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ABSTRACT

In combinatorial design theory, clustering elements into a set of 
three elements is the heart of classifying data, which has recently 
received considerable attention in the fields of network algorithms, 
cryptography, design and analysis of algorithms, statistics, and 
information theory. This article provides insight into formulating 
an algorithm for a new type of triple system, called a Butterfly 
triple system. Basically, in this algorithm development, a starter of 
cyclic near-resolvable        cycle system of the   fold complete graph   
 
        was employed to construct the starter of cyclic           star  
 
decomposition of      These starters were then decomposed into 
triples and classified as a starter of a cyclic Butterfly triple system. 
The obtained starter set generated a triple system of order      A special 
reference for case                            was presented to demonstrate the 
development of the Butterfly triple system.
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𝑣𝑣 ≡ 9 (mod 12) was presented to demonstrate the development of the Butterfly triple system. 
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INTRODUCTION 
 
In this paper, all graphs are considered to be undirected odd order vertices in ℤ𝑣𝑣. 𝐾𝐾𝑣𝑣 will denote the 
complete graph of order 𝑣𝑣, and 𝜆𝜆𝐾𝐾𝑣𝑣 will denote the 𝜆𝜆-fold complete graph of order 𝑣𝑣, which is obtained 
by substituting each edge in 𝐾𝐾𝑣𝑣 by 𝜆𝜆 parallel edges. A 𝑘𝑘-cycle, written 𝐶𝐶𝑘𝑘 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘), consists of 
𝑘𝑘 distinct vertices {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘} and 𝑘𝑘 edges {𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1}, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, where 𝑐𝑐𝑘𝑘+1 = 𝑐𝑐1. A 𝑘𝑘-star, written 
𝑆𝑆𝑘𝑘 = (𝑣𝑣0;  𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘), is a graph with one vertex 𝑣𝑣0 of degree 𝑘𝑘 and 𝑘𝑘 vertices {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘} of 
degree one. 
 
Let 𝐻𝐻 and 𝐺𝐺 be graphs. An 𝐻𝐻-decomposition of 𝐺𝐺 (or a (𝐺𝐺, 𝐻𝐻)-design) is a collection ℋ of subgraphs 
of 𝐺𝐺, each isomorphic to 𝐻𝐻, whose edges partition the edges of 𝐺𝐺 (Heinrich, 1996). When 𝐻𝐻 is a 𝑘𝑘-
cycle, such a decomposition is known as a 𝑘𝑘-cycle system of 𝐺𝐺. A (𝐺𝐺, 𝐻𝐻)-design with vertices in ℤ𝑣𝑣 is 
said to be cyclic if ℋ = {Γ1, Γ2, … , Γ𝑛𝑛} is the collection of all subgraphs in (𝜆𝜆𝐾𝐾𝑣𝑣, 𝐻𝐻)-design. Then, there 

How to cite this article: 
Ibrahim, H., Aldiabat, R., & Karim, S. (2022). Butterfly triple system algorithm based on graph theory. Journal of Information 
and Communication Technology, 21(1), xx-xx. https://doi.org/10.32890/jict2022.21.1.2 
 
 

Butterfly Triple System Algorithm Based on Graph Theory 
 

*1Haslinda Ibrahim, 2Raja'i Aldiabat & 3Sharmila Karim 
1,2,3School of Quantitative Sciences, Universiti Utara Malaysia, Malaysia 

 
1linda@uum.edu.my 

 2rajae227@yahoo.com 
3mila@uum.edu.my 

*Corresponding author 
 

Received: 8/11/2020  Revised: 22/6/2021  Accepted: 5/7/2021  Published: 27/10/2022 
 
 

ABSTRACT 
 
In combinatorial design theory, clustering elements into a set of three elements is the heart of classifying 
data, which has recently received considerable attention in the fields of network algorithms, 
cryptography, design and analysis of algorithms, statistics, and information theory. This article provides 
insight into formulating an algorithm for a new type of triple system, called a Butterfly triple system. 
Basically, in this algorithm development, a starter of cyclic near-resolvable (𝑣𝑣−1

2 )-cycle system of the 

2-fold complete graph 2𝐾𝐾𝑣𝑣 was employed to construct the starter of cyclic (𝑣𝑣−1
2 )-star decomposition of 

2𝐾𝐾𝑣𝑣. These starters were then decomposed into triples and classified as a starter of a cyclic Butterfly 
triple system. The obtained starter set generated a triple system of order 𝑣𝑣. A special reference for case 
𝑣𝑣 ≡ 9 (mod 12) was presented to demonstrate the development of the Butterfly triple system. 
 
Keywords: Cyclic triple system, graph decompositions, 𝝀𝝀-fold complete graph. 
 
 

INTRODUCTION 
 
In this paper, all graphs are considered to be undirected odd order vertices in ℤ𝑣𝑣. 𝐾𝐾𝑣𝑣 will denote the 
complete graph of order 𝑣𝑣, and 𝜆𝜆𝐾𝐾𝑣𝑣 will denote the 𝜆𝜆-fold complete graph of order 𝑣𝑣, which is obtained 
by substituting each edge in 𝐾𝐾𝑣𝑣 by 𝜆𝜆 parallel edges. A 𝑘𝑘-cycle, written 𝐶𝐶𝑘𝑘 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘), consists of 
𝑘𝑘 distinct vertices {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘} and 𝑘𝑘 edges {𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1}, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, where 𝑐𝑐𝑘𝑘+1 = 𝑐𝑐1. A 𝑘𝑘-star, written 
𝑆𝑆𝑘𝑘 = (𝑣𝑣0;  𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘), is a graph with one vertex 𝑣𝑣0 of degree 𝑘𝑘 and 𝑘𝑘 vertices {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘} of 
degree one. 
 
Let 𝐻𝐻 and 𝐺𝐺 be graphs. An 𝐻𝐻-decomposition of 𝐺𝐺 (or a (𝐺𝐺, 𝐻𝐻)-design) is a collection ℋ of subgraphs 
of 𝐺𝐺, each isomorphic to 𝐻𝐻, whose edges partition the edges of 𝐺𝐺 (Heinrich, 1996). When 𝐻𝐻 is a 𝑘𝑘-
cycle, such a decomposition is known as a 𝑘𝑘-cycle system of 𝐺𝐺. A (𝐺𝐺, 𝐻𝐻)-design with vertices in ℤ𝑣𝑣 is 
said to be cyclic if ℋ = {Γ1, Γ2, … , Γ𝑛𝑛} is the collection of all subgraphs in (𝜆𝜆𝐾𝐾𝑣𝑣, 𝐻𝐻)-design. Then, there 

How to cite this article: 
Ibrahim, H., Aldiabat, R., & Karim, S. (2022). Butterfly triple system algorithm based on graph theory. Journal of Information 
and Communication Technology, 21(1), xx-xx. https://doi.org/10.32890/jict2022.21.1.2 
 
 

Butterfly Triple System Algorithm Based on Graph Theory 
 

*1Haslinda Ibrahim, 2Raja'i Aldiabat & 3Sharmila Karim 
1,2,3School of Quantitative Sciences, Universiti Utara Malaysia, Malaysia 

 
1linda@uum.edu.my 

 2rajae227@yahoo.com 
3mila@uum.edu.my 

*Corresponding author 
 

Received: 8/11/2020  Revised: 22/6/2021  Accepted: 5/7/2021  Published: 27/10/2022 
 
 

ABSTRACT 
 
In combinatorial design theory, clustering elements into a set of three elements is the heart of classifying 
data, which has recently received considerable attention in the fields of network algorithms, 
cryptography, design and analysis of algorithms, statistics, and information theory. This article provides 
insight into formulating an algorithm for a new type of triple system, called a Butterfly triple system. 
Basically, in this algorithm development, a starter of cyclic near-resolvable (𝑣𝑣−1

2 )-cycle system of the 

2-fold complete graph 2𝐾𝐾𝑣𝑣 was employed to construct the starter of cyclic (𝑣𝑣−1
2 )-star decomposition of 

2𝐾𝐾𝑣𝑣. These starters were then decomposed into triples and classified as a starter of a cyclic Butterfly 
triple system. The obtained starter set generated a triple system of order 𝑣𝑣. A special reference for case 
𝑣𝑣 ≡ 9 (mod 12) was presented to demonstrate the development of the Butterfly triple system. 
 
Keywords: Cyclic triple system, graph decompositions, 𝝀𝝀-fold complete graph. 
 
 

INTRODUCTION 
 
In this paper, all graphs are considered to be undirected odd order vertices in ℤ𝑣𝑣. 𝐾𝐾𝑣𝑣 will denote the 
complete graph of order 𝑣𝑣, and 𝜆𝜆𝐾𝐾𝑣𝑣 will denote the 𝜆𝜆-fold complete graph of order 𝑣𝑣, which is obtained 
by substituting each edge in 𝐾𝐾𝑣𝑣 by 𝜆𝜆 parallel edges. A 𝑘𝑘-cycle, written 𝐶𝐶𝑘𝑘 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘), consists of 
𝑘𝑘 distinct vertices {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘} and 𝑘𝑘 edges {𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1}, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, where 𝑐𝑐𝑘𝑘+1 = 𝑐𝑐1. A 𝑘𝑘-star, written 
𝑆𝑆𝑘𝑘 = (𝑣𝑣0;  𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘), is a graph with one vertex 𝑣𝑣0 of degree 𝑘𝑘 and 𝑘𝑘 vertices {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘} of 
degree one. 
 
Let 𝐻𝐻 and 𝐺𝐺 be graphs. An 𝐻𝐻-decomposition of 𝐺𝐺 (or a (𝐺𝐺, 𝐻𝐻)-design) is a collection ℋ of subgraphs 
of 𝐺𝐺, each isomorphic to 𝐻𝐻, whose edges partition the edges of 𝐺𝐺 (Heinrich, 1996). When 𝐻𝐻 is a 𝑘𝑘-
cycle, such a decomposition is known as a 𝑘𝑘-cycle system of 𝐺𝐺. A (𝐺𝐺, 𝐻𝐻)-design with vertices in ℤ𝑣𝑣 is 
said to be cyclic if ℋ = {Γ1, Γ2, … , Γ𝑛𝑛} is the collection of all subgraphs in (𝜆𝜆𝐾𝐾𝑣𝑣, 𝐻𝐻)-design. Then, there 

How to cite this article: 
Ibrahim, H., Aldiabat, R., & Karim, S. (2022). Butterfly triple system algorithm based on graph theory. Journal of Information 
and Communication Technology, 21(1), xx-xx. https://doi.org/10.32890/jict2022.21.1.2 
 
 

Butterfly Triple System Algorithm Based on Graph Theory 
 

*1Haslinda Ibrahim, 2Raja'i Aldiabat & 3Sharmila Karim 
1,2,3School of Quantitative Sciences, Universiti Utara Malaysia, Malaysia 

 
1linda@uum.edu.my 

 2rajae227@yahoo.com 
3mila@uum.edu.my 

*Corresponding author 
 

Received: 8/11/2020  Revised: 22/6/2021  Accepted: 5/7/2021  Published: 27/10/2022 
 
 

ABSTRACT 
 
In combinatorial design theory, clustering elements into a set of three elements is the heart of classifying 
data, which has recently received considerable attention in the fields of network algorithms, 
cryptography, design and analysis of algorithms, statistics, and information theory. This article provides 
insight into formulating an algorithm for a new type of triple system, called a Butterfly triple system. 
Basically, in this algorithm development, a starter of cyclic near-resolvable (𝑣𝑣−1

2 )-cycle system of the 

2-fold complete graph 2𝐾𝐾𝑣𝑣 was employed to construct the starter of cyclic (𝑣𝑣−1
2 )-star decomposition of 

2𝐾𝐾𝑣𝑣. These starters were then decomposed into triples and classified as a starter of a cyclic Butterfly 
triple system. The obtained starter set generated a triple system of order 𝑣𝑣. A special reference for case 
𝑣𝑣 ≡ 9 (mod 12) was presented to demonstrate the development of the Butterfly triple system. 
 
Keywords: Cyclic triple system, graph decompositions, 𝝀𝝀-fold complete graph. 
 
 

INTRODUCTION 
 
In this paper, all graphs are considered to be undirected odd order vertices in ℤ𝑣𝑣. 𝐾𝐾𝑣𝑣 will denote the 
complete graph of order 𝑣𝑣, and 𝜆𝜆𝐾𝐾𝑣𝑣 will denote the 𝜆𝜆-fold complete graph of order 𝑣𝑣, which is obtained 
by substituting each edge in 𝐾𝐾𝑣𝑣 by 𝜆𝜆 parallel edges. A 𝑘𝑘-cycle, written 𝐶𝐶𝑘𝑘 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘), consists of 
𝑘𝑘 distinct vertices {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘} and 𝑘𝑘 edges {𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1}, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, where 𝑐𝑐𝑘𝑘+1 = 𝑐𝑐1. A 𝑘𝑘-star, written 
𝑆𝑆𝑘𝑘 = (𝑣𝑣0;  𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘), is a graph with one vertex 𝑣𝑣0 of degree 𝑘𝑘 and 𝑘𝑘 vertices {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘} of 
degree one. 
 
Let 𝐻𝐻 and 𝐺𝐺 be graphs. An 𝐻𝐻-decomposition of 𝐺𝐺 (or a (𝐺𝐺, 𝐻𝐻)-design) is a collection ℋ of subgraphs 
of 𝐺𝐺, each isomorphic to 𝐻𝐻, whose edges partition the edges of 𝐺𝐺 (Heinrich, 1996). When 𝐻𝐻 is a 𝑘𝑘-
cycle, such a decomposition is known as a 𝑘𝑘-cycle system of 𝐺𝐺. A (𝐺𝐺, 𝐻𝐻)-design with vertices in ℤ𝑣𝑣 is 
said to be cyclic if ℋ = {Γ1, Γ2, … , Γ𝑛𝑛} is the collection of all subgraphs in (𝜆𝜆𝐾𝐾𝑣𝑣, 𝐻𝐻)-design. Then, there 

How to cite this article: 
Ibrahim, H., Aldiabat, R., & Karim, S. (2022). Butterfly triple system algorithm based on graph theory. Journal of Information 
and Communication Technology, 21(1), xx-xx. https://doi.org/10.32890/jict2022.21.1.2 
 
 

Butterfly Triple System Algorithm Based on Graph Theory 
 

*1Haslinda Ibrahim, 2Raja'i Aldiabat & 3Sharmila Karim 
1,2,3School of Quantitative Sciences, Universiti Utara Malaysia, Malaysia 

 
1linda@uum.edu.my 

 2rajae227@yahoo.com 
3mila@uum.edu.my 

*Corresponding author 
 

Received: 8/11/2020  Revised: 22/6/2021  Accepted: 5/7/2021  Published: 27/10/2022 
 
 

ABSTRACT 
 
In combinatorial design theory, clustering elements into a set of three elements is the heart of classifying 
data, which has recently received considerable attention in the fields of network algorithms, 
cryptography, design and analysis of algorithms, statistics, and information theory. This article provides 
insight into formulating an algorithm for a new type of triple system, called a Butterfly triple system. 
Basically, in this algorithm development, a starter of cyclic near-resolvable (𝑣𝑣−1

2 )-cycle system of the 

2-fold complete graph 2𝐾𝐾𝑣𝑣 was employed to construct the starter of cyclic (𝑣𝑣−1
2 )-star decomposition of 

2𝐾𝐾𝑣𝑣. These starters were then decomposed into triples and classified as a starter of a cyclic Butterfly 
triple system. The obtained starter set generated a triple system of order 𝑣𝑣. A special reference for case 
𝑣𝑣 ≡ 9 (mod 12) was presented to demonstrate the development of the Butterfly triple system. 
 
