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ABSTRACT
 
Entropy measurement plays an important role in the field of 
information theory. Furthermore, the estimation of entropy is 
an important issue in statistics and machine learning. This study 
estimated the Rényi and q-entropies of a power-function distribution 
in the presence of s outliers using classical and Bayesian procedures. 
In the classical method, the maximum likelihood estimators of the 
entropies were obtained and their performance was assessed through 
a numerical study. In the Bayesian method, the Bayesian estimators 
of the entropies under uniform and gamma priors were acquired 
based on different loss functions. The Bayesian estimators were 
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computed empirically using a Monte Carlo simulation based on the 
Gibbs sampling algorithm. The simulated datasets were analyzed to 
investigate the accuracy of the estimates. The study results showed 
that the precision of the maximum likelihood and Bayesian estimates 
of both entropies improved with increasing the sample size and 
the number of outliers. The absolute biases and the mean squared 
errors of the estimates in the presence of outliers exceeded those of 
the corresponding estimates in the homogenous case (no-outliers). 
Furthermore, the Bayesian estimates of the Rényi and q-entropies 
under the squared error loss function were preferable to the other 
Bayesian estimates in a majority of the cases. Finally, analysis results 
of real data examples were consistent with those of the simulated data.

Keywords: Bayesian estimators, maximum likelihood estimators, 
outliers, power-function distribution, Rényi entropy. 

INTRODUCTION

Power-function distribution (PFD) is one of the most significant 
parametric models. It is usually used in the analysis of lifetime data 
and solving problems related to the modeling of failure processes. It 
is an elastic lifetime model that provides a good fit for some sets of 
failure data. The probability density function (PDF) and cumulative 
distribution function (CDF) of PFD with scale parameter    and shape 
paramete       are provided respectively in Equations 1 and 2 as follows:

(1)

and
(2)

In the literature, PFD has been discussed by several authors. Malik 
(1967) derived the moments of order statistics for PFD. Ahsanullah 
and Kabir (1974) discussed the characterizations of PFD. Rahman et 
al. (2012) performed the Bayesian estimation of PFD under conjugate 
prior. Sultan et al. (2014) discussed Bayesian estimation for PFD 
under double priors. The Bayesian estimator of PFD was obtained by 
Zaka and Akhter (2014). Abdul-Sathar and Sathyareji (2018) studied 
the estimation of dynamic cumulative past entropy for PFD.
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Entropy is one of the significant measures in statistical mechanics. It is essentially assigned in 
physics, in particular, in the second law of thermodynamics. The notion of entropy was proposed by 
Shannon (1948) as a quantitative measure of uncertainty. This concept of entropy is axiomatic for rare 
events and outlier detection because the presence of outliers increases the entropy (randomness or 
uncertainty) of a dataset, and this increment can be used to measure the outlier of an object.   
 
The Rényi and q-entropies are parametric extensions of the Shannon entropy introduced by Rényi 
(1961) and Havrda and Charvát (1967), respectively. Tsallis (1988) applied the q-entropy in physical 
problems. For a random variable X with a PDF f(x), the Rényi and q-entropies measures are specified 
in Equations 3 and 4, respectively, as follows: 
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Several studies concerning the estimation of entropy have been reported. For example, Cramer and 
Bagh (2011) discussed the entropy in the Weibull distribution for progressive censoring. Cho et al. 
(2014) derived the maximum likelihood (ML) estimators for the entropy measure of a Rayleigh 
distribution using doubly generalized type II hybrid censored samples. Chacko and Asha (2018) 
estimated the entropy for a generalized exponential distribution under record values. Liu and Gui 
(2019) studied the Shannon entropy for a Lomax distribution using the generalized progressively 
hybrid censoring scheme. Hassan and Zaky (2019) investigated the ML estimator of the Shannon 
entropy for an inverse Weibull distribution using multiple censored samples. Ahmadini et al. (2021) 
analyzed the Bayesian and credible interval estimators of the dynamic cumulative residual entropy for 
a Pareto II model. The entropy Bayesian estimator for a Lomax distribution was studied by Hassan 
and Zaky (2021) based on record values.  
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Entropy is one of the significant measures in statistical mechanics. It 
is essentially assigned in physics, in particular, in the second law of 
thermodynamics. The notion of entropy was proposed by Shannon 
(1948) as a quantitative measure of uncertainty. This concept of 
entropy is axiomatic for rare events and outlier detection because the 
presence of outliers increases the entropy (randomness or uncertainty) 
of a dataset, and this increment can be used to measure the outlier of 
an object. 

The Rényi and q-entropies are parametric extensions of the Shannon 
entropy introduced by Rényi (1961) and Havrda and Charvát (1967), 
respectively. Tsallis (1988) applied the q-entropy in physical problems. 
For a random variable X with a PDF f(x), the Rényi and q-entropies 
measures are specified in Equations 3 and 4, respectively, as follows:

(3)

(4)

Several studies concerning the estimation of entropy have been 
reported. For example, Cramer and Bagh (2011) discussed the 
entropy in the Weibull distribution for progressive censoring. Cho et 
al. (2014) derived the maximum likelihood (ML) estimators for the 
entropy measure of a Rayleigh distribution using doubly generalized 
type II hybrid censored samples. Chacko and Asha (2018) estimated 
the entropy for a generalized exponential distribution under record 
values. Liu and Gui (2019) studied the Shannon entropy for a Lomax 
distribution using the generalized progressively hybrid censoring 
scheme. Hassan and Zaky (2019) investigated the ML estimator of the 
Shannon entropy for an inverse Weibull distribution using multiple 
censored samples. Ahmadini et al. (2021) analyzed the Bayesian 
and credible interval estimators of the dynamic cumulative residual 
entropy for a Pareto II model. The entropy Bayesian estimator for a 
Lomax distribution was studied by Hassan and Zaky (2021) based on 
record values. 

Outliers can negatively affect statistical analysis. Therefore, outliers 
can increase error variance and reduce the power of statistical tests. 
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Furthermore, outliers can seriously bias or influence estimates that 
may be of substantive interest for more information on these problems 
( Hamid, 2018a, 2018b; Kumaran et al., 2020; Rasmussen & Vicente, 
1989; Schwager & Margolin, 1982). 

In the literature, there are no research works on the estimation problem 
of entropy measure in the presence of outliers. Therefore, the main 
purpose of this manuscript is to scrutinize the estimation problem of 
the Rényi and q-entropies for PFD in the presence of outliers. Herein, 
the ML and Bayesian estimators are derived. The Bayesian estimators 
of the entropies under four loss functions are obtained, namely 
squared error loss function (SELF), linear exponential loss function 
(LLF), general entropy loss function (GELF), and precautionary loss 
function (PLF). In addition, the Markov chain Monte Carlo (MCMC) 
procedure using the Gibbs sampling algorithm is employed owing to 
the intricate forms of entropy Bayesian estimators. Furthermore, real 
data experiments confirm the results of the study. The motivation and 
methodology of the study are demonstrated in Figure 1.

