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ABSTRACT

Entropy measurement plays an important role in the field of
information theory. Furthermore, the estimation of entropy is
an important issue in statistics and machine learning. This study
estimated the Rényi and g-entropies of a power-function distribution
in the presence of s outliers using classical and Bayesian procedures.
In the classical method, the maximum likelihood estimators of the
entropies were obtained and their performance was assessed through
a numerical study. In the Bayesian method, the Bayesian estimators
of the entropies under uniform and gamma priors were acquired
based on different loss functions. The Bayesian estimators were
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computed empirically using a Monte Carlo simulation based on the
Gibbs sampling algorithm. The simulated datasets were analyzed to
investigate the accuracy of the estimates. The study results showed
that the precision of the maximum likelihood and Bayesian estimates
of both entropies improved with increasing the sample size and
the number of outliers. The absolute biases and the mean squared
errors of the estimates in the presence of outliers exceeded those of
the corresponding estimates in the homogenous case (no-outliers).
Furthermore, the Bayesian estimates of the Rényi and g-entropies
under the squared error loss function were preferable to the other
Bayesian estimates in a majority of the cases. Finally, analysis results
of real data examples were consistent with those of the simulated data.

Keywords: Bayesian estimators, maximum likelihood estimators,
outliers, power-function distribution, Rényi entropy.

INTRODUCTION

Power-function distribution (PFD) is one of the most significant
parametric models. It is usually used in the analysis of lifetime data
and solving problems related to the modeling of failure processes. It
is an elastic lifetime model that provides a good fit for some sets of
failure data. The probability density function (PDF) and cumulative
distribution function (CDF) of PFD with scale parameter 8 and shape
paramete ¢ are provided respectively in Equations 1 and 2 as follows:

fl(x;a,ﬁ):é%xa_l; ,a>0,0<x <6, (1)

and

Fl(x;a,H):(%)a. (2)

In the literature, PFD has been discussed by several authors. Malik
(1967) derived the moments of order statistics for PFD. Ahsanullah
and Kabir (1974) discussed the characterizations of PFD. Rahman et
al. (2012) performed the Bayesian estimation of PFD under conjugate
prior. Sultan et al. (2014) discussed Bayesian estimation for PFD
under double priors. The Bayesian estimator of PFD was obtained by
Zaka and Akhter (2014). Abdul-Sathar and Sathyareji (2018) studied
the estimation of dynamic cumulative past entropy for PFD.
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Entropy is one of the significant measures in statistical mechanics. It
is essentially assigned in physics, in particular, in the second law of
thermodynamics. The notion of entropy was proposed by Shannon
(1948) as a quantitative measure of uncertainty. This concept of
entropy is axiomatic for rare events and outlier detection because the
presence of outliers increases the entropy (randomness or uncertainty)
of a dataset, and this increment can be used to measure the outlier of
an object.

The Rényi and g-entropies are parametric extensions of the Shannon
entropy introduced by Rényi (1961) and Havrda and Charvat (1967),
respectively. Tsallis (1988) applied the g-entropy in physical problems.
For a random variable X with a PDF f{x), the Rényi and g-entropies
measures are specified in Equations 3 and 4, respectively, as follows:

H, (X)leog{T f(x)rdx}, 3)

1-7

where 71 and 7>0, for g #1 and ¢ >0, we have

H,(X)= ﬁ[l— [ f(x)qu}. )

Several studies concerning the estimation of entropy have been
reported. For example, Cramer and Bagh (2011) discussed the
entropy in the Weibull distribution for progressive censoring. Cho et
al. (2014) derived the maximum likelihood (ML) estimators for the
entropy measure of a Rayleigh distribution using doubly generalized
type II hybrid censored samples. Chacko and Asha (2018) estimated
the entropy for a generalized exponential distribution under record
values. Liu and Gui (2019) studied the Shannon entropy for a Lomax
distribution using the generalized progressively hybrid censoring
scheme. Hassan and Zaky (2019) investigated the ML estimator of the
Shannon entropy for an inverse Weibull distribution using multiple
censored samples. Ahmadini et al. (2021) analyzed the Bayesian
and credible interval estimators of the dynamic cumulative residual
entropy for a Pareto II model. The entropy Bayesian estimator for a
Lomax distribution was studied by Hassan and Zaky (2021) based on
record values.

Outliers can negatively affect statistical analysis. Therefore, outliers
can increase error variance and reduce the power of statistical tests.
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Furthermore, outliers can seriously bias or influence estimates that
may be of substantive interest for more information on these problems
( Hamid, 2018a, 2018b; Kumaran et al., 2020; Rasmussen & Vicente,
1989; Schwager & Margolin, 1982).