Keywords: Cyclic triple system, graph decompositions, 𝝀𝝀-fold complete graph. 
 
 

INTRODUCTION 
 
In this paper, all graphs are considered to be undirected odd order vertices in ℤ𝑣𝑣. 𝐾𝐾𝑣𝑣 will denote the 
complete graph of order 𝑣𝑣, and 𝜆𝜆𝐾𝐾𝑣𝑣 will denote the 𝜆𝜆-fold complete graph of order 𝑣𝑣, which is obtained 
by substituting each edge in 𝐾𝐾𝑣𝑣 by 𝜆𝜆 parallel edges. A 𝑘𝑘-cycle, written 𝐶𝐶𝑘𝑘 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘), consists of 
𝑘𝑘 distinct vertices {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘} and 𝑘𝑘 edges {𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1}, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, where 𝑐𝑐𝑘𝑘+1 = 𝑐𝑐1. A 𝑘𝑘-star, written 
𝑆𝑆𝑘𝑘 = (𝑣𝑣0;  𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘), is a graph with one vertex 𝑣𝑣0 of degree 𝑘𝑘 and 𝑘𝑘 vertices {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘} of 
degree one. 
 
Let 𝐻𝐻 and 𝐺𝐺 be graphs. An 𝐻𝐻-decomposition of 𝐺𝐺 (or a (𝐺𝐺, 𝐻𝐻)-design) is a collection ℋ of subgraphs 
of 𝐺𝐺, each isomorphic to 𝐻𝐻, whose edges partition the edges of 𝐺𝐺 (Heinrich, 1996). When 𝐻𝐻 is a 𝑘𝑘-
cycle, such a decomposition is known as a 𝑘𝑘-cycle system of 𝐺𝐺. A (𝐺𝐺, 𝐻𝐻)-design with vertices in ℤ𝑣𝑣 is 
said to be cyclic if ℋ = {Γ1, Γ2, … , Γ𝑛𝑛} is the collection of all subgraphs in (𝜆𝜆𝐾𝐾𝑣𝑣, 𝐻𝐻)-design. Then, there 

How to cite this article: 
Ibrahim, H., Aldiabat, R., & Karim, S. (2022). Butterfly triple system algorithm based on graph theory. Journal of Information 
and Communication Technology, 21(1), xx-xx. https://doi.org/10.32890/jict2022.21.1.2 
 
 

Butterfly Triple System Algorithm Based on Graph Theory 
 

*1Haslinda Ibrahim, 2Raja'i Aldiabat & 3Sharmila Karim 
1,2,3School of Quantitative Sciences, Universiti Utara Malaysia, Malaysia 

 
1linda@uum.edu.my 

 2rajae227@yahoo.com 
3mila@uum.edu.my 

*Corresponding author 
 

Received: 8/11/2020  Revised: 22/6/2021  Accepted: 5/7/2021  Published: 27/10/2022 
 
 

ABSTRACT 
 
In combinatorial design theory, clustering elements into a set of three elements is the heart of classifying 
data, which has recently received considerable attention in the fields of network algorithms, 
cryptography, design and analysis of algorithms, statistics, and information theory. This article provides 
insight into formulating an algorithm for a new type of triple system, called a Butterfly triple system. 
Basically, in this algorithm development, a starter of cyclic near-resolvable (𝑣𝑣−1

2 )-cycle system of the 

2-fold complete graph 2𝐾𝐾𝑣𝑣 was employed to construct the starter of cyclic (𝑣𝑣−1
2 )-star decomposition of 

2𝐾𝐾𝑣𝑣. These starters were then decomposed into triples and classified as a starter of a cyclic Butterfly 
triple system. The obtained starter set generated a triple system of order 𝑣𝑣. A special reference for case 
𝑣𝑣 ≡ 9 (mod 12) was presented to demonstrate the development of the Butterfly triple system. 
 
Keywords: Cyclic triple system, graph decompositions, 𝝀𝝀-fold complete graph. 
 
 

INTRODUCTION 
 
In this paper, all graphs are considered to be undirected odd order vertices in ℤ𝑣𝑣. 𝐾𝐾𝑣𝑣 will denote the 
complete graph of order 𝑣𝑣, and 𝜆𝜆𝐾𝐾𝑣𝑣 will denote the 𝜆𝜆-fold complete graph of order 𝑣𝑣, which is obtained 
by substituting each edge in 𝐾𝐾𝑣𝑣 by 𝜆𝜆 parallel edges. A 𝑘𝑘-cycle, written 𝐶𝐶𝑘𝑘 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘), consists of 
𝑘𝑘 distinct vertices {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘} and 𝑘𝑘 edges {𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1}, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, where 𝑐𝑐𝑘𝑘+1 = 𝑐𝑐1. A 𝑘𝑘-star, written 
𝑆𝑆𝑘𝑘 = (𝑣𝑣0;  𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘), is a graph with one vertex 𝑣𝑣0 of degree 𝑘𝑘 and 𝑘𝑘 vertices {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘} of 
degree one. 
 
Let 𝐻𝐻 and 𝐺𝐺 be graphs. An 𝐻𝐻-decomposition of 𝐺𝐺 (or a (𝐺𝐺, 𝐻𝐻)-design) is a collection ℋ of subgraphs 
of 𝐺𝐺, each isomorphic to 𝐻𝐻, whose edges partition the edges of 𝐺𝐺 (Heinrich, 1996). When 𝐻𝐻 is a 𝑘𝑘-
cycle, such a decomposition is known as a 𝑘𝑘-cycle system of 𝐺𝐺. A (𝐺𝐺, 𝐻𝐻)-design with vertices in ℤ𝑣𝑣 is 
said to be cyclic if ℋ = {Γ1, Γ2, … , Γ𝑛𝑛} is the collection of all subgraphs in (𝜆𝜆𝐾𝐾𝑣𝑣, 𝐻𝐻)-design. Then, there 

How to cite this article: 
Ibrahim, H., Aldiabat, R., & Karim, S. (2022). Butterfly triple system algorithm based on graph theory. Journal of Information 
and Communication Technology, 21(1), xx-xx. https://doi.org/10.32890/jict2022.21.1.2 
 
 

Butterfly Triple System Algorithm Based on Graph Theory 
 

*1Haslinda Ibrahim, 2Raja'i Aldiabat & 3Sharmila Karim 
1,2,3School of Quantitative Sciences, Universiti Utara Malaysia, Malaysia 

 
1linda@uum.edu.my 

 2rajae227@yahoo.com 
3mila@uum.edu.my 

*Corresponding author 
 

Received: 8/11/2020  Revised: 22/6/2021  Accepted: 5/7/2021  Published: 27/10/2022 
 
 

ABSTRACT 
 
In combinatorial design theory, clustering elements into a set of three elements is the heart of classifying 
data, which has recently received considerable attention in the fields of network algorithms, 
cryptography, design and analysis of algorithms, statistics, and information theory. This article provides 
insight into formulating an algorithm for a new type of triple system, called a Butterfly triple system. 
Basically, in this algorithm development, a starter of cyclic near-resolvable (𝑣𝑣−1

2 )-cycle system of the 

2-fold complete graph 2𝐾𝐾𝑣𝑣 was employed to construct the starter of cyclic (𝑣𝑣−1
2 )-star decomposition of 

2𝐾𝐾𝑣𝑣. These starters were then decomposed into triples and classified as a starter of a cyclic Butterfly 
triple system. The obtained starter set generated a triple system of order 𝑣𝑣. A special reference for case 
𝑣𝑣 ≡ 9 (mod 12) was presented to demonstrate the development of the Butterfly triple system. 
 
Keywords: Cyclic triple system, graph decompositions, 𝝀𝝀-fold complete graph. 
 
 

INTRODUCTION 
 
In this paper, all graphs are considered to be undirected odd order vertices in ℤ𝑣𝑣. 𝐾𝐾𝑣𝑣 will denote the 
complete graph of order 𝑣𝑣, and 𝜆𝜆𝐾𝐾𝑣𝑣 will denote the 𝜆𝜆-fold complete graph of order 𝑣𝑣, which is obtained 
by substituting each edge in 𝐾𝐾𝑣𝑣 by 𝜆𝜆 parallel edges. A 𝑘𝑘-cycle, written 𝐶𝐶𝑘𝑘 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘), consists of 
𝑘𝑘 distinct vertices {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘} and 𝑘𝑘 edges {𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1}, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, where 𝑐𝑐𝑘𝑘+1 = 𝑐𝑐1. A 𝑘𝑘-star, written 
𝑆𝑆𝑘𝑘 = (𝑣𝑣0;  𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘), is a graph with one vertex 𝑣𝑣0 of degree 𝑘𝑘 and 𝑘𝑘 vertices {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘} of 
degree one. 
 
Let 𝐻𝐻 and 𝐺𝐺 be graphs. An 𝐻𝐻-decomposition of 𝐺𝐺 (or a (𝐺𝐺, 𝐻𝐻)-design) is a collection ℋ of subgraphs 
of 𝐺𝐺, each isomorphic to 𝐻𝐻, whose edges partition the edges of 𝐺𝐺 (Heinrich, 1996). When 𝐻𝐻 is a 𝑘𝑘-
cycle, such a decomposition is known as a 𝑘𝑘-cycle system of 𝐺𝐺. A (𝐺𝐺, 𝐻𝐻)-design with vertices in ℤ𝑣𝑣 is 
said to be cyclic if ℋ = {Γ1, Γ2, … , Γ𝑛𝑛} is the collection of all subgraphs in (𝜆𝜆𝐾𝐾𝑣𝑣, 𝐻𝐻)-design. Then, there 

How to cite this article: 
Ibrahim, H., Aldiabat, R., & Karim, S. (2022). Butterfly triple system algorithm based on graph theory. Journal of Information 
and Communication Technology, 21(1), xx-xx. https://doi.org/10.32890/jict2022.21.1.2 
 
 

Butterfly Triple System Algorithm Based on Graph Theory 
 

*1Haslinda Ibrahim, 2Raja'i Aldiabat & 3Sharmila Karim 
1,2,3School of Quantitative Sciences, Universiti Utara Malaysia, Malaysia 

 
1linda@uum.edu.my 

 2rajae227@yahoo.com 
3mila@uum.edu.my 

*Corresponding author 
 

Received: 8/11/2020  Revised: 22/6/2021  Accepted: 5/7/2021  Published: 27/10/2022 
 
 

ABSTRACT 
 
In combinatorial design theory, clustering elements into a set of three elements is the heart of classifying 
data, which has recently received considerable attention in the fields of network algorithms, 
cryptography, design and analysis of algorithms, statistics, and information theory. This article provides 
insight into formulating an algorithm for a new type of triple system, called a Butterfly triple system. 
Basically, in this algorithm development, a starter of cyclic near-resolvable (𝑣𝑣−1

2 )-cycle system of the 

2-fold complete graph 2𝐾𝐾𝑣𝑣 was employed to construct the starter of cyclic (𝑣𝑣−1
2 )-star decomposition of 

2𝐾𝐾𝑣𝑣. These starters were then decomposed into triples and classified as a starter of a cyclic Butterfly 
triple system. The obtained starter set generated a triple system of order 𝑣𝑣. A special reference for case 
𝑣𝑣 ≡ 9 (mod 12) was presented to demonstrate the development of the Butterfly triple system. 
 
Keywords: Cyclic triple system, graph decompositions, 𝝀𝝀-fold complete graph. 
 
 

INTRODUCTION 
 
In this paper, all graphs are considered to be undirected odd order vertices in ℤ𝑣𝑣. 𝐾𝐾𝑣𝑣 will denote the 
complete graph of order 𝑣𝑣, and 𝜆𝜆𝐾𝐾𝑣𝑣 will denote the 𝜆𝜆-fold complete graph of order 𝑣𝑣, which is obtained 
by substituting each edge in 𝐾𝐾𝑣𝑣 by 𝜆𝜆 parallel edges. A 𝑘𝑘-cycle, written 𝐶𝐶𝑘𝑘 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘), consists of 
𝑘𝑘 distinct vertices {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘} and 𝑘𝑘 edges {𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1}, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, where 𝑐𝑐𝑘𝑘+1 = 𝑐𝑐1. A 𝑘𝑘-star, written 
𝑆𝑆𝑘𝑘 = (𝑣𝑣0;  𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘), is a graph with one vertex 𝑣𝑣0 of degree 𝑘𝑘 and 𝑘𝑘 vertices {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘} of 
degree one. 
 
Let 𝐻𝐻 and 𝐺𝐺 be graphs. An 𝐻𝐻-decomposition of 𝐺𝐺 (or a (𝐺𝐺, 𝐻𝐻)-design) is a collection ℋ of subgraphs 
of 𝐺𝐺, each isomorphic to 𝐻𝐻, whose edges partition the edges of 𝐺𝐺 (Heinrich, 1996). When 𝐻𝐻 is a 𝑘𝑘-
cycle, such a decomposition is known as a 𝑘𝑘-cycle system of 𝐺𝐺. A (𝐺𝐺, 𝐻𝐻)-design with vertices in ℤ𝑣𝑣 is 
said to be cyclic if ℋ = {Γ1, Γ2, … , Γ𝑛𝑛} is the collection of all subgraphs in (𝜆𝜆𝐾𝐾𝑣𝑣, 𝐻𝐻)-design. Then, there 



28        

Journal of ICT, 21, No. 1 (January) 2022, pp: 27–49

INTRODUCTION

In this paper, all graphs are considered to be undirected odd order 
vertices in       will denote the complete graph of order       and  
will denote the   fold complete graph of order   which is obtained by 
substituting each edge in     by    parallel edges. A    cycle, written              
                              consists of    distinct vertices                    and              
  edges                  where         A      written 
                                    is a graph with one vertex      of degree
and    vertices                         of degree one.