Figure 1

Motivation and Procedure of the Study
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Here, the ML and Bayesian estimators of the entropies for PFD in the 
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homogenous case (i.e., s = 0 or β = 1) are obtained.
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Expressions (10) and (11) of the Rényi and q-entropies are the functions of parameters and outlier 
number. In addition, the required expression of the Rényi and q-entropies in the homogenous (no-
outlier) case is resulted from Equations 10 and 11 after inserting β = 1 or s = 0.  
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Based on the invariance property of the ML method, the ML estimators of ( )H X  and ( ),qH X  
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Furthermore, the Bayesian estimators of   and  using PLF, for example, PLF  and ,PLF  are 
obtained in Equations 27 and 28 as follows: 
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The Bayesian estimators of ( )H X  and ( )qH X  denoted by ( )H X  and ( )qH X  under SELF, LLF, 

GELF, and PLF are obtained by directly substituting Equations 21 −28 into (3) and (4), respectively. 
As can be seen, the mathematical forms of integrations (21) − (28) are difficult to compute 
analytically, so the MCMC procedure is utilized to approximate these integrations. The Gibbs sampler 
procedure, a class of MCMC procedure to calculate the Bayes estimates, will be performed. 
Furthermore, the Bayesian estimators ( )H X and ( )qH X for no-outlier (homogenous) cases for β = 1 

or s = 0 are obtained.  
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Furthermore, the Bayesian estimators of   and  using PLF, for example, PLF  and ,PLF  are 
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The Bayesian estimators of ( )H X  and ( )qH X  denoted by ( )H X  and ( )qH X  under SELF, LLF, 

GELF, and PLF are obtained by directly substituting Equations 21 −28 into (3) and (4), respectively. 
As can be seen, the mathematical forms of integrations (21) − (28) are difficult to compute 
analytically, so the MCMC procedure is utilized to approximate these integrations. The Gibbs sampler 
procedure, a class of MCMC procedure to calculate the Bayes estimates, will be performed. 
Furthermore, the Bayesian estimators ( )H X and ( )qH X for no-outlier (homogenous) cases for β = 1 
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used to compute any required characteristic. In this study, a numerical procedure of the Gibbs sampler 
was implemented via R 4.0.2 program (see https://cran.r-project.org/bin/windows/base/old/4.0.2/). 
According to Lynch (2007), the Gibbs algorithm proceeds as follows: 

 
Step1: Initialize 0  as the starting parameter value of .  

Step 2: For the given 0 , generate 1 from the conditional distribution *
1 ( | , )x   . 

Step 3 For the given 1  generate 1  from the conditional distribution *
1 ( | , )x   . 

Step 4: Set 0 1 = , repeat Steps 2−3 M times, and record the sequence ( ),  . After N burn-in 
iterations, the effect of the starting values is removed. 
 
To compare the estimates, MCMC simulations were conducted for different sample sizes under SELF, 
LLF, GELF, and PLF. A random sample 1 2, ,..., nX X X  of size n = 10, 20, 30, 40, and 50 was 
generated from PFD for s = 0, 1, and 2 using the quantile function. For example, at s = 1, this random 
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simulation, the parameter values were taken as Set1 ( =2.8, =2, =1.5)   , 
Set2 ( =2.5, =2, =1.5)   , and , 0.2,0.8,q =  respectively. The hyper-parameters for gamma prior 
were taken as c = d = 2. Furthermore, let 0.5 = − and 0.5 for LLF and 0.8 =  for GELF. All the 
results were obtained based on the number of replications, i.e., M = 10,000. 
 
The simulation results are summarized in Tables 1−4 and described through Figures 2−8. The 
following can be concluded: 
 

1. The MSEs of the MLEs and BEs of the Rényi and q-entropies in the presence of outliers 
decreased with increasing sample sizes (Figures 2−5 and Tables 1−4). 

2. The MSEs and ABs of the MLEs and BEs of the Rényi and q-entropies decreased as the 
exact values decreased with the number of s. 

3. The MSEs and ABs of the Rényi and q-entropy estimates increased as the number of 
outliers increased (Tables 1−4 and Figures 4−7). 

4. The MSEs and ABs of the MLEs and BEs of the Rényi and q-entropies in the presence of 
outliers were greater than those in the homogenous case (Figures 4−7 and Tables 1−4). 

5. The MSEs and ABs of the MLEs and BEs increased with the number of outliers (Tables 
1−4).  

6. The MSEs of the BEs of the Rényi and q-entropies at s = 0, 1, and 2 under SELF had the 
smallest values as compared to the MSEs of the BEs under other loss functions (Figures 2, 
3, 6, and 7 and Tables 1−4). 
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To compare the estimates, MCMC simulations were conducted for 
different sample sizes under SELF, LLF, GELF, and PLF. A random 
sample                      of size n = 10, 20, 30, 40, and 50 was generated 
from PFD for s = 0, 1, and 2 using the quantile function. For example, 
at s = 1, this random sample was drawn from the PFD defined in (5) 
with parameters             and     The rest of (n−1) random samples were 
drawn from the PFD defined in (1) with parameters       and      For each 
simulation, the parameter values were taken as 
                              and                respectively. The  
hyper-parameters for gamma prior were taken as c = d = 2. Furthermore, 
let   and 0.5 for LLF and  for GELF. All the results were obtained 
based on the number of replications, i.e., M = 10,000.

The simulation results are summarized in Tables 1−4 and described 
through Figures 2−8. The following can be concluded:

1. The MSEs of the MLEs and BEs of the Rényi and q-entropies 
in the presence of outliers decreased with increasing sample 
sizes (Figures 2−5 and Tables 1−4).

2. The MSEs and ABs of the MLEs and BEs of the Rényi and 
q-entropies decreased as the exact values decreased with the 
number of s.

3. The MSEs and ABs of the Rényi and q-entropy estimates 
increased as the number of outliers increased (Tables 1−4 and 
Figures 4−7).

4. The MSEs and ABs of the MLEs and BEs of the Rényi and 
q-entropies in the presence of outliers were greater than those 
in the homogenous case (Figures 4−7 and Tables 1−4).

5. The MSEs and ABs of the MLEs and BEs increased with the 
number of outliers (Tables 1−4). 

6. The MSEs of the BEs of the Rényi and q-entropies at s = 0, 1, 
and 2 under SELF had the smallest values as compared to the 
MSEs of the BEs under other loss functions (Figures 2, 3, 6, 
and 7 and Tables 1−4).

7.   The MSEs of the BEs of the q-entropy under different loss 
functions at s = 0, 1, and 2 were smaller than those of the Rényi 
entropy.

