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Abstract 

In this paper, we discuss some theorem reached M. Mursaleen, there are several properties of statistical lacunary 

summability presented (Mursaleen, M. & Alotaibi, A., 2011; Mursaleen, M. & Alotaibi, A., 2011; Edely, O. H. & 

Mursaleen, M., 2009). This is concerned the motivate to narrowly delineated context denoted by Ω striped usage in 

prove our theorem (theorem A). We introduce some piecewise polynomial functions (Kopotun, K. A., 2006) and some 

results Korovkin theorem.  

Keywords: Piecewise polynomial functions, Statistical lacunary summability, Strongly θq-convergent, Korovkin type 

theorem 
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1. Introduction and Main Results  

The aim of this paper a completed the striped used in many area of Korovkin theorem (Mursaleen, M. & Alotaibi, A., 

2011; Al-Muhja, M., 2015). 

We will need accept the following:  

Let 𝐾 ⊆ ℕ. Then 𝛿𝜃(𝐾) = lim𝑟
1

ℎ𝑟
 |{𝑘𝑟−1 < 𝑖 < 𝑘𝑟 ∶ 𝑖 ∈ 𝐾}| is said to be 𝜃–density of 𝐾.  

Definition 1.1 (Fridy, J. A. & Orhan, C., 1993) A sequence 𝑥 = (𝑥𝑘) is said to be lacunary statistically convergent to 𝐿, 

if for every 𝜖 > 0, the set 𝐾𝜖 ≔ {𝑘 ∈ ℕ: |𝑥𝑘 − 𝐿| ≥ 𝜖} has 𝜃–density zero, i.e. 𝛿𝜃(𝐾𝜖) = 0. In this case we write 

𝑆𝜃 − lim 𝑥 = 𝐿. That is, lim𝑟  |{𝑘𝑟−1 < 𝑖 < 𝑘𝑟 ∶ |𝑥𝑘 − 𝐿| ≥ 𝜖}| = 0. In this case we write 𝑆𝜃 − lim𝑖 𝑥𝑖 = 𝐿, and we 

denote the set of all lacunary statistically convergent sequence by 𝑆𝜃 .  

Definition 1.2 (Mursaleen, M. & Alotaibi, A.,2011) Let ℎ = (ℎ𝑟) be a non-decreasing sequence of positive numbers 

tending to ∞ such that ℎ𝑟+1 ≤ ℎ𝑟 + 1, 𝑥1 = 0. The generalized de la Vallee-Poussin mean is defined by 𝑡𝑟(𝑥) =

1

ℎ𝑟
∑ 𝑥𝑗𝑗∈𝐼𝑟

 where 𝐼𝑟 = [𝑟 − ℎ𝑟 + 1, 𝑟]. 

Definition 1.3 (Mursaleen, M. & Alotaibi, A., 2011) A sequence 𝑥 = (𝑥𝑘)  is said to be 𝜃 -summable to 𝐿 , if 

lim𝑟 𝑡𝑟(𝑥) = 𝐿. 

Definition 1.4 (Mursaleen, M. & Alotaibi, A., 2011) A sequence 𝑥 = (𝑥𝑘) is said to be statistically lacunary summable 

(or statistically 𝜃-summable) to 𝐿, if for every 𝜖 > 0, the set 𝐾𝜖: = {𝑟 ∈ ℕ: |𝑡𝑟(𝑥) − 𝐿| ≥ 𝜖} has natural density zero, 
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i.e., 𝛿(𝐾𝜖(𝜃)) = 0. That is, lim𝑛
1

𝑛
 |{𝑟 ≤ 𝑛 ∶ |𝑡𝑟(𝑥) − 𝐿| ≥ 𝜖}| = 0. In this case we write 𝑆𝜃 − lim 𝑥 = 𝐿. We denote 

the set of all statistically lacunary summable sequences by 𝜃𝑆. 

Definition 1.5 (Mursaleen, M. & Alotaibi, A., 2011) A sequence 𝑥 = (𝑥𝑘)  is said to be strongly 𝜃𝑞 -convergent 

(0 < 𝑞 < ∞) to the limit 𝐿, if lim𝑟
1

ℎ𝑟
∑ |𝑥𝑗 − 𝐿|

𝑞
= 0𝑗∈𝐼𝑟

, and we write it as 𝑥𝑘 → 𝐿[𝐶𝜃]𝑞 . In this case 𝐿 is called the 

[𝐶𝜃]𝑞-limit of 𝑥. We denote the set of all strongly 𝜃𝑞-convergent sequences by 𝐿[𝐶𝜃]𝑞. 