Let      and     be graphs. An    -decomposition of    (or a            -design) 
is a collection     of subgraphs of    each isomorphic to    whose edges 
partition the edges of    (Heinrich, 1996). When    is a     cycle, such a 
decomposition is known as a     cycle system of                     -design 
with vertices in       is said to be cyclic if                                 is the 
collection of all subgraphs in                design.Then, there is also 
                                                             and it is said to be simple if      
contains no repeated subgraphs.

Let   be a member of cyclic            -design. Then, an orbit of    , 
denoted by             is defined by the set                                        The 
orbit of     is called full if its cardinality is    ; otherwise it is considered 
short. Any cyclic             -design should be generated by the orbit of 
graphs (called a starter of cyclic                design) (Wu & Lu, 2008).

An     factor of         is a spanning subgraph of         in which every 
vertex has the degree     A near      factor of       is an     factor of   
               for some vertex                In a               system of           if the 
collection of cycles can be partitioned into near      factors
then the    cycle system of         is said to be near-resolvable and  
denoted by                         Obviously, the existence of near-resolvable     
  -cycle system of       implies that    must be even and  divides   
          (Rodger, 1996; Ferber & Kwan, 2020). Recently, the existence  
of a cyclic                        has been proved for               with                           
by Aldiabat et al. (2019) and for         with                     by Matsubara 
and Kageyama (2019).

A balanced incomplete block design           is a kind of combinatorial 
clustering algorithm. It is defined as a collection of   -subsets (called 
blocks) of a                          such that each pair of distinct points of         
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(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
 
𝜆𝜆𝐾𝐾𝑣𝑣 − 𝑎𝑎  
 
𝑎𝑎 in 𝜆𝜆𝐾𝐾𝑣𝑣.  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣,  
 
near-2-factors 
𝒩𝒩0, 𝒩𝒩1, … , 𝒩𝒩𝑣𝑣−1,  
 
𝑘𝑘-cycle  
 
2𝐾𝐾𝑣𝑣  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  
 
 𝜆𝜆  
 
𝑣𝑣 − 1 (Rodger, 1996; Ferber & Kwan, 2020).  
 
(𝑣𝑣, 𝑘𝑘, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 has been proved for 
 
 𝑘𝑘 = 𝑣𝑣−1

2   
 
 𝑣𝑣 ≡ 9 (mod 12)  
 
𝑘𝑘 = 4  
 
 𝑣𝑣 ≡ 1 (mod 4)  
 
 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  
 
𝑘𝑘-subsets  
 
𝑣𝑣-set 𝑉𝑉, 2 ≤ 𝑘𝑘 < 𝑣𝑣,  
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 or a (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-design.  
 
 (𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
𝑉𝑉 = ℤ𝑣𝑣  
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    is contained in exactly      blocks. The design is often written as a  
                     or a             -design. A                     is said to be cyclic if   
          and if it can be generated from a subcollection of its blocks 
(called the starter of cyclic                       by repeatedly adding 
1 modulo   . For more recent developments in clustering algorithms, 
see Hairuddin et al. (2020), Seman and Sapawi (2018), and Swesi and 
Bakar (2019). A    fold triple system of order   (or a triple system of  
order   and index   ), denoted by               is a                          and the  
blocks are called triples. It can be depicted as a decomposition of   
       into triangles.

The study of    -fold triple systems is an interesting area in combinatorial 
design theory due to its applicability in a wide range of areas, such 
as tournament scheduling, computational biology, communications 
engineering, design and analysis of algorithms, network design, 
information theory, cryptography, coding theory, and optical 
orthogonal codes (Chen & Wei, 2012; Kaski, Östergard, & Patric, 
2006). The necessary and sufficient conditions for the existence of   
            have been established by Hanani (1961). The same results 
have been proven (in an easier way) by Nash-Williams (1972) and  
Hwang and Lin (1974). The existence of cyclic          
has been verified by Colbourn and Colbourn (1981). Colbourn and 
Rosa (1999) gave the values of  and  for which a cyclic               exists. 
The problem of constructing triple systems and related areas remains 
very active in recent years (Ferber & Kwan, 2020; Ballico, Favacchio, 
Guardo, & Milazzo, 2021; Daniel & Bridget, 2021). The following 
section highlights some of the exciting recent developments of triple 
systems that have motivated the present authors to undertake this 
study.

A triad design is one of the contemporary triple systems, which are 
concerned with arranging a set of unordered triples on    objects into   
    classes satisfying certain specified conditions. This design originally 
arose from a request to construct tournaments appropriate for use in a 
paintball game in which three teams compete at a time. The existence 
of a triad design for                    was formulated and proved 
(Ibrahim, 2006).  Then, a new   -fold triple system called compatible 
factorization to complete the triad design was developed for the 
compatible factorization for every odd order        (Ibrahim, 2006).  
New algorithms for a cyclic triad design for the cases
and some related results to the triad design were constructed (Ibrahim, 
Abu Saa, & Kalmoun, 2011). 

 𝜆𝜆𝐾𝐾𝑣𝑣  
 
𝑚𝑚‐factor  
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Definition 4 (Aldiabat et al., 2019). Let   be a graph of order                                                                                                                                        
                                      

(i)	The    path                                                     is called the relative 
path of 

(ii)	The                                                                           is called the relative 
cycle of     

Definition 5 (Aldiabat et al., 2019). Let     and    be positive 
integers with                               An              -alternating arithmetic path, 
denoted by                          is a path of length             with vertex set  
                                                       and  edge set  
                                              such that the following properties 
are satisfied:
(i)                is constant for all 
(ii)                is constant for all 

According to Definition 5, the            -alternating arithmetic path  
either has an odd order             when                 or has an even order                                     
         when               This study used the following notations for               -
 alternating arithmetic path of odd order and even order, respectively:
       
          

Example 6 demonstrates the above concepts.

Example 6. Let  
Based on Definition 5,     is a    -alternating arithmetic path that can be 
written as:

Theorem 7 (Aldiabat et al., 2019). There exists a simple cyclic  

Definition 8 (Abel & Buratti, 2006). Let    be a    subset of       The list 
of difference from     is the multiset: 

Lemma 9 (Abel & Buratti, 2006). Let    be a multiset of     subsets of   
Then,    is a starter of cyclic                     if and only if each nonzero 
integer of        occurs    times in 
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𝐷𝐷(𝐵𝐵) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑏𝑏 − 𝑎𝑎|, 𝑣𝑣 − |𝑏𝑏 − 𝑎𝑎|} |  𝑎𝑎 ≠ 𝑏𝑏 ∈ 𝐵𝐵}. 
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Then, ℬ  
 
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
ℤ𝑣𝑣+1

2
 occurs 𝜆𝜆 times in 𝐷𝐷(ℬ). 

 
 

CYCLIC NEAR-RESOLVABLE (𝟔𝟔𝒏𝒏 + 𝟒𝟒)-CYCLE SYSTEM OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗  AND CYCLIC 
(𝟔𝟔𝒏𝒏 + 𝟒𝟒)-STAR DECOMPOSITION OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗 

 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9.  
 
Algorithm for a Simple Cyclic Near-Resolvable (𝟔𝟔𝟔𝟔 + 𝟒𝟒)-Cycle System of 𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏+𝟗𝟗 
Let 𝑛𝑛 ≥ 0, 𝐶𝐶(6𝑛𝑛+4)1  
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Example 6. Let 𝐺𝐺 = 2𝐾𝐾9 and 𝑃𝑃6 = [0, 3, 1, 5, 2, 7] be a 6-path of 𝐺𝐺.  
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(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9.  
 
Algorithm for a Simple Cyclic Near-Resolvable (𝟔𝟔𝟔𝟔 + 𝟒𝟒)-Cycle System of 𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏+𝟗𝟗 
Let 𝑛𝑛 ≥ 0, 𝐶𝐶(6𝑛𝑛+4)1  
 
 𝐶𝐶(6𝑛𝑛+4)2  
 
 (6𝑛𝑛 + 4)-cycles of 
 

 𝑚𝑚 = 𝑛𝑛 + 1,  
 
(2𝑛𝑛) when 𝑚𝑚 = 𝑛𝑛.  
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Example 6. Let 𝐺𝐺 = 2𝐾𝐾9 and 𝑃𝑃6 = [0, 3, 1, 5, 2, 7] be a 6-path of 𝐺𝐺.  
 
Based on Definition 5, 𝑃𝑃6 is a 6-alternating arithmetic path that can be written as: 
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CYCLIC NEAR-RESOLVABLE                  CYCLE 
SYSTEM OF                 AND CYCLIC                  STAR

                           DECOMPOSITION OF        

In this section, a construction for a starter of simple cyclic 
                                   is presented. Then, this construction is used to construct 
a starter of cyclic                         decomposition of                  These types 
of constructions are the basis for constructing a cyclic triple system in 
the next section.

Algorithm for a Simple Cyclic Near-Resolvable            Cycle 
System of 

                                 and               be the                 cycles of  
defined as linked vertex-disjoint paths as follows:

(1)

where

  

                       

  
                         

  

For           any              -alternating arithmetic path has an even order. 
In addition, any          -alternating arithmetic path has an even order 
when           is odd, while any               -alternating arithmetic path has an
odd order when           is even. Figures 1 and 2 illustrate the constructions 
of               and               in terms of their vertices, where  

 𝑚𝑚 = 𝑛𝑛 + 1,  
 
(2𝑛𝑛) when 𝑚𝑚 = 𝑛𝑛.  
 
(𝑚𝑚 + 𝑛𝑛)-alternating arithmetic path of odd order and even order, respectively: 
 
        𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛+1) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛), 𝑓𝑓(𝑛𝑛+1)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛+1, 
             𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛. 
 
 
Example 6. Let 𝐺𝐺 = 2𝐾𝐾9 and 𝑃𝑃6 = [0, 3, 1, 5, 2, 7] be a 6-path of 𝐺𝐺.  
 
Based on Definition 5, 𝑃𝑃6 is a 6-alternating arithmetic path that can be written as: 
𝐴𝐴𝐴𝐴𝐴𝐴(6) = [0, 3, 1, 5, 2, 7] = [𝑖𝑖 − 1, 2𝑖𝑖 + 1]6. 
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 for 𝑣𝑣 ≡ 9 (mod 12). 

 
𝐵𝐵 be a 𝑘𝑘-subset of ℤ𝑣𝑣. The list of difference from 𝐵𝐵 is the multiset:  
𝐷𝐷(𝐵𝐵) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑏𝑏 − 𝑎𝑎|, 𝑣𝑣 − |𝑏𝑏 − 𝑎𝑎|} |  𝑎𝑎 ≠ 𝑏𝑏 ∈ 𝐵𝐵}. 
 
ℬ be a multiset of 𝑘𝑘-subsets of ℤ𝑣𝑣.  
 
Then, ℬ  
 
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
ℤ𝑣𝑣+1
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 occurs 𝜆𝜆 times in 𝐷𝐷(ℬ). 
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 (6𝑛𝑛 + 4)-cycles of 
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Let 𝑛𝑛 ≥ 0, 𝐶𝐶(6𝑛𝑛+4)1  
 
 𝐶𝐶(6𝑛𝑛+4)2  
 
 (6𝑛𝑛 + 4)-cycles of 
 

 𝑚𝑚 = 𝑛𝑛 + 1,  
 
(2𝑛𝑛) when 𝑚𝑚 = 𝑛𝑛.  
 
(𝑚𝑚 + 𝑛𝑛)-alternating arithmetic path of odd order and even order, respectively: 
 
        𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛+1) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛), 𝑓𝑓(𝑛𝑛+1)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛+1, 
             𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛. 
 
 
Example 6. Let 𝐺𝐺 = 2𝐾𝐾9 and 𝑃𝑃6 = [0, 3, 1, 5, 2, 7] be a 6-path of 𝐺𝐺.  
 
Based on Definition 5, 𝑃𝑃6 is a 6-alternating arithmetic path that can be written as: 
𝐴𝐴𝐴𝐴𝐴𝐴(6) = [0, 3, 1, 5, 2, 7] = [𝑖𝑖 − 1, 2𝑖𝑖 + 1]6. 
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 for 𝑣𝑣 ≡ 9 (mod 12). 

 
𝐵𝐵 be a 𝑘𝑘-subset of ℤ𝑣𝑣. The list of difference from 𝐵𝐵 is the multiset:  
𝐷𝐷(𝐵𝐵) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑏𝑏 − 𝑎𝑎|, 𝑣𝑣 − |𝑏𝑏 − 𝑎𝑎|} |  𝑎𝑎 ≠ 𝑏𝑏 ∈ 𝐵𝐵}. 
 
ℬ be a multiset of 𝑘𝑘-subsets of ℤ𝑣𝑣.  
 
Then, ℬ  
 
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
ℤ𝑣𝑣+1

2
 occurs 𝜆𝜆 times in 𝐷𝐷(ℬ). 

 
 

CYCLIC NEAR-RESOLVABLE (𝟔𝟔𝒏𝒏 + 𝟒𝟒)-CYCLE SYSTEM OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗  AND CYCLIC 
(𝟔𝟔𝒏𝒏 + 𝟒𝟒)-STAR DECOMPOSITION OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗 

 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9.  
 
Algorithm for a Simple Cyclic Near-Resolvable (𝟔𝟔𝟔𝟔 + 𝟒𝟒)-Cycle System of 𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏+𝟗𝟗 
Let 𝑛𝑛 ≥ 0, 𝐶𝐶(6𝑛𝑛+4)1  
 
 𝐶𝐶(6𝑛𝑛+4)2  
 
 (6𝑛𝑛 + 4)-cycles of 
 

 𝑚𝑚 = 𝑛𝑛 + 1,  
 
(2𝑛𝑛) when 𝑚𝑚 = 𝑛𝑛.  
 
(𝑚𝑚 + 𝑛𝑛)-alternating arithmetic path of odd order and even order, respectively: 
 
        𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛+1) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛), 𝑓𝑓(𝑛𝑛+1)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛+1, 
             𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛. 
 
 
Example 6. Let 𝐺𝐺 = 2𝐾𝐾9 and 𝑃𝑃6 = [0, 3, 1, 5, 2, 7] be a 6-path of 𝐺𝐺.  
 
Based on Definition 5, 𝑃𝑃6 is a 6-alternating arithmetic path that can be written as: 
𝐴𝐴𝐴𝐴𝐴𝐴(6) = [0, 3, 1, 5, 2, 7] = [𝑖𝑖 − 1, 2𝑖𝑖 + 1]6. 
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 for 𝑣𝑣 ≡ 9 (mod 12). 

 
𝐵𝐵 be a 𝑘𝑘-subset of ℤ𝑣𝑣. The list of difference from 𝐵𝐵 is the multiset:  
𝐷𝐷(𝐵𝐵) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑏𝑏 − 𝑎𝑎|, 𝑣𝑣 − |𝑏𝑏 − 𝑎𝑎|} |  𝑎𝑎 ≠ 𝑏𝑏 ∈ 𝐵𝐵}. 
 