In the literature, there are no research works on the estimation problem
of entropy measure in the presence of outliers. Therefore, the main
purpose of this manuscript is to scrutinize the estimation problem of
the Rényi and g-entropies for PFD in the presence of outliers. Herein,
the ML and Bayesian estimators are derived. The Bayesian estimators
of the entropies under four loss functions are obtained, namely
squared error loss function (SELF), linear exponential loss function
(LLF), general entropy loss function (GELF), and precautionary loss
function (PLF). In addition, the Markov chain Monte Carlo (MCMC)
procedure using the Gibbs sampling algorithm is employed owing to
the intricate forms of entropy Bayesian estimators. Furthermore, real
data experiments confirm the results of the study. The motivation and
methodology of the study are demonstrated in Figure 1.

Figure 1

Motivation and Procedure of the Study

Measures of
Information

Rényi Entropy Q-Entropy
|

Estimation of Entropies
Based on Power Function
Distribution

Motivation

In Presence of In Homogeneous Case
Outliers (s>>1) (No Outliers) (s=0)
— I
ayesian
Method = Maximum
le:::r\; Loss Likelihood
Method
Linear i Gibbs
Loss Function Sampling
General Entropy Algorithm Numerical
Loss Function Technique
I_ Measures of Accuracy I
Precautionary Loss
Function
Mean Square Errors Absolute Biases




Journal of ICT, 21, No. 1 (January) 2022, pp: 1-25

JOINT DISTRIBUTION OF RANDOM VARIABLES X, X,....,
X, IN PRESENCE OF S OUTLIERS

According to Dixit (1989) and Dixit and Nasiri (2001), let the random
variables X|, X,,..., X, be defined such that s of them (the number
of outliers) and the outliers themselves are unknown. The expected
lifetime of these unknown variables is large (or small) as compared
with that of the rest variables. Assume that the s random variables
are PFD with parameters, @, , and ¢ having the following PDF
mentioned in Equation 5 as:

fi(xa, B,0) = (O ¥ x*, 0<x< 6, a>0, f>1,0>0, 5)

where 6 and S are the scale parameters,« is the shape parameter, and
the remaining(7 —s )random variables are PFD with the PDF provided
in Equation 1. The likelihood function of X}, X,,..., X in the presence
of s outliers is given in Equation 6 as:

ﬂ( ) 1 g-na p-sa n . s
Lxi®)=—— ( Hfl( x) ZHf( 5 “gnf) [T+ X110, (6)
where C(n,s):[(sl((r:)_s)!], E=(a.8.0), ; iu (zi‘l - (; 1e)md 1(.) represents the

x>0

C . ) 1
indicator function defined as; I(x) = .
0 otherwise

Thus, the marginal distribution of PFD in the presence of s outliers is
as follows:

f(xE) = [ )f(x a 9)+( sz(X;a,ﬂﬂ)
=bald *x*1(0-x)+ba(SO)” % x* (SO -x),

which leads to the formula presented in Equation 7 as follows:
f(sB) = a0 4 (b +b1x", (7)

where b=2, b =(1- b)—u
n n
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EXPRESSIONS OF RENYI AND Q-ENTROPIES

Here, an explicit expression of the Rényi and g-entropies for PFD in the
presence of outliers is provided. Let X be a random variable following
PFD. Thus, the Rényi entropy of X is produced by substituting (7) in
(3) as shown in Equation 8:

H_(X)= élog{ j (@0 Y bB " +b) x””‘l)dx} = ilog J. (8)
D,

To compute the Rényi entropy, J should be obtained first as presented
in Equation 9:

b _ -1 B0 _6
J = (aef"’ )T (F +bj [bﬂa Jx(al)rdx_,’_b"‘x(al)rdx}
0

0

B L i _ -1 er(a—l)ﬂ (—Da1) _
= (a0 (ﬂa +b] [—T(a_l)ﬂ(bﬁ +b)|

©)

Therefore, the Rényi entropy of PFD represented in Equation 10, in
the presence of outliers, is given by substituting (9) into (8) as:

_ B (c-a-) | 7 a’ (b +b)" (10)
H:0) (l—rjlog{(bﬂ +b){6’”(r(0[—1)+1)}}

Similarly, after applying (9) in (4) with 7 = ¢, the g-entropy of X is
given in Equation 11 as follows:

H,(X) =( ﬁ}b ~(bp 15 ){ a'(bf " +b)" H (11

_ 0" (q(a—1)+1)
Expressions (10)and (11) of the Rényi and g-entropies are the functions
of parameters and outlier number. In addition, the required expression
of the Rényi and g-entropies in the homogenous (no-outlier) case is
resulted from Equations 10 and 11 after inserting f =1 or s = 0.

ESTIMATION OF ENTROPIES IN PRESENCE OF OUTLIERS

Here, the ML and Bayesian estimators of the entropies for PFD in the
presence of s outliers as well as the ML and Bayesian estimators in the
homogenous case (i.e., s = 0 or f = 1) are obtained.
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Maximum Likelihood Estimator of Entropies

The problem of deriving the ML estimators of the Rényi and
g-entropies for PFD in the presence of s outliers is considered. Let
X,, X,, ..., X, be a random sample of size n from PFD in the presence
of outliers with likelihood function (6). The logarithmic likelihood
function, denoted by, from a sample of n observations X, X,, ..., X,
is given by:

In/ =nlna—naln@-saln B—In[C(n,s)]+(a—-1)Y_Inx, +1n|:21111(ﬁ9—xm)}.
i=1 A =1 !