8.  History plots for different BE estimates of the Rényi and 
q-entropies under the four loss functions are represented in 
Figure 8 in the presence of outliers. The plots of chains for the 
Rényi and q-entropy estimates under the four loss functions 
looked like a horizontal band with no long upward or downward 
trends, which was indicative of convergence.
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Figure 8 

Bayesian Estimators of the Rényi and Q-Entropies in Presence of 
Outliers for Set 1 and Set 2 at Different Loss Functions

a) Rényi Entropy Estimates under SELF and LLF (η = 0.5) at n = 50 
for Set 1.

b) Q-Entropy Estimates under GELF and PLF at n = 50 for Set 2 
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Table 1

ABs and MSEs of the Rényi Entropy Estimates for s = 0, 1and 2 at τ 
= 0.2

s =0
          n 10 20 30 40 50

         Exact value 0.40181

BE

  MLE AB 0.04309 0.02221 0.01684 0.01120 0.00749
MSE 0.02219 0.00890 0.00601 0.00411 0.00332

SELF
AB 0.07045 0.04276 0.02897 0.02267 0.01813

MSE 0.00496 0.00183 0.00084 0.00051 0.00033

LLF (η = 0.5)
AB 0.08196 0.05136 0.03561 0.02797 0.02260

MSE 0.01040 0.00592 0.00407 0.00333 0.00254

LLF (η = −0.5)
AB 0.05745 0.03347 0.02192 0.01713 0.01349

MSE 0.00885 0.00535 0.00382 0.00321 0.00245
GELF

(ε = 0.8)
AB 0.08838 0.05513 0.03820 0.02989 0.02415

MSE 0.01156 0.00640 0.00433 0.00349 0.00264

PLF
AB 0.06038 0.03588 0.02385 0.01867 0.01479

MSE 0.00856 0.00520 0.00373 0.00314 0.00241
s =1

        Exact value 0.41335 0.40710 0.40523 0.40434 0.40382

BE

  MLE AB 0.08979 0.04253 0.02931 0.02024 0.01417
MSE 0.03888 0.01260 0.00750 0.00494 0.00382

SELF
AB 0.08556 0.04905 0.03264 0.02527 0.02008

MSE 0.00732 0.00241 0.00107 0.00064 0.00040

LLF (η = 0.5)
AB 0.09780 0.05809 0.03963 0.03082 0.02478

MSE 0.01408 0.00699 0.00454 0.00361 0.00272

LLF (η = −0.5)
AB 0.06970 0.03767 0.02400 0.01846 0.01418

MSE 0.01210 0.00625 0.00424 0.00347 0.00261

GELF (ε = 0.8)
AB 0.10355 0.06162 0.04211 0.03268 0.02630

MSE 0.01518 0.00745 0.00479 0.00376 0.00281

PLF
AB 0.07373 0.04097 0.02662 0.02057 0.01609

MSE 0.01187 0.00616 0.00416 0.00341 0.00257
s =2

        Exact value 0.42940 0.41335 0.40907 0.40710 0.40597
  MLE AB 0.10046 0.04467 0.03028 0.02066 0.01422

MSE 0.05041 0.01437 0.00820 0.00529 0.00402

(continued)

Table 1 
 
ABs and MSEs of the Rényi Entropy Estimates for s = 0, 1and 2 at τ = 0.2 
 

Set1 ( =2.8, =2, =1.5)    

s =0 
n 10 20 30 40 50 

Exact value 0.40181 

MLE 
AB 0.04309 0.02221 0.01684 0.01120 0.00749 

MSE 0.02219 0.00890 0.00601 0.00411 0.00332 

BE 

SELF 
AB 0.07045 0.04276 0.02897 0.02267 0.01813 

MSE 0.00496 0.00183 0.00084 0.00051 0.00033 

LLF (η = 0.5) 
AB 0.08196 0.05136 0.03561 0.02797 0.02260 

MSE 0.01040 0.00592 0.00407 0.00333 0.00254 

LLF (η = −0.5) 
AB 0.05745 0.03347 0.02192 0.01713 0.01349 

MSE 0.00885 0.00535 0.00382 0.00321 0.00245 

GELF(ε = 0.8) 
AB 0.08838 0.05513 0.03820 0.02989 0.02415 

MSE 0.01156 0.00640 0.00433 0.00349 0.00264 

PLF 
AB 0.06038 0.03588 0.02385 0.01867 0.01479 

MSE 0.00856 0.00520 0.00373 0.00314 0.00241 
s =1 

Exact value 0.41335 0.40710 0.40523 0.40434 0.40382 

MLE 
AB 0.08979 0.04253 0.02931 0.02024 0.01417 

MSE 0.03888 0.01260 0.00750 0.00494 0.00382 

BE 

SELF 
AB 0.08556 0.04905 0.03264 0.02527 0.02008 

MSE 0.00732 0.00241 0.00107 0.00064 0.00040 

LLF (η = 0.5) 
AB 0.09780 0.05809 0.03963 0.03082 0.02478 

MSE 0.01408 0.00699 0.00454 0.00361 0.00272 

LLF (η = −0.5) 
AB 0.06970 0.03767 0.02400 0.01846 0.01418 

MSE 0.01210 0.00625 0.00424 0.00347 0.00261 

GELF(ε = 0.8) 
AB 0.10355 0.06162 0.04211 0.03268 0.02630 

MSE 0.01518 0.00745 0.00479 0.00376 0.00281 

PLF 
AB 0.07373 0.04097 0.02662 0.02057 0.01609 

MSE 0.01187 0.00616 0.00416 0.00341 0.00257 
s =2 

Exact value 0.42940 0.41335 0.40907 0.40710 0.40597 

MLE 
AB 0.10046 0.04467 0.03028 0.02066 0.01422 

MSE 0.05041 0.01437 0.00820 0.00529 0.00402 

BE 

SELF 
AB 0.08777 0.04979 0.03359 0.02614 0.02095 

MSE 0.00785 0.00248 0.00113 0.00068 0.00044 

LLF (η = 0.5) 
AB 0.09869 0.06803 0.03999 0.03125 0.02526 

MSE 0.01508 0.00791 0.00458 0.00362 0.00292 

LLF (η = −0.5) 
AB 0.06970 0.04078 0.02675 0.02077 0.01647 

MSE 0.01152 0.00650 0.00424 0.00347 0.00273 

GELF(ε = 0.8) 
AB 0.09824 0.06389 0.04301 0.03376 0.02748 

MSE 0.01794 0.00760 0.00484 0.00384 0.00271 

PLF 
AB 0.07383 0.04355 0.02888 0.02246 0.01788 

MSE 0.01236 0.00621 0.00417 0.00342 0.00259 
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BE

SELF
AB 0.08777 0.04979 0.03359 0.02614 0.02095

MSE 0.00785 0.00248 0.00113 0.00068 0.00044

LLF (η = 0.5)
AB 0.09869 0.06803 0.03999 0.03125 0.02526

MSE 0.01508 0.00791 0.00458 0.00362 0.00292

LLF (η = −0.5)
AB 0.06970 0.04078 0.02675 0.02077 0.01647

MSE 0.01152 0.00650 0.00424 0.00347 0.00273

GELF (ε = 0.8)
AB 0.09824 0.06389 0.04301 0.03376 0.02748

MSE 0.01794 0.00760 0.00484 0.00384 0.00271

PLF
AB 0.07383 0.04355 0.02888 0.02246 0.01788

MSE 0.01236 0.00621 0.00417 0.00342 0.00259

Table 2

ABs and MSEs of the Rényi Entropy Estimates for s = 0, 1and 2 at τ=0.8

s = 0
n 10 20 30 40 50

Exact value  0.16516

MLE
AB 0.08580 0.03769 0.02905 0.01910 0.01214

MSE 0.07980 0.03374 0.02346 0.01640 0.01352

SELF
AB 0.14708 0.07686 0.05100 0.04007 0.03163

MSE 0.02163 0.00591 0.00260 0.00161 0.00100

LLF (η = 0.5)
AB 0.17694 0.10315 0.06910 0.05023 0.04013

MSE 0.05648 0.02876 0.01892 0.01436 0.01086

BE LLF (η = −0.5)
AB 0.10617 0.05864 0.03748 0.02955 0.02287

MSE 0.05169 0.02340 0.01658 0.01396 0.01057

GELF(ε = 0.8)
AB 0.19508 0.10408 0.07090 0.05547 0.04437

MSE 0.06288 0.02771 0.01864 0.01511 0.01135

PLF
AB 0.11529 0.06189 0.04005 0.03158 0.02459

MSE 0.04895 0.02264 0.01614 0.01366 0.01038
        s =1

          Exact value 0.18197 0.18122 0.18001 0.17776 0.17238

MLE
AB 0.15162 0.07075 0.04935 0.03348 0.02265

MSE 0.13583 0.04558 0.02844 0.01905 0.01514

SELF
AB 0.15986 0.09016 0.05900 0.04584 0.03591

MSE 0.02555 0.00813 0.00348 0.00210 0.00129
LLF (η = 0.5) AB 0.18972 0.11055 0.07424 0.05774 0.04593

MSE 0.06117 0.03034 0.01965 0.01572 0.01172
(continued)