Let 𝒮𝑟(z𝑛) be the space of all piecewise polynomial functions of degree 𝑟 ( order 𝑟 + 1 ), with the knots 

z𝑛 = (z𝑖)𝑖=0
𝑛 ,−1 = z0 < z1 < ⋯ < z𝑛−1 < z𝑛 = 1.                 (1) 

Definition 1.6 (Al-Muhja, M., 2015) A spline 𝑠 in 𝐺𝑠/{𝐼𝑒} is said to be homogeneous of degree 𝜆 ∈ ℛ if 𝑠 ∘ 𝛾𝜏 = 𝜏𝜆𝑠 

for 𝜏 > 0. 

Definition 1.7 (Al-Muhja, M., 2015) A distribution 𝜎  on 𝐺𝑠  is said to be homogeneous of degree 𝜆  if 

〈𝜎, (𝜏− ∑ 𝑑𝑖
𝜂
𝑖=1 )  𝑠 ∘ 𝛾𝜏−1〉 = 𝜏𝜆〈𝜎, 𝑠〉, for 𝑠 ∈ 𝐺𝑠, 𝑑𝑖 ∈ ℛ, 𝜂 ∈ ℕ and 𝜏 > 0. 

Definition 1.8 (Al-Muhja, M., 2015) A linear differential operator Υ on 𝐺𝑠 is said to be homogeneous of degree λ if 

Υ(𝑠 ∘ 𝛾𝜏) = 𝜏𝜆(Υ𝑠) ∘ 𝛾𝜏, for any 𝑠 ∈ 𝐺𝑠 and 𝜏 > 0.  

Lemma 1.9 (Al-Muhja, M., 2015) Let 𝐴 = (𝑎𝑗𝑛) be nonnegative regular summability matrix. For all 𝑠 ∈ 𝐺𝑠/{𝐼𝑒}, 

satisfied ((Al-Muhja, M., 2015) equation (3)), and 𝛶𝑗 a sequence of positive linear operators, we have 𝛶𝑗: 𝐺𝑠/{𝐼𝑒} →

𝐺𝑠/{𝐼𝑒}, homogeneous group. 

Theorem 1.10 (Al-Muhja, M., 2015) Let 𝐴 = (𝑎𝑗𝑛) be nonnegative regular summability matrix, and let 𝛶𝑗  be a 

sequence of positive linear operators from 𝒮𝑟(𝑧𝑛) into 𝒮𝑟(𝑧𝑛). Then for all 𝑠 ∈ 𝒮𝑟(𝑧𝑛), we have  

𝑠𝑡 − 𝑙𝑖𝑚𝑗 ∑ 𝑎𝑗𝑛
∞
𝑛=1  ‖𝛶𝑗(𝐺𝑠; . ) − 𝐺𝑠‖

𝒮𝑟(𝑧𝑛)
= 0, 

if and only if 𝑠 ∘ 𝑠∘ = 1 , 𝐺𝑠(𝑠 ∘ 𝜏) = 𝜏𝜆𝑠  , 𝐺𝑠(𝑠 ∘ 𝜐) = 𝑠 ∘ 𝛾𝜏−1, ∋  𝑠∘, 𝜏, 𝜐 ∈ 𝐺𝑠𝑖  ;  𝑖 = 0,1,2  ; such that 𝑠𝑡 −

𝑙𝑖𝑚𝑗 ∑ 𝑎𝑗𝑛
∞
𝑛=1  ‖𝛶𝑗(𝐺𝑠𝑖; . ) − 𝐺𝑠𝑖‖𝒮𝑟(𝑧𝑛)

= 0 ; 𝑖 = 0,1,2 , and 𝐺𝑠𝑖 is a subgroup from 𝐺𝑠 ; 𝑖 = 0,1,2.  

Theorem 1.11 (Al-Muhja, M., 2015) If (𝑧𝑛𝑖)𝑖=0
∞  is defined by (1), then there exists a set 𝔍 = {𝑧𝑛0 < 𝑧𝑛1 < ⋯ < 𝑧𝑛𝑚 <

⋯ } ⊆ ℕ, such that 𝛿𝜃(𝔍) = 1 and 𝛶𝑗 homogeneous group if and only if a sequence 𝛶 = (𝛶𝑗) is lacunary statistically 

convergence to 𝐿. 

Now, we present the following result: 

Theorem A If (𝑧𝑛𝑖)𝑖=0
∞  is defined by (1), then there exists a set 𝔍 = {𝑧𝑛0 < 𝑧𝑛1 < ⋯ < 𝑧𝑛𝑚 < ⋯ } ⊆ ℕ, such that 

𝛿𝜃(𝔍) = 1 and a sequence 𝛶 = (𝛶𝑗) is bounded statistically lacunary summable to 𝐿  if and only if it is strongly 

𝜃𝑞-convergence to 𝐿. 