Assuming that the parameter @ is known, the estimate of 86 is the
sample quima, ie.,fO0isX () = max{X i}i=l .Therefore, the estimator
of B, say S, is obtained in Equation 12 as:

A~ X
7 (12)

Equation 13 gives the partial derivative of the logarithmic likelihood
function with respect to as follows:

6111%0[zé_sln(ﬂ)—nln(9)+glnxﬁ (13)

After substituting (12) into (13) and equating by zero, the ML estimator
of «, denoted by & ,can be expressed in Equation 14 as follows:

A n
o=

sln(X(”))+(n—s)1n(0)—2n:1nxi (14)
Based on the invariance property of the ML method, the ML
estimators of #.(X) and H,(X), denoted by H,(X)and Hq(X), are
obtained by directly substituting (12) and (14) into (3) and (4),
respectively. Furthermore, the ML estimators of #,(X) and H,(X)are
obtained in the homogenous case by setting f =1 or s = 0.

Entropy Bayesian Estimators

The Bayesian estimation of #,(X) and H,(X)for PFD in the presence
of outliers using different loss functions is discussed. The parameter
¢ is considered to be known and the parameters # and @ have uniform
and gamma distributions, respectively.
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Let X, X, X, be a random sample drawn from PFD with a set of
parameters =, where their likelihood function is defined in Equation
6. Thus, assuming the parameter independence and following Abdul-
Sathar and Krishnan (2019), the joint prior distribution, presented in
Equation 15, for & and f is given:

(a0, ) o [“TeJ e fud> 0. (15)

Combining (6) and (15), the joint posterior distribution, represented
in Equation 16, takes the form:

—al:nln¢9+d+slnﬂ—ilnxi:l—ilnxi—lnﬂ
7 (e flx)ca e AR (1o

The marginal posterior distributions of and can be expressed in
Equations 17 and 18:

" "
nng+d-y Inx, } Inx; ©

ﬂ_l- (a | E): A—lac+n—le [ ) p) ! J.ﬂ—(saﬁl)dﬁ’ (17)
1
and

1 —ilnxi ks ’ —a[nln6+d+slnﬁ—ilnx,]
T (Blx)= _,3 Ae = ‘[a”"%e = da. (18)
0

Here, , 7 con ’“[“‘"9”’“‘“/”g‘“']""”’?“" is the normalizing constant.
A= I I a e
10

da dp

From (16) and (18), the full posterior conditional distribution,

represented in Equation 19, for , given ﬁis as follows:
—a[d+nln€+s]nﬂ—ilnx,.]

7 (a| Bx)oca e T (1)
Note that 7 (a| f#,x) has a gamma density with a shape parameter
(n + ¢) and a scale parameter (d + nIn@+sIn - Inx,) Therefore,
the generated samples of @ can be obtained by using any gamma
generating routine. Similarly, from (16) and (17), the full posterior
conditional distribution, represented in Equation 20, for £ given « is:

m (Bla,x)oec p (20)

Moreover, it is noticed that 7; (# | @,x) has a Pareto density with
a shape parameter s. Therefore, the generated samples of # can be
casily obtained.
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The Bayesian estimators of « and g under SELF, for example,
g and By, are obtained as a posterior mean in Equations 21 and 22:

E3 00 —a[anlanilnx,]—ilnx,
Ao = E(a|x) = [a 7] (| x) da = A7 [[a" pe T dadp, (21)
0 10

" n
70{;1 Inf+d+sIn ﬁ—z Inx, ]*Zln X;
=

Bsgir =N [[ @ e T dadp. (22)
10

The Bayesian estimators of both parameters, expressed in Equations
23 and 24, under LLF, for example, &,,. and fj,,,, are given by:

Gy :(/}2yn(E[e”“]):(/};yn{ze”“7ﬁ(ax)da} (23)

_(_%)ln[ll\]c_Tﬂ(Wﬂ)aﬁnlea[mnlnmdilnx,]iln& do dﬂ],
10
BLLF :(_y) {II\TT ey [nln0+d+xlnﬁ*§1nx‘]—;lﬂxi_’lﬂ do dﬂ} (24)
10

The Bayesian estimators of @ and f, expressed in Equations 25 and
26, under GELF, for example, &,,,, and Sz are given by:

- VA
Oprr = E[a_s |£:|7% :[J.% 7 (| x) da] -

v/
1 L% o E+] 5 ﬂz[nlnﬂ-%-d ZInx] Zlnx

=-—Ija /. = dadp| ,
A 0

1

-1
- 1 -a nln9+d+slnﬁ Zlnx] (e+1)In p— Zlnx A
Borr = J.j‘ " - dadp . (26)