ℬ be a multiset of 𝑘𝑘-subsets of ℤ𝑣𝑣.  
 
Then, ℬ  
 
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
ℤ𝑣𝑣+1

2
 occurs 𝜆𝜆 times in 𝐷𝐷(ℬ). 

 
 

CYCLIC NEAR-RESOLVABLE (𝟔𝟔𝒏𝒏 + 𝟒𝟒)-CYCLE SYSTEM OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗  AND CYCLIC 
(𝟔𝟔𝒏𝒏 + 𝟒𝟒)-STAR DECOMPOSITION OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗 

 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9.  
 
Algorithm for a Simple Cyclic Near-Resolvable (𝟔𝟔𝟔𝟔 + 𝟒𝟒)-Cycle System of 𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏+𝟗𝟗 
Let 𝑛𝑛 ≥ 0, 𝐶𝐶(6𝑛𝑛+4)1  
 
 𝐶𝐶(6𝑛𝑛+4)2  
 
 (6𝑛𝑛 + 4)-cycles of 
 

 𝑚𝑚 = 𝑛𝑛 + 1,  
 
(2𝑛𝑛) when 𝑚𝑚 = 𝑛𝑛.  
 
(𝑚𝑚 + 𝑛𝑛)-alternating arithmetic path of odd order and even order, respectively: 
 
        𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛+1) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛), 𝑓𝑓(𝑛𝑛+1)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛+1, 
             𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛. 
 
 
Example 6. Let 𝐺𝐺 = 2𝐾𝐾9 and 𝑃𝑃6 = [0, 3, 1, 5, 2, 7] be a 6-path of 𝐺𝐺.  
 
Based on Definition 5, 𝑃𝑃6 is a 6-alternating arithmetic path that can be written as: 
𝐴𝐴𝐴𝐴𝐴𝐴(6) = [0, 3, 1, 5, 2, 7] = [𝑖𝑖 − 1, 2𝑖𝑖 + 1]6. 
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 for 𝑣𝑣 ≡ 9 (mod 12). 

 
𝐵𝐵 be a 𝑘𝑘-subset of ℤ𝑣𝑣. The list of difference from 𝐵𝐵 is the multiset:  
𝐷𝐷(𝐵𝐵) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑏𝑏 − 𝑎𝑎|, 𝑣𝑣 − |𝑏𝑏 − 𝑎𝑎|} |  𝑎𝑎 ≠ 𝑏𝑏 ∈ 𝐵𝐵}. 
 
ℬ be a multiset of 𝑘𝑘-subsets of ℤ𝑣𝑣.  
 
Then, ℬ  
 
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
ℤ𝑣𝑣+1

2
 occurs 𝜆𝜆 times in 𝐷𝐷(ℬ). 

 
 

CYCLIC NEAR-RESOLVABLE (𝟔𝟔𝒏𝒏 + 𝟒𝟒)-CYCLE SYSTEM OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗  AND CYCLIC 
(𝟔𝟔𝒏𝒏 + 𝟒𝟒)-STAR DECOMPOSITION OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗 

 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9.  
 
Algorithm for a Simple Cyclic Near-Resolvable (𝟔𝟔𝟔𝟔 + 𝟒𝟒)-Cycle System of 𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏+𝟗𝟗 
Let 𝑛𝑛 ≥ 0, 𝐶𝐶(6𝑛𝑛+4)1  
 
 𝐶𝐶(6𝑛𝑛+4)2  
 
 (6𝑛𝑛 + 4)-cycles of 
 

 𝑚𝑚 = 𝑛𝑛 + 1,  
 
(2𝑛𝑛) when 𝑚𝑚 = 𝑛𝑛.  
 
(𝑚𝑚 + 𝑛𝑛)-alternating arithmetic path of odd order and even order, respectively: 
 
        𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛+1) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛), 𝑓𝑓(𝑛𝑛+1)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛+1, 
             𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛. 
 
 
Example 6. Let 𝐺𝐺 = 2𝐾𝐾9 and 𝑃𝑃6 = [0, 3, 1, 5, 2, 7] be a 6-path of 𝐺𝐺.  
 
Based on Definition 5, 𝑃𝑃6 is a 6-alternating arithmetic path that can be written as: 
𝐴𝐴𝐴𝐴𝐴𝐴(6) = [0, 3, 1, 5, 2, 7] = [𝑖𝑖 − 1, 2𝑖𝑖 + 1]6. 
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 for 𝑣𝑣 ≡ 9 (mod 12). 

 
𝐵𝐵 be a 𝑘𝑘-subset of ℤ𝑣𝑣. The list of difference from 𝐵𝐵 is the multiset:  
𝐷𝐷(𝐵𝐵) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑏𝑏 − 𝑎𝑎|, 𝑣𝑣 − |𝑏𝑏 − 𝑎𝑎|} |  𝑎𝑎 ≠ 𝑏𝑏 ∈ 𝐵𝐵}. 
 
ℬ be a multiset of 𝑘𝑘-subsets of ℤ𝑣𝑣.  
 
Then, ℬ  
 
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
ℤ𝑣𝑣+1

2
 occurs 𝜆𝜆 times in 𝐷𝐷(ℬ). 

 
 

CYCLIC NEAR-RESOLVABLE (𝟔𝟔𝒏𝒏 + 𝟒𝟒)-CYCLE SYSTEM OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗  AND CYCLIC 
(𝟔𝟔𝒏𝒏 + 𝟒𝟒)-STAR DECOMPOSITION OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗 

 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9.  
 
Algorithm for a Simple Cyclic Near-Resolvable (𝟔𝟔𝟔𝟔 + 𝟒𝟒)-Cycle System of 𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏+𝟗𝟗 
Let 𝑛𝑛 ≥ 0, 𝐶𝐶(6𝑛𝑛+4)1  
 
 𝐶𝐶(6𝑛𝑛+4)2  
 
 (6𝑛𝑛 + 4)-cycles of 
 

 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,

 
(1) 

where 
𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.

 

 
 
𝑛𝑛 ≥ 0,  
 
(4𝑛𝑛 + 2) 
 
(𝑛𝑛 + 1) 
 
 𝑛𝑛 ≥ 0  
 
(𝑛𝑛 + 1) 
 
 𝑛𝑛 ≥ 0  
 
𝐶𝐶(6𝑛𝑛+4)1  
 
𝐶𝐶(6𝑛𝑛+4)2  
 
𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 = (𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+1)  
 
 𝑖𝑖 = 1, 2, and 𝑛𝑛  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(9, 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 

 𝑚𝑚 = 𝑛𝑛 + 1,  
 
(2𝑛𝑛) when 𝑚𝑚 = 𝑛𝑛.  
 
(𝑚𝑚 + 𝑛𝑛)-alternating arithmetic path of odd order and even order, respectively: 
 
        𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛+1) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛), 𝑓𝑓(𝑛𝑛+1)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛+1, 
             𝐴𝐴𝐴𝐴𝐴𝐴(2𝑛𝑛) = [𝑓𝑓(1), 𝑔𝑔(1), 𝑓𝑓(2), 𝑔𝑔(2), … , 𝑓𝑓(𝑛𝑛), 𝑔𝑔(𝑛𝑛)] = [𝑓𝑓(𝑖𝑖), 𝑔𝑔(𝑖𝑖)]2𝑛𝑛. 
 
 
Example 6. Let 𝐺𝐺 = 2𝐾𝐾9 and 𝑃𝑃6 = [0, 3, 1, 5, 2, 7] be a 6-path of 𝐺𝐺.  
 
Based on Definition 5, 𝑃𝑃6 is a 6-alternating arithmetic path that can be written as: 
𝐴𝐴𝐴𝐴𝐴𝐴(6) = [0, 3, 1, 5, 2, 7] = [𝑖𝑖 − 1, 2𝑖𝑖 + 1]6. 
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 for 𝑣𝑣 ≡ 9 (mod 12). 

 
𝐵𝐵 be a 𝑘𝑘-subset of ℤ𝑣𝑣. The list of difference from 𝐵𝐵 is the multiset:  
𝐷𝐷(𝐵𝐵) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑏𝑏 − 𝑎𝑎|, 𝑣𝑣 − |𝑏𝑏 − 𝑎𝑎|} |  𝑎𝑎 ≠ 𝑏𝑏 ∈ 𝐵𝐵}. 
 
ℬ be a multiset of 𝑘𝑘-subsets of ℤ𝑣𝑣.  
 
Then, ℬ  
 
 
(𝑣𝑣, 𝑘𝑘, 𝜆𝜆)-𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
 
ℤ𝑣𝑣+1

2
 occurs 𝜆𝜆 times in 𝐷𝐷(ℬ). 

 
 

CYCLIC NEAR-RESOLVABLE (𝟔𝟔𝒏𝒏 + 𝟒𝟒)-CYCLE SYSTEM OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗  AND CYCLIC 
(𝟔𝟔𝒏𝒏 + 𝟒𝟒)-STAR DECOMPOSITION OF 𝟐𝟐𝑲𝑲𝟏𝟏𝟏𝟏𝒏𝒏+𝟗𝟗 

 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9.  
 
Algorithm for a Simple Cyclic Near-Resolvable (𝟔𝟔𝟔𝟔 + 𝟒𝟒)-Cycle System of 𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏+𝟗𝟗 
Let 𝑛𝑛 ≥ 0, 𝐶𝐶(6𝑛𝑛+4)1  
 
 𝐶𝐶(6𝑛𝑛+4)2  
 
 (6𝑛𝑛 + 4)-cycles of 
 

 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,

 
(1) 

where 
𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.

 

 
 
𝑛𝑛 ≥ 0,  
 
(4𝑛𝑛 + 2) 
 
(𝑛𝑛 + 1) 
 
 𝑛𝑛 ≥ 0  
 
(𝑛𝑛 + 1) 
 
 𝑛𝑛 ≥ 0  
 
𝐶𝐶(6𝑛𝑛+4)1  
 
𝐶𝐶(6𝑛𝑛+4)2  
 
𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 = (𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+1)  
 
 𝑖𝑖 = 1, 2, and 𝑛𝑛  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(9, 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 

 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,

 
(1) 

where 
𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.

 

 
 
𝑛𝑛 ≥ 0,  
 
(4𝑛𝑛 + 2) 
 
(𝑛𝑛 + 1) 
 
 𝑛𝑛 ≥ 0  
 
(𝑛𝑛 + 1) 
 
 𝑛𝑛 ≥ 0  
 
𝐶𝐶(6𝑛𝑛+4)1  
 
𝐶𝐶(6𝑛𝑛+4)2  
 
𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 = (𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+1)  
 
 𝑖𝑖 = 1, 2, and 𝑛𝑛  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(9, 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 

 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,

 
(1) 

where 
𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.

 

 
 
𝑛𝑛 ≥ 0,  
 
(4𝑛𝑛 + 2) 
 
(𝑛𝑛 + 1) 
 
 𝑛𝑛 ≥ 0  
 
(𝑛𝑛 + 1) 
 
 𝑛𝑛 ≥ 0  
 
𝐶𝐶(6𝑛𝑛+4)1  
 
𝐶𝐶(6𝑛𝑛+4)2  
 
𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 = (𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+1)  
 
 𝑖𝑖 = 1, 2, and 𝑛𝑛  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(9, 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 

 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,

 
(1) 

where 
𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.
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𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 = (𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+1)  
 
 𝑖𝑖 = 1, 2, and 𝑛𝑛  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(9, 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 

 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,

 
(1) 

where 
𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.
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 𝑖𝑖 = 1, 2, and 𝑛𝑛  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
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 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,
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𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.
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(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(9, 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 

 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,
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where 
𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.
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 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
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  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.
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[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.
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  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.

 

 
 
𝑛𝑛 ≥ 0,  
 
(4𝑛𝑛 + 2) 
 
(𝑛𝑛 + 1) 
 
 𝑛𝑛 ≥ 0  
 
(𝑛𝑛 + 1) 
 
 𝑛𝑛 ≥ 0  
 
𝐶𝐶(6𝑛𝑛+4)1  
 
𝐶𝐶(6𝑛𝑛+4)2  
 
𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 = (𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+1)  
 
 𝑖𝑖 = 1, 2, and 𝑛𝑛  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(9, 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 

 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,

 
(1) 

where 
𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.
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𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 = (𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+1)  
 
 𝑖𝑖 = 1, 2, and 𝑛𝑛  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(9, 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 

 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,

 
(1) 

where 
𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.
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 𝑖𝑖 = 1, 2, and 𝑛𝑛  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(9, 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
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                                 for                        is odd and even, respectively. As 
shown in Figures 1 and 2, the construction for a starter of simple 
cyclic                                 has a butterfly shape in which every 
cycle represents a side of symmetrical butterfly wings. If one cycle of 
the starter is given, then the other is the relative cycle. Furthermore, 
the construction is described as linked alternating arithmetic paths 
in which the vertices are distinguished by two different colors that 
show the pattern. The next example is a construction of simple cyclic 
                      in accordance with the construction in Equation 1.

Example 10. The starter of simple cyclic                         is given by 
the set                     where                         and                          which is 
obtained by substituting          into Equation 1.

It can be easily checked that        is the relative cycle of       . Now, all 
the cycles of simple cyclic                     can be generated from    by 
repeatedly adding 1 modulo     as shown in Table 1.

Table 1

A Simple Cyclic  

 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,

 
(1) 

where 
𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1      if 𝑛𝑛 is odd, 

 
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is even.
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(4𝑛𝑛 + 2) 
 
(𝑛𝑛 + 1) 
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𝐶𝐶(6𝑛𝑛+4)2  
 
𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 = (𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+1)  
 
 𝑖𝑖 = 1, 2, and 𝑛𝑛  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
(9, 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 

 2𝐾𝐾12𝑛𝑛+9 defined as linked vertex-disjoint paths as follows: 
 

𝐶𝐶(6𝑛𝑛+4)1 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)),
    

𝐶𝐶(6𝑛𝑛+4)2 = (𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2), 𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1), 𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1)) ,

 
(1) 

where 
𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8]𝑛𝑛+1     if 𝑛𝑛 is even.

 

𝐴𝐴𝐴𝐴𝐴𝐴1(4𝑛𝑛 + 2) = [𝑣𝑣 − (4𝑖𝑖 − 2), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 9)]4𝑛𝑛+2 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖]4𝑛𝑛+2, 
  𝐴𝐴𝐴𝐴𝐴𝐴2(𝑛𝑛 + 1) = [𝑣𝑣 − (4𝑖𝑖 − 3), 𝑣𝑣 − (12𝑛𝑛 − 4𝑖𝑖 + 10)]𝑛𝑛+1 
                         = [12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1]𝑛𝑛+1, 

  𝐴𝐴𝐴𝐴𝐴𝐴3(𝑛𝑛 + 1) = {
[𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 10), 𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 + 1)]𝑛𝑛+1   if 𝑛𝑛 is odd, 

 
[𝑣𝑣 − (2𝑛𝑛 + 4𝑖𝑖 − 1), 𝑣𝑣 − (10𝑛𝑛 − 4𝑖𝑖 + 8)]𝑛𝑛+1     if 𝑛𝑛 is even.