Table 2 
 
ABs and MSEs of the Rényi Entropy Estimates for s = 0, 1and 2 at τ=0.8 
 

Set2 ( =2.5, =2, =1.5)    

s = 0 
n 10 20 30 40 50 

Exact value 0.16516 

MLE 
AB 0.08580 0.03769 0.02905 0.01910 0.01214 

MSE 0.07980 0.03374 0.02346 0.01640 0.01352 

BE 

SELF 
AB 0.14708 0.07686 0.05100 0.04007 0.03163 

MSE 0.02163 0.00591 0.00260 0.00161 0.00100 

LLF (η = 0.5) 
AB 0.17694 0.10315 0.06910 0.05023 0.04013 

MSE 0.05648 0.02876 0.01892 0.01436 0.01086 

LLF (η = −0.5) 
AB 0.10617 0.05864 0.03748 0.02955 0.02287 

MSE 0.05169 0.02340 0.01658 0.01396 0.01057 

GELF(ε = 0.8) 
AB 0.19508 0.10408 0.07090 0.05547 0.04437 

MSE 0.06288 0.02771 0.01864 0.01511 0.01135 

PLF 
AB 0.11529 0.06189 0.04005 0.03158 0.02459 

MSE 0.04895 0.02264 0.01614 0.01366 0.01038 
s =1 

Exact value 0.18197 0.18122 0.18001 0.17776 0.17238 

MLE 
AB 0.15162 0.07075 0.04935 0.03348 0.02265 

MSE 0.13583 0.04558 0.02844 0.01905 0.01514 

BE 

SELF 
AB 0.15986 0.09016 0.05900 0.04584 0.03591 

MSE 0.02555 0.00813 0.00348 0.00210 0.00129 

LLF (η = 0.5) 
AB 0.18972 0.11055 0.07424 0.05774 0.04593 

MSE 0.06117 0.03034 0.01965 0.01572 0.01172 

LLF (η = −0.5) 
AB 0.11895 0.06078 0.03638 0.02778 0.01963 

MSE 0.05456 0.02814 0.01896 0.01552 0.01159 

GELF(ε = 0.8) 
AB 0.20786 0.12145 0.08189 0.06350 0.05065 

MSE 0.06802 0.03296 0.02099 0.01651 0.01223 

PLF 
AB 0.12807 0.06906 0.04346 0.03378 0.02560 

MSE 0.05206 0.02711 0.01824 0.01501 0.01122 
s =2 

Exact value 0.18909 0.18776 0.18573 0.18238 0.17862 

MLE 
AB 0.18930 0.07904 0.05314 0.03541 0.02357 

MSE 0.20040 0.05524 0.03217 0.02091 0.01622 

BE 

SELF 
AB 0.18552 0.10755 0.07164 0.05566 0.04415 

MSE 0.03442 0.01157 0.00513 0.00310 0.00195 

LLF (η = 0.5) 
AB 0.21026 0.12480 0.08462 0.06585 0.05267 

MSE 0.06785 0.03319 0.02103 0.01654 0.01226 

LLF (η = −0.5) 
AB 0.15741 0.08878 0.05776 0.04491 0.03523 

MSE 0.05847 0.02970 0.01938 0.01567 0.01164 

GELF(ε = 0.8) 
AB 0.22585 0.13429 0.09128 0.07085 0.05674 

MSE 0.07465 0.03585 0.02241 0.01736 0.01280 

PLF 
AB 0.16227 0.09233 0.06049 0.04705 0.03700 

MSE 0.05712 0.02914 0.01904 0.01544 0.01151 

Table 1 
 
ABs and MSEs of the Rényi Entropy Estimates for s = 0, 1and 2 at τ = 0.2 
 

Set1 ( =2.8, =2, =1.5)    

s =0 
n 10 20 30 40 50 

Exact value 0.40181 

MLE 
AB 0.04309 0.02221 0.01684 0.01120 0.00749 

MSE 0.02219 0.00890 0.00601 0.00411 0.00332 

BE 

SELF 
AB 0.07045 0.04276 0.02897 0.02267 0.01813 

MSE 0.00496 0.00183 0.00084 0.00051 0.00033 

LLF (η = 0.5) 
AB 0.08196 0.05136 0.03561 0.02797 0.02260 

MSE 0.01040 0.00592 0.00407 0.00333 0.00254 

LLF (η = −0.5) 
AB 0.05745 0.03347 0.02192 0.01713 0.01349 

MSE 0.00885 0.00535 0.00382 0.00321 0.00245 

GELF(ε = 0.8) 
AB 0.08838 0.05513 0.03820 0.02989 0.02415 

MSE 0.01156 0.00640 0.00433 0.00349 0.00264 

PLF 
AB 0.06038 0.03588 0.02385 0.01867 0.01479 

MSE 0.00856 0.00520 0.00373 0.00314 0.00241 
s =1 

Exact value 0.41335 0.40710 0.40523 0.40434 0.40382 

MLE 
AB 0.08979 0.04253 0.02931 0.02024 0.01417 

MSE 0.03888 0.01260 0.00750 0.00494 0.00382 

BE 

SELF 
AB 0.08556 0.04905 0.03264 0.02527 0.02008 

MSE 0.00732 0.00241 0.00107 0.00064 0.00040 

LLF (η = 0.5) 
AB 0.09780 0.05809 0.03963 0.03082 0.02478 

MSE 0.01408 0.00699 0.00454 0.00361 0.00272 

LLF (η = −0.5) 
AB 0.06970 0.03767 0.02400 0.01846 0.01418 

MSE 0.01210 0.00625 0.00424 0.00347 0.00261 

GELF(ε = 0.8) 
AB 0.10355 0.06162 0.04211 0.03268 0.02630 

MSE 0.01518 0.00745 0.00479 0.00376 0.00281 

PLF 
AB 0.07373 0.04097 0.02662 0.02057 0.01609 

MSE 0.01187 0.00616 0.00416 0.00341 0.00257 
s =2 

Exact value 0.42940 0.41335 0.40907 0.40710 0.40597 

MLE 
AB 0.10046 0.04467 0.03028 0.02066 0.01422 

MSE 0.05041 0.01437 0.00820 0.00529 0.00402 

BE 

SELF 
AB 0.08777 0.04979 0.03359 0.02614 0.02095 

MSE 0.00785 0.00248 0.00113 0.00068 0.00044 

LLF (η = 0.5) 
AB 0.09869 0.06803 0.03999 0.03125 0.02526 

MSE 0.01508 0.00791 0.00458 0.00362 0.00292 

LLF (η = −0.5) 
AB 0.06970 0.04078 0.02675 0.02077 0.01647 

MSE 0.01152 0.00650 0.00424 0.00347 0.00273 

GELF(ε = 0.8) 
AB 0.09824 0.06389 0.04301 0.03376 0.02748 

MSE 0.01794 0.00760 0.00484 0.00384 0.00271 

PLF 
AB 0.07383 0.04355 0.02888 0.02246 0.01788 

MSE 0.01236 0.00621 0.00417 0.00342 0.00259 
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BE  LLF (η = −0.5) AB 0.11895 0.06078 0.03638 0.02778 0.01963
MSE 0.05456 0.02814 0.01896 0.01552 0.01159