Furthermore, the B:ayes1an estimators of a and S using PLF, for
example, &, and f,,-,are obtained in Equations 27 and 28 as follows:

0

Oy =[E(0(2 |)_C):|0'5 =I:J.052 m(a|x) da]

0

@7

0.5

. l —a nln9+d ZInv] ZInx
ct+n+ sa i=1 da d ,
Ik ’
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0.5

- 1 Q% ﬂz{nln8+d+slnﬁfilnxi]+lnﬂfilnx,
Bor =| I J.a”"’le T dadp| . (28)
1o

The Bayesian estimators of #,(X) and H, (X) denoted by H_(X) and
H,(X)under SELF, LLF, GELF, and PLF are obtained by directly
substituting Equations 2128 into (3) and (4), respectively. As can be
seen, the mathematical forms of integrations (21)(28) are difficult
to compute analytically, so the MCMC procedure is utilized to
approximate these integrations. The Gibbs sampler procedure, a
class of MCMC procedure to calculate the Bayes estimates, will be
performed. Furthermore, the Bayesian estimators A, (X)and ,(X)
for no-outlier (homogenous) cases for f =1 or s = 0 are obtained.

SIMULATION STUDY AND RESULTS

A numerical study was conducted to assess the behavior of the
ML estimate (MLE) and Bayesian estimate (BE) for the Rényi
and g-entropies of PFD in the presence of outliers using different
loss functions. The ML estimator of the Rényi and g-entropies was
obtained. Moreover, Bayesian estimators were acquired using the
uniform and gamma priors for f and «, respectively, under SELF,
LLF, GELF, and PLF. Subsequently, the absolute biases (ABs) and
mean squared errors (MSEs) for different sample sizes and parameter
values were computed. The MCMC technique was used to generate
samples from the posterior distributions. The Gibbs sampler is one of
the best known MCMC sampling algorithms in the Bayesian literature.
This mechanism aims to find a Markov chain that has a limiting
distribution of the desired posterior, and then the simulated sample
(chain) can be used to compute any required characteristic. In this
study, a numerical procedure of the Gibbs sampler was implemented
via R 4.0.2 program (see https://cran.r-project.org/bin/windows/base/
01d/4.0.2/). According to Lynch (2007), the Gibbs algorithm proceeds
as follows:

Algorithm 1: The Gibbs algorithm

Step1: Initialize & as the starting garameter value of .
Step 2: For the given &, >generate A from the conditional distribution.
7 (fle,x).

Step 3: For the given f generate ¢ from the conditional distribution.
m (@] B,x).

Step 4: Set, = &, ,repeat Steps 2—3 M times, and record the sequence.
(a, B) After N burn-in iterations, the effect of the starting values is removed.

10




Journal of ICT, 21, No. 1 (January) 2022, pp: 1-25

To compare the estimates, MCMC simulations were conducted for
different sample sizes under SELF, LLF, GELF, and PLF. A random
sample X, Xy X, of size n =10, 20, 30, 40, and 50 was generated
from PFD for s =0, 1, and 2 using the quantile function. For example,
at s = 1, this random sample was drawn from the PFD defined in (5)
with parameters «, f ,and 6.The rest of (n—1) random samples were
drawn from the PFD defined in (1) with parameters ¢ and 6. For each
simulation, the parameter values were taken as («=2.8, =2, 6=1.5),
Set2 = (a=2.5, =2, 6=1.5), and 7,q = 0.2,0.8, respectively. The
hyper-parameters for gamma prior were taken as c=d=2. Furthermore,
letr7 and 0.5 for LLF and for GELF. All the results were obtained
based on the number of replications, i.e., M = 10,000.

The simulation results are summarized in Tables 1—4 and described
through Figures 2—8. The following can be concluded:

1. The MSEs of the MLEs and BEs of the Rényi and g-entropies
in the presence of outliers decreased with increasing sample
sizes (Figures 2—5 and Tables 1—4).

2. The MSEs and ABs of the MLEs and BEs of the Rényi and
g-entropies decreased as the exact values decreased with the
number of s.

3. The MSEs and ABs of the Rényi and g-entropy estimates
increased as the number of outliers increased (Tables 1—4 and
Figures 4-7).

4. The MSEs and ABs of the MLEs and BEs of the Rényi and
g-entropies in the presence of outliers were greater than those
in the homogenous case (Figures 4—7 and Tables 1—4).

5. The MSEs and ABs of the MLEs and BEs increased with the
number of outliers (Tables 1—4).

6. The MSEs of the BEs of the Rényi and g-entropies at s =0, 1,
and 2 under SELF had the smallest values as compared to the
MSEs of the BEs under other loss functions (Figures 2, 3, 6,
and 7 and Tables 1—4).

7. The MSEs of the BEs of the g-entropy under different loss
functions at s =0, 1, and 2 were smaller than those of the Rényi
entropy.