 

                         = {
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Figure 2 
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Algorithm for a Simple Cyclic                 Star Decomposition of 

Consider the construction of                  for                defined in Equation 1.
Let                for                be the                   star of                 defined by:
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for 𝑖𝑖 = 1, 2,  be the (6𝑛𝑛 + 4)-star of 

 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
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Theorem 11. For any               there exists a cyclic                    -star decomposition 
of 

Proof.  To prove that the set                      defined in  
Equation 2 is a starter for cyclic               decomposition of                       
               there is a need to find the list of differences from     and the 
stabilizer of each                                 (according to Lemma 9). Based on 
Definition 2, the list of differences from     is:

(3)
 
where

From Equation                 covers each nonzero element of          exactly 
twice. 
Based on Definition 1, for            the stabilizer of            is defined by:

Suppose                           then: 
           

Thus,          and so, for                        has a trivial stabilizer.
Therefore, from Lemma                                          is a starter for cyclic 
           -star decomposition of                                                                                                                                                

CYCLIC BUTTERFLY TRIPLE SYSTEM

In this section, the Butterfly triple system is defined. Then, the existence 
of a cyclic Butterfly triple system for                              is verified Finally, 
a construction method is developed to construct such triple system for   
                             using the constructions presented in the previous section.

Definition 12. A Butterfly triple system on    objects, denoted by 
is a                    array of triples that satisfy the following conditions: 
(i)	Object    is contained in each triple of row  .
(ii)Each object except   is contained in exactly two triples of row  .

From the above definition, it is easy to see that row  forms a near-two-
factor with focus  by  removing object   from each triple in row . 
Therefore, to produce a            nine rows with eight columns are 
needed as illustrated in Table 2.

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 

where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 

𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 

 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 

Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 

(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 

where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 

𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 

 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 

Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 

(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 

where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 

𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 

 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 

Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 

(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
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An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 

 
𝑅𝑅0,  
 
 0  
 
𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
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𝑣𝑣 ≡ 9 (mod 12)  
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Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
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𝐵𝐵𝐵𝐵𝐵𝐵(9).  
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Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 

 
𝑅𝑅0,  
 
 0  
 
𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
 
The Existence of a Cyclic Butterfly Triple System 
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𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9).  
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Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 

 
𝑅𝑅0,  
 
 0  
 
𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
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𝐵𝐵𝐵𝐵𝐵𝐵(9).  
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𝑣𝑣 × (𝑣𝑣 − 1)  
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Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 

 
𝑅𝑅0,  
 
 0  
 
𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
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An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 

 
𝑅𝑅0,  
 
 0  
 
𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
 
The Existence of a Cyclic Butterfly Triple System 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9).  

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

2𝐾𝐾12𝑛𝑛+9.                                                                                                                                                 
 
 

CYCLIC BUTTERFLY TRIPLE SYSTEM 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣),  
 
𝑣𝑣 × (𝑣𝑣 − 1)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9),  
 
Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 

 
𝑅𝑅0,  
 
 0  
 
𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
 
The Existence of a Cyclic Butterfly Triple System 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9).  

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

2𝐾𝐾12𝑛𝑛+9.                                                                                                                                                 
 
 

CYCLIC BUTTERFLY TRIPLE SYSTEM 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣),  
 
𝑣𝑣 × (𝑣𝑣 − 1)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9),  
 
Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 

 
𝑅𝑅0,  
 
 0  
 
𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
 
The Existence of a Cyclic Butterfly Triple System 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9).  

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
 

𝐷𝐷(𝐹𝐹) = 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2), (3) 
where 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
Suppose 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖), then:  
             𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖, 
(𝑧𝑧;  𝑐𝑐𝑖𝑖,1 + 𝑧𝑧, 𝑐𝑐𝑖𝑖,2 + 𝑧𝑧, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4 + 𝑧𝑧) = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4). 
 
 𝑧𝑧 = 0,  
 
𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 

be the (6𝑛𝑛 + 4)-star of 
 
2𝐾𝐾12𝑛𝑛+9 defined by: 
 

𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = (0;  𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2, … , 𝑐𝑐𝑖𝑖,6𝑛𝑛+4), (2) 

where 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝑉𝑉(𝐶𝐶(6𝑛𝑛+4)𝑖𝑖) for 1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4. 
 
Theorem 11. For any 𝑛𝑛 ≥ 0, there exists a cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
 
2𝐾𝐾12𝑛𝑛+9, t 
 
 ℱ  
 
 (6𝑛𝑛 + 4)-star in ℱ  
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𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)1) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐1,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐1,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}, 
𝐷𝐷(𝑆𝑆(6𝑛𝑛+4)2) = {𝑚𝑚𝑚𝑚𝑚𝑚{|𝑐𝑐2,𝑗𝑗 − 0|, 𝑣𝑣 − |𝑐𝑐2,𝑗𝑗 − 0|} |  1 ≤ 𝑗𝑗 ≤ 6𝑛𝑛 + 4} = {1, 2, … , 6𝑛𝑛 + 4}. 
 
From Equation (3), 𝐷𝐷(𝐹𝐹)  
 
ℤ6𝑛𝑛+5 exactly twice.  
 
𝑖𝑖 = 1, 2,  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖  
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆(6𝑛𝑛+4)𝑖𝑖) = {𝑧𝑧 ∈ ℤ𝑣𝑣|   𝑧𝑧 + 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 = 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖}. 
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𝑖𝑖 = 1, 2, 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖   
 
3, ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-star  
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Table 2

An Example of 

As shown in row    the object    is contained in each triple and every 
object other than  is contained in exactly two triples. Then, by 
isolating the object   from each triple of         is obtained that satisfies 
a near-two-factor with focus zero.
 
For example, the corresponding near-two-factor to row    is:

Therefore, row     satisfies a near-two-factor with focus    
 
The Existence of a Cyclic Butterfly Triple System
In this short subsection, the existence of a cyclic Butterfly triple 
system for                    is proven. Note that, from Definition 12, each 
cyclic            is generated from triples having orbits of size    .Now, it 
can be said that the set of triples of    in Table 2 is a starter of cyclic     
            Through the next theorem, the necessary conditions for the 
existence of a cyclic                         is provided.

Theorem 13. For any            there exists a cyclic 

Proof. To prove this theorem, it suffices to construct a starter of cyclic    
                        Based on Theorem 7, it can be concluded that for all     
                            there exists a cyclic                               Suppose that  

                                        is a starter of cyclic 
Then, based on Definition 12,   forms a near-two-factor with focus 
zero; this implies that the vertex set of      covers each nonzero element 
of              exactly once. However, since    contains two                  -cycles, 
it follows that the edge     set of  contains                   distinct edges such 
that each nonzero element of                  is contained in exactly two edges.

2𝐾𝐾12𝑛𝑛+9.                                                                                                                                                 
 
 

CYCLIC BUTTERFLY TRIPLE SYSTEM 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣),  
 
𝑣𝑣 × (𝑣𝑣 − 1)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9),  
 
Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 

 
𝑅𝑅0,  
 
 0  
 
𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
 
The Existence of a Cyclic Butterfly Triple System 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9).  
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𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣),  
 
𝑣𝑣 × (𝑣𝑣 − 1)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9),  
 
Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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𝑅𝑅0,  
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 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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𝑅𝑅0,  
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 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
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Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
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𝐵𝐵𝐵𝐵𝐵𝐵(9),  
 
Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
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𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9).  

2𝐾𝐾12𝑛𝑛+9.                                                                                                                                                 
 
 

CYCLIC BUTTERFLY TRIPLE SYSTEM 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣),  
 
𝑣𝑣 × (𝑣𝑣 − 1)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9),  
 
Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
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𝑣𝑣 ≡ 9 (mod 12)  
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𝑣𝑣 × (𝑣𝑣 − 1)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9),  
 
Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
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𝑖𝑖. 
 
The Existence of a Cyclic Butterfly Triple System 
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𝑣𝑣 × (𝑣𝑣 − 1)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9),  
 
Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 
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𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
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𝑖𝑖. 
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𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣),  
 
𝑣𝑣 × (𝑣𝑣 − 1)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9),  
 
Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 

 
𝑅𝑅0,  
 
 0  
 
𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
 
The Existence of a Cyclic Butterfly Triple System 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9).  

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) is provided. 
 
Theorem 13. For any 𝑛𝑛 ≥ 0, there exists a cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9). 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
𝑣𝑣 ≡ 9 (mod 12),  
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
 𝒮𝒮  
 
ℤ12𝑛𝑛+9  
 
𝒮𝒮 contains two 
 
(6𝑛𝑛 + 4)-cycles,  
 
(12𝑛𝑛 + 8)  
 
ℤ12𝑛𝑛+9 is contained in exactly two edges. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
 (12𝑛𝑛 + 9) × (12𝑛𝑛 + 8)  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
Let 𝒯𝒯  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
The following subsection proposes a construction method for a cyclic Butterfly triple system. 
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𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣),  
 
𝑣𝑣 × (𝑣𝑣 − 1)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9),  
 
Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 

 
𝑅𝑅0,  
 
 0  
 
𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
 
The Existence of a Cyclic Butterfly Triple System 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9).  

2𝐾𝐾12𝑛𝑛+9.                                                                                                                                                 
 
 

CYCLIC BUTTERFLY TRIPLE SYSTEM 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣),  
 
𝑣𝑣 × (𝑣𝑣 − 1)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9),  
 
Table 2 
 
An Example of 𝐵𝐵𝐵𝐵𝐵𝐵(9) 
 

 𝐶𝐶0 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7 
𝑅𝑅0 {0, 2, 5} {0, 5, 1} {0, 1, 3} {0, 3, 2} {0, 7, 4} {0, 4, 8} {0, 8, 6} {0, 6, 7} 
𝑅𝑅1 {1, 3, 6} {1, 6, 2} {1, 2, 4} {1, 4, 3} {1, 8, 5} {1, 5, 0} {1, 0, 7} {1, 7, 8} 
𝑅𝑅2 {2, 4, 7} {2, 7, 3} {2, 3, 5} {2, 5, 4} {2, 0, 6} {2, 6, 1} {2, 1, 8} {2, 8, 0} 
𝑅𝑅3 {3, 5, 8} {3, 8, 4} {3, 4, 6} {3, 6, 5} {3, 1, 7} {3, 7, 2} {3, 2, 0} {3, 0, 1} 
𝑅𝑅4 {4, 6, 0} {4, 0, 5} {4, 5, 7} {4, 7, 6} {4, 2, 8} {4, 8, 3} {4, 3, 1} {4, 1, 2} 
𝑅𝑅5 {5, 7, 1} {5, 1, 6} {5, 6, 8} {5, 8, 7} {5, 3, 0} {5, 0, 4} {5, 4, 2} {5, 2, 3} 
𝑅𝑅6 {6, 8, 2} {6, 2, 7} {6, 7, 0} {6, 0, 8} {6, 4, 1} {6, 1, 5} {6, 5, 3} {6, 3, 4} 
𝑅𝑅7 {7, 0, 3} {7, 3, 8} {7, 8, 1} {7, 1, 0} {7, 5, 2} {7, 2, 6} {7, 6, 4} {7, 4, 5} 
𝑅𝑅8 {8, 1, 4} {8, 4, 0} {8, 0, 2} {8, 2, 1} {8, 6, 3} {8, 3, 7} {8, 7, 5} {8, 5, 6} 

 
𝑅𝑅0,  
 
 0  
 
𝑅𝑅0,  
 
𝐹𝐹0: 0,  {{1, 6}, {6, 5}, {5, 7}, {7, 1}, {8, 3}, {3, 4}, {4, 2}, {2, 8}}. 
 
𝑅𝑅𝑖𝑖  
 
𝑖𝑖. 
 
The Existence of a Cyclic Butterfly Triple System 
 
𝑣𝑣 ≡ 9 (mod 12)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9).  

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) is provided. 
 
Theorem 13. For any 𝑛𝑛 ≥ 0, there exists a cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9). 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
𝑣𝑣 ≡ 9 (mod 12),  
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
 𝒮𝒮  
 
ℤ12𝑛𝑛+9  
 
𝒮𝒮 contains two 
 
(6𝑛𝑛 + 4)-cycles,  
 
(12𝑛𝑛 + 8)  
 
ℤ12𝑛𝑛+9 is contained in exactly two edges. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
 (12𝑛𝑛 + 9) × (12𝑛𝑛 + 8)  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
Let 𝒯𝒯  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
The following subsection proposes a construction method for a cyclic Butterfly triple system. 
 
 
 
 
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) is provided. 
 
Theorem 13. For any 𝑛𝑛 ≥ 0, there exists a cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9). 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
𝑣𝑣 ≡ 9 (mod 12),  
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
 𝒮𝒮  
 
ℤ12𝑛𝑛+9  
 
𝒮𝒮 contains two 
 
(6𝑛𝑛 + 4)-cycles,  
 
(12𝑛𝑛 + 8)  
 
ℤ12𝑛𝑛+9 is contained in exactly two edges. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
 (12𝑛𝑛 + 9) × (12𝑛𝑛 + 8)  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
Let 𝒯𝒯  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
The following subsection proposes a construction method for a cyclic Butterfly triple system. 
 
 
 
 
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) is provided. 
 
Theorem 13. For any 𝑛𝑛 ≥ 0, there exists a cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9). 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
𝑣𝑣 ≡ 9 (mod 12),  
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
 𝒮𝒮  
 
ℤ12𝑛𝑛+9  
 
𝒮𝒮 contains two 
 
(6𝑛𝑛 + 4)-cycles,  
 
(12𝑛𝑛 + 8)  
 
ℤ12𝑛𝑛+9 is contained in exactly two edges. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
 (12𝑛𝑛 + 9) × (12𝑛𝑛 + 8)  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
Let 𝒯𝒯  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
The following subsection proposes a construction method for a cyclic Butterfly triple system. 
 
 
 
 
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) is provided. 
 
Theorem 13. For any 𝑛𝑛 ≥ 0, there exists a cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9). 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
𝑣𝑣 ≡ 9 (mod 12),  
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
 𝒮𝒮  
 
ℤ12𝑛𝑛+9  
 
𝒮𝒮 contains two 
 
(6𝑛𝑛 + 4)-cycles,  
 
(12𝑛𝑛 + 8)  
 
ℤ12𝑛𝑛+9 is contained in exactly two edges. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
 (12𝑛𝑛 + 9) × (12𝑛𝑛 + 8)  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
Let 𝒯𝒯  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
The following subsection proposes a construction method for a cyclic Butterfly triple system. 
 