 GELF(ε = 0.8) AB 0.20786 0.12145 0.08189 0.06350 0.05065
MSE 0.06802 0.03296 0.02099 0.01651 0.01223

PLF
AB 0.12807 0.06906 0.04346 0.03378 0.02560

MSE 0.05206 0.02711 0.01824 0.01501 0.01122
        s =2

             Exact value 0.18909 0.18776 0.18573 0.18238 0.17862
 MLE AB 0.18930 0.07904 0.05314 0.03541 0.02357

MSE 0.20040 0.05524 0.03217 0.02091 0.01622
SELF AB 0.18552 0.10755 0.07164 0.05566 0.04415

MSE 0.03442 0.01157 0.00513 0.00310 0.00195
LLF (η = 0.5) AB 0.21026 0.12480 0.08462 0.06585 0.05267

MSE 0.06785 0.03319 0.02103 0.01654 0.01226
BE LLF (η = −0.5) AB 0.15741 0.08878 0.05776 0.04491 0.03523

MSE 0.05847 0.02970 0.01938 0.01567 0.01164
GELF(ε = 0.8) AB 0.22585 0.13429 0.09128 0.07085 0.05674

MSE 0.07465 0.03585 0.02241 0.01736 0.01280
PLF AB 0.16227 0.09233 0.06049 0.04705 0.03700

MSE 0.05712 0.02914 0.01904 0.01544 0.01151

Table 3
 
ABs and MSEs of the Q-Entropy Estimates for s = 0, 1and 2 at q = 0.2

s =0
n 10 20 30 40 50

Exact value 0.31198

MLE AB 0.03227 0.01716 0.01317 0.00872 0.00570
MSE 0.01425 0.00616 0.00425 0.00295 0.00242

BE

SELF
AB 0.06333 0.03839 0.02603 0.02042 0.01630

MSE 0.00401 0.00147 0.00068 0.00042 0.00027

LLF (η = 0.5)
AB 0.14621 0.09208 0.06447 0.05070 0.01227

MSE 0.02982 0.01510 0.00970 0.00754 0.00557

LLF (η = −0.5)
AB 0.05192 0.03028 0.01991 0.01561 0.01227

MSE 0.00697 0.00411 0.00290 0.00244 0.00185

GELF(ε = 0.8)
AB 0.07939 0.04931 0.03414 0.02674 0.02156

MSE 0.00931 0.00504 0.00336 0.00269 0.00203

Table 3 
 
ABs and MSEs of the Q-Entropy Estimates for s = 0, 1and 2 at q = 0.2 
 

Set1 ( =2.8, =2, =1.5)    

s =0 
n 10 20 30 40 50 

Exact value 0.31198 

MLE 
AB 0.03227 0.01716 0.01317 0.00872 0.00570 

MSE 0.01425 0.00616 0.00425 0.00295 0.00242 

BE 

SELF 
AB 0.06333 0.03839 0.02603 0.02042 0.01630 

MSE 0.00401 0.00147 0.00068 0.00042 0.00027 

LLF (η = 0.5) 
AB 0.14621 0.09208 0.06447 0.05070 0.01227 

MSE 0.02982 0.01510 0.00970 0.00754 0.00557 

LLF (η = −0.5) 
AB 0.05192 0.03028 0.01991 0.01561 0.01227 

MSE 0.00697 0.00411 0.00290 0.00244 0.00185 

GELF(ε = 0.8) 
AB 0.07939 0.04931 0.03414 0.02674 0.02156 

MSE 0.00931 0.00504 0.00336 0.00269 0.00203 

PLF 
AB 0.05439 0.03234 0.02155 0.01693 0.01339 

MSE 0.00678 0.00401 0.00284 0.00239 0.00183 
s =1 

Exact value 0.32201 0.31657 0.31495 0.31417 0.31372 

 MLE 
AB 0.06952 0.03402 0.02368 0.01639 0.01138 

MSE 0.02404 0.00853 0.00524 0.00351 0.00276 

BE 

SELF 
AB 0.07780 0.04421 0.02938 0.02277 0.01805 

MSE 0.00605 0.00195 0.00086 0.00052 0.00033 

LLF (η = 0.5) 
AB 0.14621 0.09208 0.06447 0.05070 0.04067 

MSE 0.02982 0.01510 0.00970 0.00754 0.00559 

LLF (η = −0.5) 
AB 0.06374 0.03425 0.02186 0.01685 0.01293 

MSE 0.00980 0.00485 0.00324 0.00264 0.00198 

GELF(ε = 0.8) 
AB 0.09404 0.05536 0.03771 0.02926 0.02349 

MSE 0.01252 0.00593 0.00375 0.00292 0.00217 

PLF 
AB 0.06721 0.03709 0.02411 0.01867 0.01457 

MSE 0.00966 0.00481 0.00320 0.00261 0.00196 
s =2 

Exact value 0.33606 0.32201 0.31828 0.31657 0.31558 

MLE 
AB 0.07697 0.03559 0.02440 0.01670 0.01139 

MSE 0.03122 0.00979 0.00575 0.00378 0.00291 

BE 

SELF 
AB 0.08582 0.04500 0.03026 0.02356 0.01883 

MSE 0.00775 0.00202 0.00092 0.00055 0.00035 

LLF (η = 0.5) 
AB 0.14621 0.09208 0.06447 0.05070 0.04067 

MSE 0.02982 0.01510 0.00970 0.00754 0.00559 

LLF (η = −0.5) 
AB 0.07452 0.03708 0.02429 0.01889 0.01493 

MSE 0.00999 0.00494 0.00327 0.00266 0.00200 

GELF(ε = 0.8) 
AB 0.09989 0.06488 0.03799 0.02997 0.02367 

MSE 0.01367 0.00685 0.00379 0.00297 0.00217 

PLF 
AB 0.07721 0.03948 0.02613 0.02034 0.01615 

MSE 0.00980 0.00489 0.00323 0.00273 0.00200 
 

(continued)