8. History plots for different BE estimates of the Rényi and
g-entropies under the four loss functions are represented in
Figure 8 in the presence of outliers. The plots of chains for the
Rényi and g-entropy estimates under the four loss functions
looked like a horizontal band with no long upward or downward
trends, which was indicative of convergence.

11



Journal of ICT, 21, No. 1 (January) 2022, pp: 1-25

Figure 2
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Figure 8

Bayesian Estimators of the Rényi and Q-Entropies in Presence of
Outliers for Set 1 and Set 2 at Different Loss Functions

a) Rényi Entropy Estimates under SELF and LLF (y = 0.5) at n = 50
for Set 1.
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Table 1

ABs and MSEs of the Rényi Entropy Estimates for s = 0, land 2 at t
=0.2

Setl = (a=2.8, =2, 6=1.5)

s =0
n 10 20 30 40 50
Exact value 0.40181
MLE AB 0.04309 0.02221 0.01684 0.01120 0.00749

MSE 0.02219 0.00890 0.00601 0.00411 0.00332
AB 0.07045 0.04276 0.02897 0.02267 0.01813

SELF

MSE 0.00496 0.00183 0.00084 0.00051 0.00033
AB 0.08196 0.05136 0.03561 0.02797 0.02260

LLF (n=0.5)
BE MSE 0.01040 0.00592 0.00407 0.00333 0.00254
AB 0.05745 0.03347 0.02192 0.01713 0.01349

LLF (n=-0.5)
MSE 0.00885 0.00535 0.00382 0.00321 0.00245
GELF AB 0.08838 0.05513 0.03820 0.02989 0.02415
(e=0.8) MSE 0.01156 0.00640 0.00433 0.00349 0.00264
PLF AB 0.06038 0.03588 0.02385 0.01867 0.01479
MSE 0.00856 0.00520 0.00373 0.00314 0.00241

s=1

Exact value 0.41335 0.40710 0.40523 0.40434 0.40382
MLE AB 0.08979 0.04253 0.02931 0.02024 0.01417
MSE 0.03888 0.01260 0.00750 0.00494 0.00382
SELF AB 0.08556 0.04905 0.03264 0.02527 0.02008
MSE 0.00732 0.00241 0.00107 0.00064 0.00040
AB 0.09780 0.05809 0.03963 0.03082 0.02478

LLF (n=0.5)
BE MSE 0.01408 0.00699 0.00454 0.00361 0.00272
AB 0.06970 0.03767 0.02400 0.01846 0.01418

LLF (n=-0.5)
MSE 0.01210 0.00625 0.00424 0.00347 0.00261
AB 0.10355 0.06162 0.04211 0.03268 0.02630

GELF (¢=10.8)
MSE 0.01518 0.00745 0.00479 0.00376 0.00281
PLF AB 0.07373 0.04097 0.02662 0.02057 0.01609
MSE 0.01187 0.00616 0.00416 0.00341 0.00257

s=2

Exact value 0.42940 0.41335 0.40907 0.40710 0.40597
MLE AB 0.10046 0.04467 0.03028 0.02066 0.01422

MSE 0.05041 0.01437 0.00820 0.00529 0.00402

(continued)
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Setl = (a=2.8, =2, 0=1.5)
AB 0.08777 0.04979 0.03359 0.02614 0.02095
MSE 0.00785 0.00248 0.00113 0.00068 0.00044
AB 0.09869 0.06803 0.03999 0.03125 0.02526
MSE 0.01508 0.00791 0.00458 0.00362 0.00292
AB 0.06970 0.04078 0.02675 0.02077 0.01647
MSE 0.01152 0.00650 0.00424 0.00347 0.00273
AB 0.09824 0.06389 0.04301 0.03376 0.02748

SELF

LLF (n=0.5)

BE LLF (n=-0.5)

GELF (£ = 0.8)
MSE 0.01794 0.00760 0.00484 0.00384 0.00271
PLE AB  0.07383 0.04355 0.02888 0.02246 0.01788
MSE 0.01236 0.00621 0.00417 0.00342 0.00259
Table 2

ABs and MSEs of the Rényi Entropy Estimates for s =0, land 2 at =0.8

Set2 =(a=2.5, =2, 6=1.5)
s=0
n 10 20 30 40 50
Exact value 0.16516
AB  0.08580 0.03769 0.02905 0.01910 0.01214

MLE MSE 0.07980 0.03374 0.02346 0.01640 0.01352
AB  0.14708 0.07686 0.05100 0.04007 0.03163
SELF MSE 0.02163 0.00591 0.00260 0.00161 0.00100
AB  0.17694 0.10315 0.06910 0.05023 0.04013

LLF (n=0.5)

MSE 0.05648 0.02876 0.01892 0.01436 0.01086
AB  0.10617 0.05864 0.03748 0.02955 0.02287
MSE 0.05169 0.02340 0.01658 0.01396 0.01057
AB  0.19508 0.10408 0.07090 0.05547 0.04437

BE LLF (n=-0.5)