 
 
 
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) is provided. 
 
Theorem 13. For any 𝑛𝑛 ≥ 0, there exists a cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9). 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
𝑣𝑣 ≡ 9 (mod 12),  
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
 𝒮𝒮  
 
ℤ12𝑛𝑛+9  
 
𝒮𝒮 contains two 
 
(6𝑛𝑛 + 4)-cycles,  
 
(12𝑛𝑛 + 8)  
 
ℤ12𝑛𝑛+9 is contained in exactly two edges. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
 (12𝑛𝑛 + 9) × (12𝑛𝑛 + 8)  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
Let 𝒯𝒯  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
The following subsection proposes a construction method for a cyclic Butterfly triple system. 
 
 
 
 
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) is provided. 
 
Theorem 13. For any 𝑛𝑛 ≥ 0, there exists a cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9). 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
𝑣𝑣 ≡ 9 (mod 12),  
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
 𝒮𝒮  
 
ℤ12𝑛𝑛+9  
 
𝒮𝒮 contains two 
 
(6𝑛𝑛 + 4)-cycles,  
 
(12𝑛𝑛 + 8)  
 
ℤ12𝑛𝑛+9 is contained in exactly two edges. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
 (12𝑛𝑛 + 9) × (12𝑛𝑛 + 8)  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
Let 𝒯𝒯  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
The following subsection proposes a construction method for a cyclic Butterfly triple system. 
 
 
 
 
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) is provided. 
 
Theorem 13. For any 𝑛𝑛 ≥ 0, there exists a cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9). 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
𝑣𝑣 ≡ 9 (mod 12),  
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
 𝒮𝒮  
 
ℤ12𝑛𝑛+9  
 
𝒮𝒮 contains two 
 
(6𝑛𝑛 + 4)-cycles,  
 
(12𝑛𝑛 + 8)  
 
ℤ12𝑛𝑛+9 is contained in exactly two edges. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
 (12𝑛𝑛 + 9) × (12𝑛𝑛 + 8)  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
Let 𝒯𝒯  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
The following subsection proposes a construction method for a cyclic Butterfly triple system. 
 
 
 
 
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) is provided. 
 
Theorem 13. For any 𝑛𝑛 ≥ 0, there exists a cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9). 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
𝑣𝑣 ≡ 9 (mod 12),  
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
 𝒮𝒮  
 
ℤ12𝑛𝑛+9  
 
𝒮𝒮 contains two 
 
(6𝑛𝑛 + 4)-cycles,  
 
(12𝑛𝑛 + 8)  
 
ℤ12𝑛𝑛+9 is contained in exactly two edges. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
 (12𝑛𝑛 + 9) × (12𝑛𝑛 + 8)  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
Let 𝒯𝒯  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
The following subsection proposes a construction method for a cyclic Butterfly triple system. 
 
 
 
 
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) is provided. 
 
Theorem 13. For any 𝑛𝑛 ≥ 0, there exists a cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9). 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
𝑣𝑣 ≡ 9 (mod 12),  
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
 𝒮𝒮  
 
ℤ12𝑛𝑛+9  
 
𝒮𝒮 contains two 
 
(6𝑛𝑛 + 4)-cycles,  
 
(12𝑛𝑛 + 8)  
 
ℤ12𝑛𝑛+9 is contained in exactly two edges. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
 (12𝑛𝑛 + 9) × (12𝑛𝑛 + 8)  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
Let 𝒯𝒯  
 
(12𝑛𝑛 + 8)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
The following subsection proposes a construction method for a cyclic Butterfly triple system. 
 
 
 
 
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) is provided. 
 
Theorem 13. For any 𝑛𝑛 ≥ 0, there exists a cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9). 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
𝑣𝑣 ≡ 9 (mod 12),  
 
(𝑣𝑣, 𝑣𝑣−1

2 , 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
 𝒮𝒮  
 
ℤ12𝑛𝑛+9  
 
𝒮𝒮 contains two 
 
(6𝑛𝑛 + 4)-cycles,  
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According to Definition 12,                        is a  
array of triples,                 triples are needed in order to construct a
starter of cyclic                         Let      be a set of triples that is obtained 
by appending the endpoints of each edge in     with the vertex zero. 
Then,    contains             triples among which the object zero is 
contained in each triple and every object other than zero is contained 
in exactly two triples. Now,    satisfies the conditions to be a starter 
of cyclic 

The following subsection proposes a construction method for a cyclic 
Butterfly triple system.

Cycle Star Construction Method

Finding the starter set is the foundation in the construction process. 
Here, a construction method called cycle star construction method 
is developed for constructing a starter of the cyclic Butterfly triple 
system.
 
This method is divided into the following four steps:

Step 1.	 Construct the starter of cyclic 

Step 2. 	Construct the starter of cyclic               star decomposition of 

Step 3.	 Combine the similar vertices from Steps 1 and 2.
Step 4. 	Partition the graphs of Step 3 into triples.

Example 14 demonstrates the step-by-step construction of cyclic  
by using the cycle star construction method.

Example 14. The construction for a starter of cyclic 

Step 1.   Construct the starter of cyclic 

Based on the construction in Equation        ,the set                            is a 
starter of the cyclic Butterfly 4-cycle system of 
and                              as can be seen in Figure 3.
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Figure 5

The Construction 

From Steps 1 and 2, it can be seen that the list of differences from     
                         and the list of differences from                           cover    
each nonzero element of       exactly twice. Therefore, it can be said 
that the list of differences from    covers each nonzero element of   
      exactly four times.

Step 4.	 Partition the graphs of Step 3 into triples.
The following figure shows how to partition the set of graphs  
in Step 3 into triples.

Figure 6

Partition the Graphs                  and  into Triples

Let    be a set of triples obtained from the partitioning of the graphs       and           
       As shown in Figure 6, every edge in the set of cycles  
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Partition the Graphs 𝐺𝐺1 and 𝐺𝐺2 into Triples 
 

 
 
Let 𝒯𝒯  
 
𝐺𝐺1  
 
𝐺𝐺2.  
 
𝒮𝒮 = {𝐶𝐶41, 𝐶𝐶42}  
 
ℱ = {𝑆𝑆41, 𝑆𝑆42}  
 
𝐵𝐵𝐵𝐵𝐵𝐵(9)  
 
𝒯𝒯  
 
ℤ𝑣𝑣  
 
 λ-fold  
 
ℤ𝑣𝑣  
 
λ  
 
𝒯𝒯.  
 
𝑣𝑣 × (𝑣𝑣 − 1)  
 
6-fold 
 
 𝑣𝑣 ≡ 9 (mod 12). 
 
𝑣𝑣 = 12𝑛𝑛 + 9 where 𝑛𝑛 ≥ 0.  
 

 
 
Let 𝒯𝒯 be a set of triples obtained from the partitioning of the graphs 𝐺𝐺1 and 𝐺𝐺2. As shown in Figure 6, 
every edge in the set of cycles 𝒮𝒮 = {𝐶𝐶41, 𝐶𝐶42} is contained in exactly one triple of 𝒯𝒯, while every edge 
in the set of stars ℱ = {𝑆𝑆41, 𝑆𝑆42} is contained in exactly two triples of 𝒯𝒯. Therefore, it can be concluded 
that the list of differences from 𝒯𝒯 covers each nonzero element of ℤ5 exactly six times. 
 
Now, all triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(9) can be generated from the set of triples 𝒯𝒯 by repeatedly adding 1 
modulo 15, as illustrated previously in Table 2. 
 
Any collection 𝒯𝒯 of triples of ℤ𝑣𝑣 is called a λ-fold triple system if each pair of distinct elements of ℤ𝑣𝑣 
is contained in exactly λ triples of 𝒯𝒯. Then, since a Butterfly triple system of order 𝑣𝑣 is an array of 
𝑣𝑣 × (𝑣𝑣 − 1) triples of ℤ𝑣𝑣 satisfying certain specified conditions, this naturally leads to a question on 
whether there is a relationship between the Butterfly triple system and λ-fold triple system. 
This question will be answered in the next results. 
 
Theorem 15. There exists a cyclic 6-fold Butterfly triple system for 𝑣𝑣 ≡ 9 (mod 12). 
 
Proof. Let 𝑣𝑣 = 12𝑛𝑛 + 9 where 𝑛𝑛 ≥ 0. This theorem is proven by using the cycle star construction 
method for constructing a starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) according to the following steps. 
 
Step 1. Construct the starter of cyclic (12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
Suppose that 𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2} is a set of (6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9, which is defined in 
Equation (1). Then, 𝒮𝒮 is a starter of cyclic (12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 such that 𝒮𝒮 forms a near-two-
factor of 2𝐾𝐾12𝑛𝑛+9 with focus zero and the list of differences from 𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0} exactly twice.  
 
Step 2. Construct the starter of cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
Suppose that ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2} is a set of (6𝑛𝑛 + 4)-stars of 2𝐾𝐾12𝑛𝑛+9, which is defined in 
Equation (2). Then, ℱ is a starter of cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9 such that 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9 and the list of differences from ℱ covers ℤ6𝑛𝑛+5 − {0} exactly 
twice. 
 
Step 3. Combine the similar vertices from Steps 1 and 2. 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2} be a set of graphs obtained by combining the similar vertices of the cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 and 
the star 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
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Proof. Let 𝑣𝑣 = 12𝑛𝑛 + 9 where 𝑛𝑛 ≥ 0. This theorem is proven by using the cycle star construction 
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Step 2. Construct the starter of cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
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every edge in the set of cycles 𝒮𝒮 = {𝐶𝐶41, 𝐶𝐶42} is contained in exactly one triple of 𝒯𝒯, while every edge 
in the set of stars ℱ = {𝑆𝑆41, 𝑆𝑆42} is contained in exactly two triples of 𝒯𝒯. Therefore, it can be concluded 
that the list of differences from 𝒯𝒯 covers each nonzero element of ℤ5 exactly six times. 
 
Now, all triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(9) can be generated from the set of triples 𝒯𝒯 by repeatedly adding 1 
modulo 15, as illustrated previously in Table 2. 
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is contained in exactly λ triples of 𝒯𝒯. Then, since a Butterfly triple system of order 𝑣𝑣 is an array of 
𝑣𝑣 × (𝑣𝑣 − 1) triples of ℤ𝑣𝑣 satisfying certain specified conditions, this naturally leads to a question on 
whether there is a relationship between the Butterfly triple system and λ-fold triple system. 
This question will be answered in the next results. 
 
Theorem 15. There exists a cyclic 6-fold Butterfly triple system for 𝑣𝑣 ≡ 9 (mod 12). 
 
Proof. Let 𝑣𝑣 = 12𝑛𝑛 + 9 where 𝑛𝑛 ≥ 0. This theorem is proven by using the cycle star construction 
method for constructing a starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) according to the following steps. 
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Suppose that 𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2} is a set of (6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9, which is defined in 
Equation (1). Then, 𝒮𝒮 is a starter of cyclic (12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 such that 𝒮𝒮 forms a near-two-
factor of 2𝐾𝐾12𝑛𝑛+9 with focus zero and the list of differences from 𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0} exactly twice.  
 
Step 2. Construct the starter of cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
Suppose that ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2} is a set of (6𝑛𝑛 + 4)-stars of 2𝐾𝐾12𝑛𝑛+9, which is defined in 
Equation (2). Then, ℱ is a starter of cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9 such that 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9 and the list of differences from ℱ covers ℤ6𝑛𝑛+5 − {0} exactly 
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Step 3. Combine the similar vertices from Steps 1 and 2. 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2} be a set of graphs obtained by combining the similar vertices of the cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 and 
the star 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
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𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

 
 
Let 𝒯𝒯 be a set of triples obtained from the partitioning of the graphs 𝐺𝐺1 and 𝐺𝐺2. As shown in Figure 6, 
every edge in the set of cycles 𝒮𝒮 = {𝐶𝐶41, 𝐶𝐶42} is contained in exactly one triple of 𝒯𝒯, while every edge 
in the set of stars ℱ = {𝑆𝑆41, 𝑆𝑆42} is contained in exactly two triples of 𝒯𝒯. Therefore, it can be concluded 
that the list of differences from 𝒯𝒯 covers each nonzero element of ℤ5 exactly six times. 
 
Now, all triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(9) can be generated from the set of triples 𝒯𝒯 by repeatedly adding 1 
modulo 15, as illustrated previously in Table 2. 
 
Any collection 𝒯𝒯 of triples of ℤ𝑣𝑣 is called a λ-fold triple system if each pair of distinct elements of ℤ𝑣𝑣 
is contained in exactly λ triples of 𝒯𝒯. Then, since a Butterfly triple system of order 𝑣𝑣 is an array of 
𝑣𝑣 × (𝑣𝑣 − 1) triples of ℤ𝑣𝑣 satisfying certain specified conditions, this naturally leads to a question on 
whether there is a relationship between the Butterfly triple system and λ-fold triple system. 
This question will be answered in the next results. 
 
Theorem 15. There exists a cyclic 6-fold Butterfly triple system for 𝑣𝑣 ≡ 9 (mod 12). 
 
Proof. Let 𝑣𝑣 = 12𝑛𝑛 + 9 where 𝑛𝑛 ≥ 0. This theorem is proven by using the cycle star construction 
method for constructing a starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) according to the following steps. 
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Suppose that 𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2} is a set of (6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9, which is defined in 
Equation (1). Then, 𝒮𝒮 is a starter of cyclic (12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 such that 𝒮𝒮 forms a near-two-
factor of 2𝐾𝐾12𝑛𝑛+9 with focus zero and the list of differences from 𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0} exactly twice.  
 
Step 2. Construct the starter of cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
Suppose that ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2} is a set of (6𝑛𝑛 + 4)-stars of 2𝐾𝐾12𝑛𝑛+9, which is defined in 
Equation (2). Then, ℱ is a starter of cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9 such that 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9 and the list of differences from ℱ covers ℤ6𝑛𝑛+5 − {0} exactly 
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Step 3. Combine the similar vertices from Steps 1 and 2. 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2} be a set of graphs obtained by combining the similar vertices of the cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 and 
the star 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 

 
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
𝐶𝐶4𝑖𝑖  
 
 𝑆𝑆4𝑖𝑖  for = 1, 2, 
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(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
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Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
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𝐺𝐺1 and 𝐺𝐺2.  
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2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
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Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

 
 
Let 𝒯𝒯 be a set of triples obtained from the partitioning of the graphs 𝐺𝐺1 and 𝐺𝐺2. As shown in Figure 6, 
every edge in the set of cycles 𝒮𝒮 = {𝐶𝐶41, 𝐶𝐶42} is contained in exactly one triple of 𝒯𝒯, while every edge 
in the set of stars ℱ = {𝑆𝑆41, 𝑆𝑆42} is contained in exactly two triples of 𝒯𝒯. Therefore, it can be concluded 
that the list of differences from 𝒯𝒯 covers each nonzero element of ℤ5 exactly six times. 
 