2. Proof of Theorem A and Concluding  

In this section, we want the prove Theorem A, in order to get the installed results in figure 1, it is called Ω striped.  

Firstly (Freedman, A. R. & Sember, J. J., 1981), we recall the strong convergence fields of various summability methods. 

In recent years, using statistical A-summability, Riesz’s functional supremum formula via statistical limit and Rouche's 

sequence is B-statistical A-summability (Edely, O. H., & Mursaleen, M., 2009; Al-Muhja, M., 2014; Al-Muhja, M., 

Khrajan, M. & Abdul Hussein, H. J., 2015). 
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Figure 1. Statistically lacunary summability (SLS) and it is called 𝛀 striped. There are new results for Korovkin theorem. 

 

Now, we prove our theorem:  

Proof of Theorem A. Assume that 𝛶 = (𝛶𝑗) is bounded strongly 𝜃𝑞–convergent to limit 𝐿, since 𝛶 = (𝛶𝑗) is lacunary 

statistically convergent to 𝐿 (Fridy, J. A. & Orhan, C., 1993), implication 𝛶 = (𝛶𝑗) is statistically lacunary summable to 

𝐿. 

Now, assume that 𝛶 = (𝛶𝑗) is statistically lacunary summable to 𝐿, then |𝑡𝑟(𝑥) − 𝐿| → 0. Hence,  

1

ℎ𝑟
∑ |𝑥𝑗 − 𝐿|𝑗∈𝐼𝑟

≤
1

ℎ𝑟
∑ |𝑥𝑗 − 𝐿|

𝑞
𝑗∈𝐼𝑟

, ((Al-Muhja, M. & Bhaya, E. S., 2010), theorem 2.4), the inquality become: 

≤ |
1

ℎ𝑟

∑(𝑥𝑗 − 𝐿)

𝑗∈𝐼𝑟

|

𝑞

= |
1

ℎ𝑟

∑ 𝑥𝑗 − 𝐿

𝑗∈𝐼𝑟

|

𝑞

 

= |𝑡𝑟(𝑥) − 𝐿|𝑞 → 0, as 𝑟 → ∞, see Definition 1.2, 𝑡𝑟(𝑥) is mean the generalized de la Valle-Poussin. 

Hence 𝑥𝑘 → 𝐿[𝐶𝜃]𝑞. This is a complete proof.       

Corollary B. A sequence 𝛶 = (𝛶𝑗) is bounded strongly 𝜃𝑞-convergence to 𝐿 if and only if there exists a set 𝔍 =
{𝑧𝑛0 < 𝑧𝑛1 < ⋯ < 𝑧𝑛𝑚 < ⋯ } ⊆ ℕ, such that 𝛿𝜃(𝔍) = 1 and 𝛶𝑗 homogeneous group.  
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Proof. Suppose 𝛶 = (𝛶𝑗) is bounded strongly 𝜃𝑞-convergence to 𝐿. Then from (Mursaleen, M. & Alotaibi, A., 2011; 

Theorem 2.2) and theorem 1.11, we have Figure 2. (a). Now, assume that 𝛶𝑗 homogeneous group. Then from theorem 

1.11, (Mursaleen, M. & Alotaibi, A., 2011; Theorem 2.1) and Theorem A, we have Figure 2. (b). This is a complete 

proof. 

 

Figure 2. Proof of Corollary B 

 

Corollary C. A sequence 𝛶 = (𝛶𝑗) is statistically lacunary summable to 𝐿 if and only if 𝛶𝑗 homogeneous group. 

Proof. Suppose 𝛶 = (𝛶𝑗) is statistically lacunary summable to 𝐿. Then from Theorem A and Corollary B (first 

condition), we have Figure 3. (a). Now, assume that 𝛶𝑗 homogeneous group. Then from theorem 1.11 and (Mursaleen, 

M. & Alotaibi, A., 2011; Theorem 2.1), we have Figure 3. (b). This is a complete proof.  

 

Figure 3. Proof of Corollary C 
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For an 𝛶 = (𝛶𝑗) sequence is bounded. The following conditions are equivalent: 

(SLS 1) Statistically lacunary summable to 𝐿. 

(SLS 2) A set 𝔍 = {𝑧𝑛0 < 𝑧𝑛1 < ⋯ < 𝑧𝑛𝑚 < ⋯ } ⊆ ℕ, such that 𝛿𝜃(𝔍) = 1 and 𝜃 − lim 𝑥𝑟𝑛
= 𝐿. 

(SLS 3) 𝛶𝑗 homogeneous group. 

(SLS 4) Strongly 𝜃𝑞-convergence to 𝐿.  

(SLS 5) Lacunary statistically convergence to 𝐿.  
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