GELF(e=0.8)
MSE 0.06288 0.02771 0.01864 0.01511 0.01135
PLF AB  0.11529 0.06189 0.04005 0.03158 0.02459
MSE 0.04895 0.02264 0.01614 0.01366 0.01038

s=1

Exact value 0.18197 0.18122 0.18001 0.17776 0.17238
AB  0.15162 0.07075 0.04935 0.03348 0.02265
MLE MSE 0.13583 0.04558 0.02844 0.01905 0.01514
SELF AB  0.15986 0.09016 0.05900 0.04584 0.03591

MSE 0.02555 0.00813 0.00348 0.00210 0.00129

LLF (1=0.5) AB 0.18972 0.11055 0.07424 0.05774 0.04593
MSE 0.06117 0.03034 0.01965 0.01572 0.01172

(continued)
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Set2 = (a=2.5, f=2, 6=1.5)
LLF (0 =-0.5) AB  0.11895 0.06078 0.03638 0.02778 0.01963
MSE 0.05456 0.02814 0.01896 0.01552 0.01159
GELF(e =0.8) AB 0.20786 0.12145 0.08189 0.06350 0.05065
MSE 0.06802 0.03296 0.02099 0.01651 0.01223
AB  0.12807 0.06906 0.04346 0.03378 0.02560

BE

PLE MSE 0.05206 0.02711 0.01824 0.01501 0.01122

s =2
Exact value 0.18909 0.18776 0.18573 0.18238 0.17862
MLE AB  0.18930 0.07904 0.05314 0.03541 0.02357
MSE 0.20040 0.05524 0.03217 0.02091 0.01622
SELF AB 0.18552 0.10755 0.07164 0.05566 0.04415

MSE 0.03442 0.01157 0.00513 0.00310 0.00195

LLF(n=0.5) AB 0.21026 0.12480 0.08462 0.06585 0.05267

MSE 0.06785 0.03319 0.02103 0.01654 0.01226

BE LLF(n=-0.5) AB 0.15741 0.08878 0.05776 0.04491 0.03523
MSE 0.05847 0.02970 0.01938 0.01567 0.01164

GELF(e=0.8) AB 0.22585 0.13429 0.09128 0.07085 0.05674

MSE 0.07465 0.03585 0.02241 0.01736 0.01280

PLF AB  0.16227 0.09233 0.06049 0.04705 0.03700

MSE 0.05712 0.02914 0.01904 0.01544 0.01151

Table 3

ABs and MSEs of the Q-Entropy Estimates fors =0, land 2 at g = 0.2

Setl = (a=2.8, f=2, 6=1.5)

s =0
n 10 20 30 40 50
Exact value 0.31198
MLE AB  0.03227 0.01716 0.01317 0.00872 0.00570

MSE 0.01425 0.00616 0.00425 0.00295 0.00242
AB  0.06333 0.03839 0.02603 0.02042 0.01630

SELF
MSE 0.00401 0.00147 0.00068 0.00042 0.00027
AB  0.14621 0.09208 0.06447 0.05070 0.01227

LLF (n=0.5)
BE MSE 0.02982 0.01510 0.00970 0.00754 0.00557
AB  0.05192 0.03028 0.01991 0.01561 0.01227

LLF (n=-0.5)
MSE 0.00697 0.00411 0.00290 0.00244 0.00185
AB  0.07939 0.04931 0.03414 0.02674 0.02156

GELF(e =0.8)

MSE 0.00931 0.00504 0.00336 0.00269 0.00203
(continued)
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Setl = (a=2.8, =2, 0=1.5)

AB  0.05439 0.03234 0.02155 0.01693

PLE MSE 0.00678 0.00401 0.00284 0.00239

s=1
Exact value 0.32201 0.31657 0.31495 0.31417
MLE AB  0.06952 0.03402 0.02368 0.01639
MSE 0.02404 0.00853 0.00524 0.00351
SELF AB  0.07780 0.04421 0.02938 0.02277
MSE 0.00605 0.00195 0.00086 0.00052
AB  0.14621 0.09208 0.06447 0.05070

LLF (n=0.5)

MSE  0.02982 0.01510 0.00970 0.00754
AB  0.06374 0.03425 0.02186 0.01685

BE LLF (=-0.5)
MSE  0.00980 0.00485 0.00324 0.00264
AB  0.09404 0.05536 0.03771 0.02926

GELF(z = 0.8)
MSE 0.01252  0.00593 0.00375 0.00292
AB  0.06721 0.03709 0.02411 0.01867

PLF
MSE 0.00966 0.00481 0.00320 0.00261
s=2

Exact value 0.33606 0.32201 0.31828 0.31657
MLE AB  0.07697 0.03559 0.02440 0.01670
MSE 0.03122 0.00979 0.00575 0.00378
SELF AB  0.08582 0.04500 0.03026 0.02356
MSE 0.00775 0.00202 0.00092 0.00055
AB  0.14621 0.09208 0.06447 0.05070