Now, all triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(9) can be generated from the set of triples 𝒯𝒯 by repeatedly adding 1 
modulo 15, as illustrated previously in Table 2. 
 
Any collection 𝒯𝒯 of triples of ℤ𝑣𝑣 is called a λ-fold triple system if each pair of distinct elements of ℤ𝑣𝑣 
is contained in exactly λ triples of 𝒯𝒯. Then, since a Butterfly triple system of order 𝑣𝑣 is an array of 
𝑣𝑣 × (𝑣𝑣 − 1) triples of ℤ𝑣𝑣 satisfying certain specified conditions, this naturally leads to a question on 
whether there is a relationship between the Butterfly triple system and λ-fold triple system. 
This question will be answered in the next results. 
 
Theorem 15. There exists a cyclic 6-fold Butterfly triple system for 𝑣𝑣 ≡ 9 (mod 12). 
 
Proof. Let 𝑣𝑣 = 12𝑛𝑛 + 9 where 𝑛𝑛 ≥ 0. This theorem is proven by using the cycle star construction 
method for constructing a starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) according to the following steps. 
 
Step 1. Construct the starter of cyclic (12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
Suppose that 𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2} is a set of (6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9, which is defined in 
Equation (1). Then, 𝒮𝒮 is a starter of cyclic (12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 such that 𝒮𝒮 forms a near-two-
factor of 2𝐾𝐾12𝑛𝑛+9 with focus zero and the list of differences from 𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0} exactly twice.  
 
Step 2. Construct the starter of cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
Suppose that ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2} is a set of (6𝑛𝑛 + 4)-stars of 2𝐾𝐾12𝑛𝑛+9, which is defined in 
Equation (2). Then, ℱ is a starter of cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9 such that 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9 and the list of differences from ℱ covers ℤ6𝑛𝑛+5 − {0} exactly 
twice. 
 
Step 3. Combine the similar vertices from Steps 1 and 2. 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2} be a set of graphs obtained by combining the similar vertices of the cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 and 
the star 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
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Step 3.	 Combine the similar vertices from Steps 1 and 2.
Let                     be a set of graphs obtained by combining the similar 
vertices of the cycle               and the star             

Step 4.	 Partition the graphs of Step 3 into triples.
Let     be a set of triples obtained from the partitioning of the graphs     
                  Then, each triple    in is formed by joining an edge in  
with two edges in                                   Therefore, the list of differences 
from     can be written as:

(4)

However, from Steps 1 and 2, there are          and          that cover each 
nonzero element in            exactly twice. Therefore, from Equation 4, 
it follows that             covers each nonzero element in               exactly six 
times. Based on Lemma 9,    is a starter of the cyclic    fold triple system                 

Algorithm for the Starter of Cyclic Butterfly Triple System

Based on the cycle star construction method, an algorithm is 
formulated for generating the starter of cyclic  

Reviewing the constructions of a starter of simple cyclic  
                          as shown in Figures 1 and 2, it is noted that both constructions 
contain two components. Furthermore, in a similar representation, the 
algorithm for the starter of cyclic                          is partitioned into two 
disjoint sets: the starter triples from the left wing and the starter triples 
from the right wing.

Case 1.   is odd.
Figure 7 illustrates the result of applying the cycle star construction 
method for constructing the starter of cyclic                          when       
is odd.

As shown in Figure 7, the generated triples from the left-wing partition 
can be expressed as a union of sets of the form:

where

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9,  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
 
𝒮𝒮  
 
2𝐾𝐾12𝑛𝑛+9  
 
𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0}  
 
(6𝑛𝑛 + 4)- 
 
 2𝐾𝐾12𝑛𝑛+9. 
 
ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2}  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9,  
 
ℱ  
 
(6𝑛𝑛 + 4) 
 
 2𝐾𝐾12𝑛𝑛+9  
 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9  
 
ℱ covers ℤ6𝑛𝑛+5 − {0}  
 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2}  
 
cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
 
Let 𝒯𝒯  
 
𝐺𝐺1 and 𝐺𝐺2.  
 

𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2.  
 

𝐷𝐷(𝒯𝒯) = 𝐷𝐷(𝒮𝒮) ∪ 𝐷𝐷(ℱ) ∪ 𝐷𝐷(ℱ). (4) 
 
𝐷𝐷(𝒮𝒮)  
 
𝐷𝐷(ℱ)  
 
ℤ6𝑛𝑛+5  
 
𝐷𝐷(𝒯𝒯)  
 
ℤ6𝑛𝑛+5  
 
 𝒯𝒯  
 
6-fold triple system.  
 
 
Algorithm for the Starter of Cyclic Butterfly Triple System 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
Case 1. 𝑛𝑛 is odd. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 10𝑛𝑛 + 8, 10𝑛𝑛 + 6}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴1,6 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,7 = {{0, 2𝑛𝑛 + 4𝑖𝑖 + 1, 10𝑛𝑛 − 4𝑖𝑖 + 6} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2.  
 

𝐷𝐷(𝒯𝒯) = 𝐷𝐷(𝒮𝒮) ∪ 𝐷𝐷(ℱ) ∪ 𝐷𝐷(ℱ). (4) 
 
𝐷𝐷(𝒮𝒮)  
 
𝐷𝐷(ℱ)  
 
ℤ6𝑛𝑛+5  
 
𝐷𝐷(𝒯𝒯)  
 
ℤ6𝑛𝑛+5  
 
 𝒯𝒯  
 
6-fold triple system.  
 
 
Algorithm for the Starter of Cyclic Butterfly Triple System 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
Case 1. 𝑛𝑛 is odd. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 10𝑛𝑛 + 8, 10𝑛𝑛 + 6}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 
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𝐴𝐴1,7 = {{0, 2𝑛𝑛 + 4𝑖𝑖 + 1, 10𝑛𝑛 − 4𝑖𝑖 + 6} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2.  
 

𝐷𝐷(𝒯𝒯) = 𝐷𝐷(𝒮𝒮) ∪ 𝐷𝐷(ℱ) ∪ 𝐷𝐷(ℱ). (4) 
 
𝐷𝐷(𝒮𝒮)  
 
𝐷𝐷(ℱ)  
 
ℤ6𝑛𝑛+5  
 
𝐷𝐷(𝒯𝒯)  
 
ℤ6𝑛𝑛+5  
 
 𝒯𝒯  
 
6-fold triple system.  
 
 
Algorithm for the Starter of Cyclic Butterfly Triple System 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
Case 1. 𝑛𝑛 is odd. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 10𝑛𝑛 + 8, 10𝑛𝑛 + 6}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴1,6 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,7 = {{0, 2𝑛𝑛 + 4𝑖𝑖 + 1, 10𝑛𝑛 − 4𝑖𝑖 + 6} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2.  
 

𝐷𝐷(𝒯𝒯) = 𝐷𝐷(𝒮𝒮) ∪ 𝐷𝐷(ℱ) ∪ 𝐷𝐷(ℱ). (4) 
 
𝐷𝐷(𝒮𝒮)  
 
𝐷𝐷(ℱ)  
 
ℤ6𝑛𝑛+5  
 
𝐷𝐷(𝒯𝒯)  
 
ℤ6𝑛𝑛+5  
 
 𝒯𝒯  
 
6-fold triple system.  
 
 
Algorithm for the Starter of Cyclic Butterfly Triple System 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
Case 1. 𝑛𝑛 is odd. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 10𝑛𝑛 + 8, 10𝑛𝑛 + 6}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴1,6 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,7 = {{0, 2𝑛𝑛 + 4𝑖𝑖 + 1, 10𝑛𝑛 − 4𝑖𝑖 + 6} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2.  
 

𝐷𝐷(𝒯𝒯) = 𝐷𝐷(𝒮𝒮) ∪ 𝐷𝐷(ℱ) ∪ 𝐷𝐷(ℱ). (4) 
 
𝐷𝐷(𝒮𝒮)  
 
𝐷𝐷(ℱ)  
 
ℤ6𝑛𝑛+5  
 
𝐷𝐷(𝒯𝒯)  
 
ℤ6𝑛𝑛+5  
 
 𝒯𝒯  
 
6-fold triple system.  
 
 
Algorithm for the Starter of Cyclic Butterfly Triple System 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
Case 1. 𝑛𝑛 is odd. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 10𝑛𝑛 + 8, 10𝑛𝑛 + 6}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴1,6 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,7 = {{0, 2𝑛𝑛 + 4𝑖𝑖 + 1, 10𝑛𝑛 − 4𝑖𝑖 + 6} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2.  
 

𝐷𝐷(𝒯𝒯) = 𝐷𝐷(𝒮𝒮) ∪ 𝐷𝐷(ℱ) ∪ 𝐷𝐷(ℱ). (4) 
 
𝐷𝐷(𝒮𝒮)  
 
𝐷𝐷(ℱ)  
 
ℤ6𝑛𝑛+5  
 
𝐷𝐷(𝒯𝒯)  
 
ℤ6𝑛𝑛+5  
 
 𝒯𝒯  
 
6-fold triple system.  
 
 
Algorithm for the Starter of Cyclic Butterfly Triple System 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
Case 1. 𝑛𝑛 is odd. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 10𝑛𝑛 + 8, 10𝑛𝑛 + 6}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴1,6 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,7 = {{0, 2𝑛𝑛 + 4𝑖𝑖 + 1, 10𝑛𝑛 − 4𝑖𝑖 + 6} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2.  
 

𝐷𝐷(𝒯𝒯) = 𝐷𝐷(𝒮𝒮) ∪ 𝐷𝐷(ℱ) ∪ 𝐷𝐷(ℱ). (4) 
 
𝐷𝐷(𝒮𝒮)  
 
𝐷𝐷(ℱ)  
 
ℤ6𝑛𝑛+5  
 
𝐷𝐷(𝒯𝒯)  
 
ℤ6𝑛𝑛+5  
 
 𝒯𝒯  
 
6-fold triple system.  
 
 
Algorithm for the Starter of Cyclic Butterfly Triple System 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
Case 1. 𝑛𝑛 is odd. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 10𝑛𝑛 + 8, 10𝑛𝑛 + 6}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴1,6 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,7 = {{0, 2𝑛𝑛 + 4𝑖𝑖 + 1, 10𝑛𝑛 − 4𝑖𝑖 + 6} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 
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Meanwhile, the generated triples from the right wing are expressed as 
a union of sets as follows:

Simply, it can be said that for all :

(5)

Consequently, the starter of cyclic Butterfly triple system of order
                when     is odd, is formed by 

Case 2.     is even.
In the same manner as Case 1, the starter triples of cyclic  
where     is even can be described as a union of two sets 
Therefore, each set is represented as one side of the butterfly wings, 
in which the generated triples from the left wing are expressed as 
follows:

𝐶𝐶(6𝑛𝑛+4)𝑖𝑖  
 
𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2.  
 

𝐷𝐷(𝒯𝒯) = 𝐷𝐷(𝒮𝒮) ∪ 𝐷𝐷(ℱ) ∪ 𝐷𝐷(ℱ). (4) 
 
𝐷𝐷(𝒮𝒮)  
 
𝐷𝐷(ℱ)  
 
ℤ6𝑛𝑛+5  
 
𝐷𝐷(𝒯𝒯)  
 
ℤ6𝑛𝑛+5  
 
 𝒯𝒯  
 
6-fold triple system.  
 
 
Algorithm for the Starter of Cyclic Butterfly Triple System 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9).  
 
(12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
Case 1. 𝑛𝑛 is odd. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 10𝑛𝑛 + 8, 10𝑛𝑛 + 6}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴1,6 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 10, 2𝑛𝑛 + 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴1,7 = {{0, 2𝑛𝑛 + 4𝑖𝑖 + 1, 10𝑛𝑛 − 4𝑖𝑖 + 6} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴2,1 = {{0, 8𝑛𝑛 + 4, 12𝑛𝑛 + 8}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 8𝑛𝑛 + 6, 12𝑛𝑛 + 7}}, 
𝐴𝐴2,2 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
 12𝑛𝑛 + 9,  
 
𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2.  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 ∪ 𝒜𝒜2.  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 

 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴2,1 = {{0, 8𝑛𝑛 + 4, 12𝑛𝑛 + 8}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 8𝑛𝑛 + 6, 12𝑛𝑛 + 7}}, 
𝐴𝐴2,2 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
 12𝑛𝑛 + 9,  
 
𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2.  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 ∪ 𝒜𝒜2.  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 

 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴2,1 = {{0, 8𝑛𝑛 + 4, 12𝑛𝑛 + 8}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 8𝑛𝑛 + 6, 12𝑛𝑛 + 7}}, 
𝐴𝐴2,2 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
 12𝑛𝑛 + 9,  
 
𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2.  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 ∪ 𝒜𝒜2.  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 

 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴2,1 = {{0, 8𝑛𝑛 + 4, 12𝑛𝑛 + 8}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 8𝑛𝑛 + 6, 12𝑛𝑛 + 7}}, 
𝐴𝐴2,2 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
 12𝑛𝑛 + 9,  
 
𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2.  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 ∪ 𝒜𝒜2.  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 

 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴2,1 = {{0, 8𝑛𝑛 + 4, 12𝑛𝑛 + 8}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 8𝑛𝑛 + 6, 12𝑛𝑛 + 7}}, 
𝐴𝐴2,2 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
 12𝑛𝑛 + 9,  
 
𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2.  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 ∪ 𝒜𝒜2.  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 

𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
Simply, it can be said that for all 1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
Consequently, the starter of cyclic Butterfly triple system of order 12𝑛𝑛 + 9, when 𝑛𝑛 is odd, is formed 
by 𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2. 𝑛𝑛 is even. 
In the same manner as Case 1, the starter triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) where 𝑛𝑛 is even can be 
described as a union of two sets 𝒜𝒜1 ∪ 𝒜𝒜2. Therefore, each set is represented as one side of the butterfly 
wings, in which the generated triples from the left wing are expressed as follows: 
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
Then, the generated triples from the right wing are expressed as follows: 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

where 𝐴𝐴2,𝑖𝑖 is constructed using Equation 5. 
 
Example 16. The starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be listed by choosing 𝑛𝑛 = 1 in the algorithm for the 
starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) when 𝑛𝑛 is odd. Now, the starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be represented 
as a butterfly wing as follows: 
 
The left wing is 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 ,  

where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 

𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
Simply, it can be said that for all 1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
Consequently, the starter of cyclic Butterfly triple system of order 12𝑛𝑛 + 9, when 𝑛𝑛 is odd, is formed 
by 𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2. 𝑛𝑛 is even. 
In the same manner as Case 1, the starter triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) where 𝑛𝑛 is even can be 
described as a union of two sets 𝒜𝒜1 ∪ 𝒜𝒜2. Therefore, each set is represented as one side of the butterfly 
wings, in which the generated triples from the left wing are expressed as follows: 
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
Then, the generated triples from the right wing are expressed as follows: 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

where 𝐴𝐴2,𝑖𝑖 is constructed using Equation 5. 
 