Table 2 
 
ABs and MSEs of the Rényi Entropy Estimates for s = 0, 1and 2 at τ=0.8 
 

Set2 ( =2.5, =2, =1.5)    

s = 0 
n 10 20 30 40 50 

Exact value 0.16516 

MLE 
AB 0.08580 0.03769 0.02905 0.01910 0.01214 

MSE 0.07980 0.03374 0.02346 0.01640 0.01352 

BE 

SELF 
AB 0.14708 0.07686 0.05100 0.04007 0.03163 

MSE 0.02163 0.00591 0.00260 0.00161 0.00100 

LLF (η = 0.5) 
AB 0.17694 0.10315 0.06910 0.05023 0.04013 

MSE 0.05648 0.02876 0.01892 0.01436 0.01086 

LLF (η = −0.5) 
AB 0.10617 0.05864 0.03748 0.02955 0.02287 

MSE 0.05169 0.02340 0.01658 0.01396 0.01057 

GELF(ε = 0.8) 
AB 0.19508 0.10408 0.07090 0.05547 0.04437 

MSE 0.06288 0.02771 0.01864 0.01511 0.01135 

PLF 
AB 0.11529 0.06189 0.04005 0.03158 0.02459 

MSE 0.04895 0.02264 0.01614 0.01366 0.01038 
s =1 

Exact value 0.18197 0.18122 0.18001 0.17776 0.17238 

MLE 
AB 0.15162 0.07075 0.04935 0.03348 0.02265 

MSE 0.13583 0.04558 0.02844 0.01905 0.01514 

BE 

SELF 
AB 0.15986 0.09016 0.05900 0.04584 0.03591 

MSE 0.02555 0.00813 0.00348 0.00210 0.00129 

LLF (η = 0.5) 
AB 0.18972 0.11055 0.07424 0.05774 0.04593 

MSE 0.06117 0.03034 0.01965 0.01572 0.01172 

LLF (η = −0.5) 
AB 0.11895 0.06078 0.03638 0.02778 0.01963 

MSE 0.05456 0.02814 0.01896 0.01552 0.01159 

GELF(ε = 0.8) 
AB 0.20786 0.12145 0.08189 0.06350 0.05065 

MSE 0.06802 0.03296 0.02099 0.01651 0.01223 

PLF 
AB 0.12807 0.06906 0.04346 0.03378 0.02560 

MSE 0.05206 0.02711 0.01824 0.01501 0.01122 
s =2 

Exact value 0.18909 0.18776 0.18573 0.18238 0.17862 

MLE 
AB 0.18930 0.07904 0.05314 0.03541 0.02357 

MSE 0.20040 0.05524 0.03217 0.02091 0.01622 

BE 

SELF 
AB 0.18552 0.10755 0.07164 0.05566 0.04415 

MSE 0.03442 0.01157 0.00513 0.00310 0.00195 

LLF (η = 0.5) 
AB 0.21026 0.12480 0.08462 0.06585 0.05267 

MSE 0.06785 0.03319 0.02103 0.01654 0.01226 

LLF (η = −0.5) 
AB 0.15741 0.08878 0.05776 0.04491 0.03523 

MSE 0.05847 0.02970 0.01938 0.01567 0.01164 

GELF(ε = 0.8) 
AB 0.22585 0.13429 0.09128 0.07085 0.05674 

MSE 0.07465 0.03585 0.02241 0.01736 0.01280 

PLF 
AB 0.16227 0.09233 0.06049 0.04705 0.03700 

MSE 0.05712 0.02914 0.01904 0.01544 0.01151 
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PLF
AB 0.05439 0.03234 0.02155 0.01693 0.01339

MSE 0.00678 0.00401 0.00284 0.00239 0.00183
s =1

Exact value 0.32201 0.31657 0.31495 0.31417 0.31372

MLE
AB 0.06952 0.03402 0.02368 0.01639 0.01138

MSE 0.02404 0.00853 0.00524 0.00351 0.00276

BE

SELF
AB 0.07780 0.04421 0.02938 0.02277 0.01805

MSE 0.00605 0.00195 0.00086 0.00052 0.00033

LLF (η = 0.5)
AB 0.14621 0.09208 0.06447 0.05070 0.04067

MSE 0.02982 0.01510 0.00970 0.00754 0.00559

LLF (η = −0.5)
AB 0.06374 0.03425 0.02186 0.01685 0.01293

MSE 0.00980 0.00485 0.00324 0.00264 0.00198

GELF(ε = 0.8)
AB 0.09404 0.05536 0.03771 0.02926 0.02349

MSE 0.01252 0.00593 0.00375 0.00292 0.00217

PLF
AB 0.06721 0.03709 0.02411 0.01867 0.01457

MSE 0.00966 0.00481 0.00320 0.00261 0.00196
s =2

Exact value 0.33606 0.32201 0.31828 0.31657 0.31558
MLE AB 0.07697 0.03559 0.02440 0.01670 0.01139

MSE 0.03122 0.00979 0.00575 0.00378 0.00291
           SELF AB 0.08582 0.04500 0.03026 0.02356 0.01883

MSE 0.00775 0.00202 0.00092 0.00055 0.00035

LLF (η = 0.5)
AB 0.14621 0.09208 0.06447 0.05070 0.04067

MSE 0.02982 0.01510 0.00970 0.00754 0.00559

LLF (η = −0.5)
AB 0.07452 0.03708 0.02429 0.01889 0.01493

MSE 0.00999 0.00494 0.00327 0.00266 0.00200

GELF(ε = 0.8)
AB 0.09989 0.06488 0.03799 0.02997 0.02367

MSE 0.01367 0.00685 0.00379 0.00297 0.00217

PLF
AB 0.07721 0.03948 0.02613 0.02034 0.01615

MSE 0.00980 0.00489 0.00323 0.00273 0.00200

Table 3 
 
ABs and MSEs of the Q-Entropy Estimates for s = 0, 1and 2 at q = 0.2 
 

Set1 ( =2.8, =2, =1.5)    