LLF (n=0.5)
MSE 0.02982 0.01510 0.00970 0.00754
AB  0.07452 0.03708 0.02429 0.01889

LLF (n=-0.5)
MSE 0.00999 0.00494 0.00327 0.00266
AB  0.09989 0.06488 0.03799 0.02997

GELF(g =0.8)
MSE 0.01367 0.00685 0.00379 0.00297
PLF AB  0.07721 0.03948 0.02613 0.02034

MSE 0.00980 0.00489 0.00323 0.00273

0.01339
0.00183

0.31372
0.01138
0.00276
0.01805
0.00033
0.04067
0.00559
0.01293
0.00198
0.02349
0.00217
0.01457
0.00196

0.31558
0.01139
0.00291
0.01883
0.00035
0.04067
0.00559
0.01493
0.00200
0.02367
0.00217
0.01615
0.00200
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Table 4

ABs and MSEs of the Q-Entropy Estimates fors = 0, land 2 at ¢ = 0.8

Set2 = (a=2.5, f=2, 6=1.5)

s=0
n 10 20 30 40 50
Exact value 0.1200
MLE AB 0.05717 0.02516 0.01951 0.01278 0.00797

MSE 0.03791 0.01652 0.01159 0.00816 0.00676
AB 0.10722 0.05585 0.03710 0.02919 0.02302
MSE 0.01150 0.00312 0.00138 0.00085 0.00053
AB  0.12866 0.06811 0.04632 0.03643 0.02907
MSE 0.02972 0.01311 0.00894 0.00736  0.00555
AB 0.07807 0.04286 0.02747 0.02170 0.01679
MSE 0.02673 0.01196 0.00843 0.00709 0.00537
AB 0.14188 0.07539 0.05134 0.04019 0.03212

SELF

LLF (n=0.5)

BE LLF(n=-0.5)

GELF(g =0.8)
MSE 0.03315 0.01436 0.00959 0.00775 0.00581
PLF AB  0.08443 0.04513 0.02928 0.02313 0.01800
MSE 0.02544 0.01160 0.00822 0.00695 0.00528

s=1

Exact value 0.12774 0.12720 0.12635 0.12475 0.12092
MLE AB 0.10116 0.04805 0.03368 0.02286 0.01536
MSE 0.06246 0.06547 0.01392 0.00941 0.00753
SELF AB  0.11630 0.00429 0.04286 0.03334 0.02609
MSE 0.01353 0.00441 0.00184 0.00111  0.00068
AB 0.13774 0.08005 0.05374 0.04182 0.03323

LLF n=0.5)

MSE 0.03214 0.01572 0.01011 0.00806  0.00599
AB  0.08715 0.04457 0.02679 0.02051 0.01453
MSE 0.02823 0.01433 0.00962 0.00787  0.00587
AB  0.15096 0.08792 0.05923 0.04595 0.03661

BE LLF(n=-0.5)

GELF(¢ = 0.8)
MSE 0.03581 0.01711 0.01081 0.00848 0.00626
PLF AB 0.09351 0.05041 0.03178 0.02475 0.01875
MSE 0.02705 0.01387 0.00929 0.00763 0.00570

s =2

Exact value 0.12825 0.12812 0.12730 0.12575 0.12569
MLE AB  0.12483 0.07344 0.03618 0.02413 0.01595
MSE 0.08996 0.07647 0.01569 0.01031 0.00806
SELF AB 0.13474 0.07790 0.06187 0.04033 0.03196
MSE 0.01816 0.00607 0.00569 0.00163 0.00102

(continued)

18



Journal of ICT, 21, No. 1 (January) 2022, pp: 1-25

Set2 = (a=2.5, =2, 6=1.5)
LLF(m=0.5) AB 0.15257 0.09025 0.06115 0.04760 0.03803
MSE 0.03571 0.01722 0.01083 0.00849 0.00628
LLF (n=-0.5) AB 0.11460 0.06449 0.04198 0.03268 0.02561
MSE 0.03053 0.01527 0.00990 0.00799 0.00593
BE GELF(e=0.8) AB 0.16398 0.09712 0.06594 0.05120 0.04095
MSE 0.03935 0.01863 0.01156 0.00893 0.00656
PLF AB 0.11798 0.06699 0.04391 0.03419 0.02686
MSE 0.02988 0.01500 0.00974 0.00788 0.00586

ILLUSTRATIVE EXAMPLE

The real datasets were utilized to verify the proposed estimators
examined in the simulation study.

Dataset 1: In an early paper on regression analysis of lifetime data,
Feigl and Zelen (1965) provided data on survival times for 33
patients suffering from acute myelogenous leukemia. These survival
times depended on several factors, such as age, time of diagnosis,
and the body’s response to treatment. In this regard, survival times
between patients were different, which led to the same distribution
with different parameters. The present study used the Kolmogorov—
Smirnov (KS) test for the real dataset, and its p-value implied that
PFD in the presence of outliers fitted the data. The estimated PDF and
CDF for leukemia data are demonstrated in Figure 9.

