominal value, 0.05. Thus, in addition to the bolded value, the highlight value in Table 2 and 4 indicated the closest 

false alarm rates to nominal value.   
Table-1. Estimated Control Limits 

p n 
Control Limits 

E
2
 RE

2
MOM RE

2
WM1 RE

2
WM2 

2 

30 8.869 11.608 332.376 10.936 

50 7.713 8.809 405.564 8.530 

200 6.392 6.738 1147.980 6.632 

400 6.002 6.183 2152.360 6.121 

10 

50 30.038 34.700 4786.619 33.426 

70 25.776 28.534 5494.960 27.595 

200 20.542 21.317 11752.120 21.160 

400 19.289 19.619 20534.040 19.541 

 
Table-2. False alarm rates for bivariate case, p = 2 

n % of ε µ1 E
2 

RE
2

MOM RE
2
WM1 RE

2
WM2 n % of ε  µ1 E

2
 RE

2
MOM RE

2
WM1 RE

2
WM2 

30 

5% 

0.5 0.044 0.039 0.041 0.038 

200 

5% 

 0.5 0.059 0.057 0.053 0.053 

1.0 0.045 0.040 0.036 0.039  1.0 0.052 0.053 0.046 0.055 

1.5 0.041 0.038 0.032 0.041  1.5 0.051 0.049 0.040 0.054 

2.0 0.035 0.039 0.030 0.041  2.0 0.048 0.047 0.042 0.054 

20% 

0.5 0.069 0.070 0.054 0.067 

20% 

 0.5 0.066 0.057 0.042 0.055 

1.0 0.071 0.068 0.044 0.069  1.0 0.068 0.064 0.038 0.068 

1.5 0.069 0.061 0.027 0.063  1.5 0.076 0.064 0.026 0.076 

2.0 0.063 0.050 0.014 0.053  2.0 0.076 0.056 0.021 0.084 

50 

5% 

0.5 0.049 0.047 0.058 0.050 

400 

5% 

 0.5 0.059 0.063 0.066 0.067 

1.0 0.045 0.043 0.055 0.044  1.0 0.056 0.058 0.058 0.057 

1.5 0.045 0.044 0.053 0.040  1.5 0.053 0.053 0.050 0.055 

2.0 0.042 0.044 0.041 0.038  2.0 0.047 0.053 0.047 0.055 

20% 

0.5 0.049 0.048 0.046 0.052 

20% 

 0.5 0.068 0.061 0.048 0.064 

1.0 0.059 0.049 0.034 0.056  1.0 0.076 0.072 0.043 0.077 

1.5 0.055 0.042 0.026 0.046  1.5 0.085 0.071 0.020 0.085 

2.0 0.054 0.044 0.018 0.051  2.0 0.091 0.070 0.017 0.095 

 
Table-3. Total bolded and highlight values for bivariate case, p = 2 

 

 

 

 

 

Table 2 and Table 3 represented detail result of the false alarm rates and summary of the total bolded and 

highlighted values for bivariate case respectively. As reported in Table 2 and Table 3, theRE
2
MOM 

outperformedRE
2

WM1,RE
2
WM2 andE

2
control charts.TheRE

2
MOMcontrol chart is capable in controlling false alarm rate 

under all simulated conditions which is about 100% (32 out of 32) of the conditions as compared toE
2
, RE

2
WM1 and 

RE
2
WM2which are only effective for 84% (27 out of 32) of the conditions. Even though theE

2
 and RE

2
WM1control 

charts produced the highest values of the closest false alarm rates to nominal level (refer Table 3) which are under 10 

simulated conditions, their overall performance is greatly affected by large sample size (n = 200 and n = 400) with 

high percentage of outlier (ε = 20%), as verified by the rates of false alarm far above and below nominal value, 0.05. 

From the total bolded and highlighted values, we can conclude that the performance of theRE
2
MOMcontrol chart is 

deemed superior than the remaining MEWMAcontrol charts for bivariate case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control Charts E
2
 RE

2
MOM RE

2
WM1 RE

2
WM2 

Total bolded 27 32 27 27 

Total highlighted 10 9 10 8 
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Table-4. False alarm rates for multivariate case, p = 10 

 
Table-5. Total bolded and highlight values for multivariate case, p = 10 

Control Charts E
2
 RE

2
MOM RE

2
WM1 RE

2
WM2 

Total bolded 30 32 24 32 

Total highlighted 10 13 7 6 

 

When the dimension is increased to p = 10, theRE
2

MOMcontrol chart successfully maintains its superior 

performance even in the case of multivariate data (refer to Table 4 and Table 5). Again, theRE
2
MOM control chart is 

capable to control false alarm rate for all simulated conditions. Besides, it also produced the large values of false 

alarm rate closest to nominal level which is about 13 conditions as displayed in Table 5. Apart from that, some 

improvements are observed in theE
2
and RE

2
WM2control charts for multivariate data as compared to the bivariate data 

especially for large sample size, n = 400 and 20% of outliers. However, the increase in the dimension from p = 2 to p 

= 10 does influence the performance ofRE
2
WM1 control chart. TheRE

2
WM1 control chart is less robust under 

multivariate case as proven by the reduction in controlling the false alarm rates from 27 conditions (refer Table 3) to 

24 conditions (refer Table 5).  

 

4. Conclusion  
This paper examined the performance of three robust alternatives to MEWMA control charts in statistical 

quality control. The robust MEWMA control chart have been developed to protect the MEWMA control chart when 

outliers are present in Phase I. By means of a simulation study, we have analysed and compared the performance of 

theE
2
, RE

2
MOM, RE

2
WM1 and RE

2
WM2control charts under various conditions. Overall, the robust MEWMA control 

charts are proven capable to improve the performance of the standard MEWMA control chart especially for large 

sample sizes and high percentage of outliers. 
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