s =0 
n 10 20 30 40 50 

Exact value 0.31198 

MLE 
AB 0.03227 0.01716 0.01317 0.00872 0.00570 

MSE 0.01425 0.00616 0.00425 0.00295 0.00242 

BE 

SELF 
AB 0.06333 0.03839 0.02603 0.02042 0.01630 

MSE 0.00401 0.00147 0.00068 0.00042 0.00027 

LLF (η = 0.5) 
AB 0.14621 0.09208 0.06447 0.05070 0.01227 

MSE 0.02982 0.01510 0.00970 0.00754 0.00557 

LLF (η = −0.5) 
AB 0.05192 0.03028 0.01991 0.01561 0.01227 

MSE 0.00697 0.00411 0.00290 0.00244 0.00185 

GELF(ε = 0.8) 
AB 0.07939 0.04931 0.03414 0.02674 0.02156 

MSE 0.00931 0.00504 0.00336 0.00269 0.00203 

PLF 
AB 0.05439 0.03234 0.02155 0.01693 0.01339 

MSE 0.00678 0.00401 0.00284 0.00239 0.00183 
s =1 

Exact value 0.32201 0.31657 0.31495 0.31417 0.31372 

 MLE 
AB 0.06952 0.03402 0.02368 0.01639 0.01138 

MSE 0.02404 0.00853 0.00524 0.00351 0.00276 

BE 

SELF 
AB 0.07780 0.04421 0.02938 0.02277 0.01805 

MSE 0.00605 0.00195 0.00086 0.00052 0.00033 

LLF (η = 0.5) 
AB 0.14621 0.09208 0.06447 0.05070 0.04067 

MSE 0.02982 0.01510 0.00970 0.00754 0.00559 

LLF (η = −0.5) 
AB 0.06374 0.03425 0.02186 0.01685 0.01293 

MSE 0.00980 0.00485 0.00324 0.00264 0.00198 

GELF(ε = 0.8) 
AB 0.09404 0.05536 0.03771 0.02926 0.02349 

MSE 0.01252 0.00593 0.00375 0.00292 0.00217 

PLF 
AB 0.06721 0.03709 0.02411 0.01867 0.01457 

MSE 0.00966 0.00481 0.00320 0.00261 0.00196 
s =2 

Exact value 0.33606 0.32201 0.31828 0.31657 0.31558 

MLE 
AB 0.07697 0.03559 0.02440 0.01670 0.01139 

MSE 0.03122 0.00979 0.00575 0.00378 0.00291 

BE 

SELF 
AB 0.08582 0.04500 0.03026 0.02356 0.01883 

MSE 0.00775 0.00202 0.00092 0.00055 0.00035 

LLF (η = 0.5) 
AB 0.14621 0.09208 0.06447 0.05070 0.04067 

MSE 0.02982 0.01510 0.00970 0.00754 0.00559 

LLF (η = −0.5) 
AB 0.07452 0.03708 0.02429 0.01889 0.01493 

MSE 0.00999 0.00494 0.00327 0.00266 0.00200 

GELF(ε = 0.8) 
AB 0.09989 0.06488 0.03799 0.02997 0.02367 

MSE 0.01367 0.00685 0.00379 0.00297 0.00217 

PLF 
AB 0.07721 0.03948 0.02613 0.02034 0.01615 

MSE 0.00980 0.00489 0.00323 0.00273 0.00200 
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Table 4
 
ABs and MSEs of the Q-Entropy Estimates for s = 0, 1and 2 at q = 0.8

s = 0
n 10 20 30 40 50

Exact value 0.1200
MLE AB 0.05717 0.02516 0.01951 0.01278 0.00797

MSE 0.03791 0.01652 0.01159 0.00816 0.00676

BE

SELF
AB 0.10722 0.05585 0.03710 0.02919 0.02302

MSE 0.01150 0.00312 0.00138 0.00085 0.00053

LLF (η = 0.5)
AB 0.12866 0.06811 0.04632 0.03643 0.02907

MSE 0.02972 0.01311 0.00894 0.00736 0.00555

LLF (η = −0.5)
AB 0.07807 0.04286 0.02747 0.02170 0.01679

MSE 0.02673 0.01196 0.00843 0.00709 0.00537

GELF(ε = 0.8)
AB 0.14188 0.07539 0.05134 0.04019 0.03212

MSE 0.03315 0.01436 0.00959 0.00775 0.00581

PLF
AB 0.08443 0.04513 0.02928 0.02313 0.01800

MSE 0.02544 0.01160 0.00822 0.00695 0.00528
s =1

Exact value 0.12774 0.12720 0.12635 0.12475 0.12092
MLE AB 0.10116 0.04805 0.03368 0.02286 0.01536

MSE 0.06246 0.06547 0.01392 0.00941 0.00753

BE

SELF
AB 0.11630 0.00429 0.04286 0.03334 0.02609

MSE 0.01353 0.00441 0.00184 0.00111 0.00068

LLF (η = 0.5)
AB 0.13774 0.08005 0.05374 0.04182 0.03323

MSE 0.03214 0.01572 0.01011 0.00806 0.00599

LLF (η = −0.5)
AB 0.08715 0.04457 0.02679 0.02051 0.01453

MSE 0.02823 0.01433 0.00962 0.00787 0.00587

GELF(ε = 0.8)
AB 0.15096 0.08792 0.05923 0.04595 0.03661

MSE 0.03581 0.01711 0.01081 0.00848 0.00626

PLF
AB 0.09351 0.05041 0.03178 0.02475 0.01875

MSE 0.02705 0.01387 0.00929 0.00763 0.00570
s =2

Exact value 0.12825 0.12812 0.12730 0.12575 0.12569
MLE AB 0.12483 0.07344 0.03618 0.02413 0.01595

MSE 0.08996 0.07647 0.01569 0.01031 0.00806
SELF AB 0.13474 0.07790 0.06187 0.04033 0.03196

MSE 0.01816 0.00607 0.00569 0.00163 0.00102

Table 4 
 
ABs and MSEs of the Q-Entropy Estimates for s = 0, 1and 2 at q = 0.8 
 

Set2 ( =2.5, =2, =1.5)    

s = 0 
n 10 20 30 40 50 

Exact value 0.1200 

MLE 
AB 0.05717 0.02516 0.01951 0.01278 0.00797 

MSE 0.03791 0.01652 0.01159 0.00816 0.00676 

BE 

SELF 
AB 0.10722 0.05585 0.03710 0.02919 0.02302 

MSE 0.01150 0.00312 0.00138 0.00085 0.00053 

LLF (η = 0.5) 
AB 0.12866 0.06811 0.04632 0.03643 0.02907 

MSE 0.02972 0.01311 0.00894 0.00736 0.00555 

LLF (η = −0.5) 
AB 0.07807 0.04286 0.02747 0.02170 0.01679 

MSE 0.02673 0.01196 0.00843 0.00709 0.00537 

GELF(ε = 0.8) 
AB 0.14188 0.07539 0.05134 0.04019 0.03212 

MSE 0.03315 0.01436 0.00959 0.00775 0.00581 

PLF 
AB 0.08443 0.04513 0.02928 0.02313 0.01800 

MSE 0.02544 0.01160 0.00822 0.00695 0.00528 
s =1 

Exact value 0.12774 0.12720 0.12635 0.12475 0.12092 

MLE 
AB 0.10116 0.04805 0.03368 0.02286 0.01536 

MSE 0.06246 0.06547 0.01392 0.00941 0.00753 

BE 

SELF 
AB 0.11630 0.00429 0.04286 0.03334 0.02609 

MSE 0.01353 0.00441 0.00184 0.00111 0.00068 

LLF (η = 0.5) 
AB 0.13774 0.08005 0.05374 0.04182 0.03323 

MSE 0.03214 0.01572 0.01011 0.00806 0.00599 

LLF (η = −0.5) 
AB 0.08715 0.04457 0.02679 0.02051 0.01453 

MSE 0.02823 0.01433 0.00962 0.00787 0.00587 

GELF(ε = 0.8) 
AB 0.15096 0.08792 0.05923 0.04595 0.03661 

MSE 0.03581 0.01711 0.01081 0.00848 0.00626 

PLF 
AB 0.09351 0.05041 0.03178 0.02475 0.01875 

MSE 0.02705 0.01387 0.00929 0.00763 0.00570 
s =2 

Exact value 0.12825 0.12812 0.12730 0.12575 0.12569 

MLE 
AB 0.12483 0.07344 0.03618 0.02413 0.01595 

MSE 0.08996 0.07647 0.01569 0.01031 0.00806 

BE 

SELF 
AB 0.13474 0.07790 0.06187 0.04033 0.03196 

MSE 0.01816 0.00607 0.00569 0.00163 0.00102 

LLF (η = 0.5) 
AB 0.15257 0.09025 0.06115 0.04760 0.03803 

MSE 0.03571 0.01722 0.01083 0.00849 0.00628 

LLF (η = −0.5) 
AB 0.11460 0.06449 0.04198 0.03268 0.02561 

MSE 0.03053 0.01527 0.00990 0.00799 0.00593 

GELF(ε = 0.8) 
AB 0.16398 0.09712 0.06594 0.05120 0.04095 

MSE 0.03935 0.01863 0.01156 0.00893 0.00656 

PLF 
AB 0.11798 0.06699 0.04391 0.03419 0.02686 

MSE 0.02988 0.01500 0.00974 0.00788 0.00586 
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LLF (η = 0.5) AB 0.15257 0.09025 0.06115 0.04760 0.03803
MSE 0.03571 0.01722 0.01083 0.00849 0.00628