Figure 9

Plots of the Estimated PDF and CDF for Leukemia Data
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Therefore, on the basis of the real data, the estimates of the entropies
were computed using the proposed estimation method. The results are
listed in Table 5.
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Table 5

Estimates of the Entropies and their MSEs (in Brackets) for Leukemia
Data

Rényi entropy g—entropy
s=0 s =1 s =2 s=0 s =1 s =2
MLE
0.14726 0.16520 0.26470 0.92345 0.94560  0.97865
(0.06169) (0.07787)  (0.08089) (0.34769) (0.38630) (0.47887)
SELF 0.33642 0.29307 0.38051 0.70851 0.71536  0.71372

(0.08225)  (0.07924) (0.08452) (0.04964) (0.06920) (0.08369)

LLF 034580 040411 048392  0.714621 0.713202 0.817984
(M=0.5 (0.08280) (0.08542) (0.09466) (0.05239) (0.06727) (0.08326)

LLF 034133 029695 031366  0.71184  0.71536  0.81501
(M=-0.5 (0.08254) (0.07954) (0.08077) (0.05113) (0.06846) (0.08443)
GELF 029610 026368 034233 071406  0.71555  0.71566
(e=0.8) (0.07947) (0.07670) (0.08260) (0.05214) (0.06861) (0.08481)

0.35792 0.30928 0.40217 0.70682 0.71532 0.71289

PLE. 0.08345) (0.08046) (0.08536) (0.04889) (0.06969) (0.08321)

The observed results showed that the MSEs of the MLEs and BEs of
H_(X) and H_ (X)in the presence of outliers were larger than those
in the homogenous case. The MSEs of the BEs of H, (X) under different
loss functions at s = 0, 1, and 2 were smaller than those of H_(X).In
addition, it can be concluded that the entropy estimates increased with
s; 1.e., the estimated values of the entropies increased as the number
of outliers increased.

Dataset 2: The real dataset was studied by Dixit and Nooghabi (2011).
The data represented the lifetime distribution of 20 electronic tubes
with insufficient power supply. It was observed that some tubes (1-2)
were of different quality. The p-value of the KS test showed that the
PFD fitted this real dataset. The estimated PDF and CDF are presented
in Figure 10.
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Figure 10

Plots of the Estimated PDF and CDF for 20 Electronic Tubes
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Therefore, on the basis of the real data, the estimates of the entropies
were computed using the estimation method proposed herein. The
results are presented in Table 6.

Table 6

Estimates of the Entropies and their MSEs (in Brackets) for 20
Electronic Tubes

Rényi entropy g—entropy
s=0 s=1 s=2 s=0 s =1 s =2
MLE
029739 039739 0.42650  0.85267  0.86243  0.93729
(0.18124)  (0.19691) (0.26050) (0.04558) (0.05370) (0.10449)
SELF 0.41297  0.42389 0.42806  0.77034  0.83674  0.83822

(0.08101)  (0.09040) (0.09522) (0.01474) (0.04245) (0.04674)
LLF 041119 041786 042514  0.79960  0.81842  0.86441
(M=0.5) (0.08000) (0.08682) (0.09342) (0.02270) (0.02813) (0.06269)
LLF 041336 041801 041973 071971  0.82683  0.83619
(M=-0.5 (0.08001) (0.08689) (0.09015) (0.00501) (0.03847) (0.04087)
GELF 040744 041265 041721  0.82012  0.85247  0.85289
(£=0.8) (0.07789) (0.08377) (0.08864) (0.02931) (0.04918) (0.05705)

0.41603 0.43149 0.43215 0.73575  0.82784  0.81823

PLE 0.08276) (0.09503) (0.09776) (0.00754) (0.03887) (0.04169)

The observed results showed that the MSEs of the MLEs and BEs of
H_(X) and H,(X)ats=1and s =2 were larger than those at s = 0.
The MSEs of the BEs of /(X )under different loss functions at s = 0,
1, and 2 were smaller than those of H_(X).Finally, it can be concluded
that the entropy estimates increased with s; i.e., the estimated values
of the entropies increased as the number of outliers increased.
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CONCLUSION

This paper proposes an estimation method of H, (X) and H_ (X) for
PFD in the presence of no outliers and s outliers. The ML estimators
of the Rényi and g-entropies were obtained. The Bayesian estimators
under uniform and gamma priors were derived for several loss
functions. This study employed the MCMC procedure to obtain the
Bayes estimates based on Gibbs sampling. The performance of the
entropy estimates for PFD was examined in terms of their ABs and
MSEs based on 10,000 replications. Real data analysis and simulation
studies were conducted. The numerical results of the simulation study
indicated that the MSEs of the ML and BEs of the entropies decrease
with the sample sizes. The MSEs of both entropy estimates in the
no outlier case are better than those in the outlier case. Generally,
the MSEs of the Bayesian entropies under SELF are smaller than the
MSEs of other loss functions in a majority of the investigated cases.
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