LLF (η = −0.5) AB 0.11460 0.06449 0.04198 0.03268 0.02561
MSE 0.03053 0.01527 0.00990 0.00799 0.00593

BE GELF(ε = 0.8) AB 0.16398 0.09712 0.06594 0.05120 0.04095
MSE 0.03935 0.01863 0.01156 0.00893 0.00656

PLF AB 0.11798 0.06699 0.04391 0.03419 0.02686
MSE 0.02988 0.01500 0.00974 0.00788 0.00586

ILLUSTRATIVE EXAMPLE

The real datasets were utilized to verify the proposed estimators 
examined in the simulation study.

Dataset 1: In an early paper on regression analysis of lifetime data, 
Feigl and Zelen (1965) provided data on survival times for 33 
patients suffering from acute myelogenous leukemia. These survival 
times depended on several factors, such as age, time of diagnosis, 
and the body’s response to treatment. In this regard, survival times 
between patients were different, which led to the same distribution 
with different parameters. The present study used the Kolmogorov–
Smirnov (KS) test for the real dataset, and its p-value implied that 
PFD in the presence of outliers fitted the data. The estimated PDF and 
CDF for leukemia data are demonstrated in Figure 9.

Figure 9

Plots of the Estimated PDF and CDF for Leukemia Data

Therefore, on the basis of the real data, the estimates of the entropies 
were computed using the proposed estimation method. The results are 
listed in Table 5.
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Table 5

Estimates of the Entropies and their MSEs (in Brackets) for Leukemia 
Data

Rényi entropy q−entropy

       MLE
s = 0 s  = 1 s  = 2 s = 0 s  = 1 s  = 2

0.14726
(0.06169)

0.16520
(0.07787)

0.26470
(0.08089)

0.92345
(0.34769)

0.94560
(0.38630)

0.97865
(0.47887)

BE

SELF 0.33642
(0.08225)

0.29307
(0.07924)

0.38051
(0.08452)

0.70851
(0.04964)

0.71536
(0.06920)

0.71372
(0.08369)

LLF
(η = 0.5)

0.34580
(0.08280)

0.40411
(0.08542)

0.48392
(0.09466)

0.714621
(0.05239)

0.713202
(0.06727)

0.817984
(0.08326)

LLF
(η = −0.5)

0.34133
(0.08254)

0.29695
(0.07954)

0.31366
(0.08077)

0.71184
(0.05113)

0.71536
(0.06846)

0.81501
(0.08443)

GELF
(ε = 0.8)

0.29610
(0.07947)

0.26368
(0.07670)

0.34233
(0.08260)

0.71406
(0.05214)

0.71555
(0.06861)

0.71566
(0.08481)

PLF 0.35792
(0.08345)

0.30928
(0.08046)

0.40217
(0.08536)

0.70682
(0.04889)

0.71532
(0.06969)

0.71289
(0.08321)

The observed results showed that the MSEs of the MLEs and BEs of      
                           in the presence of outliers were larger than those  
in the homogenous case. The MSEs of the BEs of                under different 
loss functions at s = 0, 1, and 2 were smaller than those of            In 
addition, it can be concluded that the entropy estimates increased with 
s; i.e., the estimated values of the entropies increased as the number 
of outliers increased.

Dataset 2: The real dataset was studied by Dixit and Nooghabi (2011). 
The data represented the lifetime distribution of 20 electronic tubes 
with insufficient power supply. It was observed that some tubes (1–2) 
were of different quality. The p-value of the KS test showed that the 
PFD fitted this real dataset. The estimated PDF and CDF are presented 
in Figure 10. 
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Therefore, on the basis of the real data, the estimates of the entropies 
were computed using the estimation method proposed herein. The 
results are presented in Table 6. 

Table 6

Estimates of the Entropies and their MSEs (in Brackets) for 20 
Electronic Tubes

Rényi entropy q−entropy

         MLE
     s = 0        s  = 1  s  = 2  s = 0 s  = 1 s  = 2

0.29739 
(0.18124)

0.39739 
(0.19691)

0.42650 
(0.26050)

0.85267
(0.04558)

0.86243 
(0.05370)

0.93729
(0.10449)

BE

SELF 0.41297 
(0.08101)

0.42389 
(0.09040)

0.42806 
(0.09522)

0.77034 
(0.01474)

0.83674 
(0.04245)

0.83822 
(0.04674)

LLF
(η = 0.5)

0.41119 
(0.08000)

0.41786 
(0.08682)

0.42514 
(0.09342)

0.79960 
(0.02270)

0.81842 
(0.02813)

0.86441 
(0.06269)

LLF
(η = −0.5)

0.41336 
(0.08001)

0.41801
(0.08689)

0.41973 
(0.09015)

0.71971 
(0.00501)

0.82683 
(0.03847)

0.83619 
(0.04087)

GELF
(ε = 0.8)

0.40744 
(0.07789)

0.41265 
(0.08377)

0.41721 
(0.08864)

0.82012 
(0.02931)

0.85247 
(0.04918)

0.85289
(0.05705)

PLF 0.41603 
(0.08276)

0.43149 
(0.09503)

0.43215 
(0.09776)

0.73575 
(0.00754)

0.82784 
(0.03887)

0.81823 
(0.04169)

The observed results showed that the MSEs of the MLEs and BEs of 

 and             at s = 1 and s = 2 were larger than those at s = 0. 
The MSEs of the BEs of             under different loss functions at s = 0, 
1, and 2 were smaller than those of               Finally, it can be concluded 
that the entropy estimates increased with s; i.e., the estimated values 
of the entropies increased as the number of outliers increased.
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CONCLUSION

This paper proposes an estimation method of ( )H Xt  and ( )qH X  for 
PFD in the presence of no outliers and s outliers. The ML estimators 
of the Rényi and q-entropies were obtained. The Bayesian estimators 
under uniform and gamma priors were derived for several loss 
functions. This study employed the MCMC procedure to obtain the 
Bayes estimates based on Gibbs sampling. The performance of the 
entropy estimates for PFD was examined in terms of their ABs and 
MSEs based on 10,000 replications. Real data analysis and simulation 
studies were conducted. The numerical results of the simulation study 
indicated that the MSEs of the ML and BEs of the entropies decrease 
with the sample sizes. The MSEs of both entropy estimates in the 
no outlier case are better than those in the outlier case. Generally, 
the MSEs of the Bayesian entropies under SELF are smaller than the 
MSEs of other loss functions in a majority of the investigated cases. 
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