Example 16. The starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be listed by choosing 𝑛𝑛 = 1 in the algorithm for the 
starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) when 𝑛𝑛 is odd. Now, the starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be represented 
as a butterfly wing as follows: 
 
The left wing is 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 ,  

where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 

𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
Simply, it can be said that for all 1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
Consequently, the starter of cyclic Butterfly triple system of order 12𝑛𝑛 + 9, when 𝑛𝑛 is odd, is formed 
by 𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2. 𝑛𝑛 is even. 
In the same manner as Case 1, the starter triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) where 𝑛𝑛 is even can be 
described as a union of two sets 𝒜𝒜1 ∪ 𝒜𝒜2. Therefore, each set is represented as one side of the butterfly 
wings, in which the generated triples from the left wing are expressed as follows: 
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
Then, the generated triples from the right wing are expressed as follows: 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

where 𝐴𝐴2,𝑖𝑖 is constructed using Equation 5. 
 
Example 16. The starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be listed by choosing 𝑛𝑛 = 1 in the algorithm for the 
starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) when 𝑛𝑛 is odd. Now, the starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be represented 
as a butterfly wing as follows: 
 
The left wing is 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 ,  

where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 

𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
Simply, it can be said that for all 1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
Consequently, the starter of cyclic Butterfly triple system of order 12𝑛𝑛 + 9, when 𝑛𝑛 is odd, is formed 
by 𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2. 𝑛𝑛 is even. 
In the same manner as Case 1, the starter triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) where 𝑛𝑛 is even can be 
described as a union of two sets 𝒜𝒜1 ∪ 𝒜𝒜2. Therefore, each set is represented as one side of the butterfly 
wings, in which the generated triples from the left wing are expressed as follows: 
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
Then, the generated triples from the right wing are expressed as follows: 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

where 𝐴𝐴2,𝑖𝑖 is constructed using Equation 5. 
 
Example 16. The starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be listed by choosing 𝑛𝑛 = 1 in the algorithm for the 
starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) when 𝑛𝑛 is odd. Now, the starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be represented 
as a butterfly wing as follows: 
 
The left wing is 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 ,  

where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 

𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
Simply, it can be said that for all 1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
Consequently, the starter of cyclic Butterfly triple system of order 12𝑛𝑛 + 9, when 𝑛𝑛 is odd, is formed 
by 𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2. 𝑛𝑛 is even. 
In the same manner as Case 1, the starter triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) where 𝑛𝑛 is even can be 
described as a union of two sets 𝒜𝒜1 ∪ 𝒜𝒜2. Therefore, each set is represented as one side of the butterfly 
wings, in which the generated triples from the left wing are expressed as follows: 
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
Then, the generated triples from the right wing are expressed as follows: 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

where 𝐴𝐴2,𝑖𝑖 is constructed using Equation 5. 
 
Example 16. The starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be listed by choosing 𝑛𝑛 = 1 in the algorithm for the 
starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) when 𝑛𝑛 is odd. Now, the starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be represented 
as a butterfly wing as follows: 
 
The left wing is 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 ,  

where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 

𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
Simply, it can be said that for all 1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
Consequently, the starter of cyclic Butterfly triple system of order 12𝑛𝑛 + 9, when 𝑛𝑛 is odd, is formed 
by 𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2. 𝑛𝑛 is even. 
In the same manner as Case 1, the starter triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) where 𝑛𝑛 is even can be 
described as a union of two sets 𝒜𝒜1 ∪ 𝒜𝒜2. Therefore, each set is represented as one side of the butterfly 
wings, in which the generated triples from the left wing are expressed as follows: 
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
Then, the generated triples from the right wing are expressed as follows: 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

where 𝐴𝐴2,𝑖𝑖 is constructed using Equation 5. 
 
Example 16. The starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be listed by choosing 𝑛𝑛 = 1 in the algorithm for the 
starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) when 𝑛𝑛 is odd. Now, the starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be represented 
as a butterfly wing as follows: 
 
The left wing is 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 ,  

where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 

𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
Simply, it can be said that for all 1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
Consequently, the starter of cyclic Butterfly triple system of order 12𝑛𝑛 + 9, when 𝑛𝑛 is odd, is formed 
by 𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2. 𝑛𝑛 is even. 
In the same manner as Case 1, the starter triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) where 𝑛𝑛 is even can be 
described as a union of two sets 𝒜𝒜1 ∪ 𝒜𝒜2. Therefore, each set is represented as one side of the butterfly 
wings, in which the generated triples from the left wing are expressed as follows: 
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
Then, the generated triples from the right wing are expressed as follows: 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

where 𝐴𝐴2,𝑖𝑖 is constructed using Equation 5. 
 
Example 16. The starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be listed by choosing 𝑛𝑛 = 1 in the algorithm for the 
starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) when 𝑛𝑛 is odd. Now, the starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be represented 
as a butterfly wing as follows: 
 
The left wing is 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 ,  

where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
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where

Then, the generated triples from the right wing are expressed as 
follows:

where        is constructed using Equation 5.

Example 16. The starter of cyclic                 can be listed by choosing  
            in the algorithm for the starter of cyclic                             when      
     is odd. Now, the starter of cyclic                     can be represented as a 
butterfly wing as follows:

The left wing is  
where

The right wing is 
where

 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴2,1 = {{0, 8𝑛𝑛 + 4, 12𝑛𝑛 + 8}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 8𝑛𝑛 + 6, 12𝑛𝑛 + 7}}, 
𝐴𝐴2,2 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
 12𝑛𝑛 + 9,  
 
𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2.  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 ∪ 𝒜𝒜2.  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 

 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴2,1 = {{0, 8𝑛𝑛 + 4, 12𝑛𝑛 + 8}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 8𝑛𝑛 + 6, 12𝑛𝑛 + 7}}, 
𝐴𝐴2,2 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 11, 4𝑖𝑖} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
 12𝑛𝑛 + 9,  
 
𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2.  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝒜𝒜1 ∪ 𝒜𝒜2.  
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

 
where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

 𝐴𝐴2,𝑖𝑖  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝑛𝑛  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
s 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
𝐴𝐴1,3 = {{0, 17, 6}, {0, 13, 10}}, 
𝐴𝐴1,4 = {{0, 1, 18}}, 
𝐴𝐴1,5 = ∅, 
𝐴𝐴1,6 = {{0, 16, 7}}, 
𝐴𝐴1,7 = ∅. 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴2,1 = {{0, 12, 20}, {0, 3, 5}, {0, 14, 19}}, 
𝐴𝐴2,2 = {{0, 19, 4}, {0, 15, 8}, {0, 11, 12}}, 
𝐴𝐴2,3 = {{0, 4, 15}, {0, 8, 11}}, 
𝐴𝐴2,4 = {{0, 20, 3}}, 
𝐴𝐴2,5 = ∅, 
𝐴𝐴2,6 = {{0, 5, 14}}, 
𝐴𝐴2,7 = ∅. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21) 
 
{0, 𝑥𝑥, 𝑦𝑦}  
 
{0, 21 − 𝑥𝑥, 21 − 𝑦𝑦}  
 
 
 
 
 
 

𝐴𝐴2,𝑖𝑖  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝑛𝑛  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
s 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
𝐴𝐴1,3 = {{0, 17, 6}, {0, 13, 10}}, 
𝐴𝐴1,4 = {{0, 1, 18}}, 
𝐴𝐴1,5 = ∅, 
𝐴𝐴1,6 = {{0, 16, 7}}, 
𝐴𝐴1,7 = ∅. 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴2,1 = {{0, 12, 20}, {0, 3, 5}, {0, 14, 19}}, 
𝐴𝐴2,2 = {{0, 19, 4}, {0, 15, 8}, {0, 11, 12}}, 
𝐴𝐴2,3 = {{0, 4, 15}, {0, 8, 11}}, 
𝐴𝐴2,4 = {{0, 20, 3}}, 
𝐴𝐴2,5 = ∅, 
𝐴𝐴2,6 = {{0, 5, 14}}, 
𝐴𝐴2,7 = ∅. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21) 
 
{0, 𝑥𝑥, 𝑦𝑦}  
 
{0, 21 − 𝑥𝑥, 21 − 𝑦𝑦}  
 
 
 
 
 
 

𝐴𝐴2,𝑖𝑖  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝑛𝑛  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
s 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
𝐴𝐴1,3 = {{0, 17, 6}, {0, 13, 10}}, 
𝐴𝐴1,4 = {{0, 1, 18}}, 
𝐴𝐴1,5 = ∅, 
𝐴𝐴1,6 = {{0, 16, 7}}, 
𝐴𝐴1,7 = ∅. 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴2,1 = {{0, 12, 20}, {0, 3, 5}, {0, 14, 19}}, 
𝐴𝐴2,2 = {{0, 19, 4}, {0, 15, 8}, {0, 11, 12}}, 
𝐴𝐴2,3 = {{0, 4, 15}, {0, 8, 11}}, 
𝐴𝐴2,4 = {{0, 20, 3}}, 
𝐴𝐴2,5 = ∅, 
𝐴𝐴2,6 = {{0, 5, 14}}, 
𝐴𝐴2,7 = ∅. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21) 
 
{0, 𝑥𝑥, 𝑦𝑦}  
 
{0, 21 − 𝑥𝑥, 21 − 𝑦𝑦}  
 
 
 
 
 
 

𝐴𝐴2,3 = {{0, 4𝑖𝑖, 12𝑛𝑛 − 4𝑖𝑖 + 7} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴2,4 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 12, 4𝑖𝑖 − 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,5 = {{0, 4𝑖𝑖 − 1, 12𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }, 

𝐴𝐴2,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛+1
2 }, 

𝐴𝐴2,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛−1
2 }. 

 
Simply, it can be said that for all 1 ≤ 𝑖𝑖 ≤ 7: 
 

𝐴𝐴2,𝑖𝑖 = {{0, (12𝑛𝑛 + 9) − 𝑥𝑥, (12𝑛𝑛 + 9) − 𝑦𝑦} | {0, 𝑥𝑥, 𝑦𝑦} ∈ 𝐴𝐴1,𝑖𝑖}. (5) 

 
Consequently, the starter of cyclic Butterfly triple system of order 12𝑛𝑛 + 9, when 𝑛𝑛 is odd, is formed 
by 𝒜𝒜 = 𝒜𝒜1 ∪ 𝒜𝒜2. 
 
Case 2. 𝑛𝑛 is even. 
In the same manner as Case 1, the starter triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) where 𝑛𝑛 is even can be 
described as a union of two sets 𝒜𝒜1 ∪ 𝒜𝒜2. Therefore, each set is represented as one side of the butterfly 
wings, in which the generated triples from the left wing are expressed as follows: 
 
𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 , 

where 
𝐴𝐴1,1 = {{0, 4𝑛𝑛 + 5, 1}, {0, 2𝑛𝑛 + 1, 2𝑛𝑛 + 3}, {0, 4𝑛𝑛 + 3, 2}},  
𝐴𝐴1,2 = {{0, 4𝑖𝑖 − 2, 12𝑛𝑛 − 4𝑖𝑖 + 9} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 + 1}, 
𝐴𝐴1,3 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 9, 4𝑖𝑖 + 2} |   1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛}, 

𝐴𝐴1,4 = {{0, 4𝑖𝑖 − 3, 12𝑛𝑛 − 4𝑖𝑖 + 10} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,5 = {{0, 12𝑛𝑛 − 4𝑖𝑖 + 10, 4𝑖𝑖 + 1} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,6 = {{0, 2𝑛𝑛 + 4𝑖𝑖 − 1, 10𝑛𝑛 − 4𝑖𝑖 + 8} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}, 

𝐴𝐴1,7 = {{0, 10𝑛𝑛 − 4𝑖𝑖 + 8, 2𝑛𝑛 + 4𝑖𝑖 + 3} |   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
2}. 

 
Then, the generated triples from the right wing are expressed as follows: 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖

7
𝑖𝑖=1 , 

where 𝐴𝐴2,𝑖𝑖 is constructed using Equation 5. 
 
Example 16. The starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be listed by choosing 𝑛𝑛 = 1 in the algorithm for the 
starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) when 𝑛𝑛 is odd. Now, the starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(21) can be represented 
as a butterfly wing as follows: 
 
The left wing is 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖

7
𝑖𝑖=1 ,  

where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 

𝐴𝐴2,𝑖𝑖  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝑛𝑛  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
s 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
𝐴𝐴1,3 = {{0, 17, 6}, {0, 13, 10}}, 
𝐴𝐴1,4 = {{0, 1, 18}}, 
𝐴𝐴1,5 = ∅, 
𝐴𝐴1,6 = {{0, 16, 7}}, 
𝐴𝐴1,7 = ∅. 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴2,1 = {{0, 12, 20}, {0, 3, 5}, {0, 14, 19}}, 
𝐴𝐴2,2 = {{0, 19, 4}, {0, 15, 8}, {0, 11, 12}}, 
𝐴𝐴2,3 = {{0, 4, 15}, {0, 8, 11}}, 
𝐴𝐴2,4 = {{0, 20, 3}}, 
𝐴𝐴2,5 = ∅, 
𝐴𝐴2,6 = {{0, 5, 14}}, 
𝐴𝐴2,7 = ∅. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21) 
 
{0, 𝑥𝑥, 𝑦𝑦}  
 
{0, 21 − 𝑥𝑥, 21 − 𝑦𝑦}  
 
 
 
 
 
 

𝐴𝐴2,𝑖𝑖  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝑛𝑛  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
s 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
𝐴𝐴1,3 = {{0, 17, 6}, {0, 13, 10}}, 
𝐴𝐴1,4 = {{0, 1, 18}}, 
𝐴𝐴1,5 = ∅, 
𝐴𝐴1,6 = {{0, 16, 7}}, 
𝐴𝐴1,7 = ∅. 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴2,1 = {{0, 12, 20}, {0, 3, 5}, {0, 14, 19}}, 
𝐴𝐴2,2 = {{0, 19, 4}, {0, 15, 8}, {0, 11, 12}}, 
𝐴𝐴2,3 = {{0, 4, 15}, {0, 8, 11}}, 
𝐴𝐴2,4 = {{0, 20, 3}}, 
𝐴𝐴2,5 = ∅, 
𝐴𝐴2,6 = {{0, 5, 14}}, 
𝐴𝐴2,7 = ∅. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21) 
 
{0, 𝑥𝑥, 𝑦𝑦}  
 
{0, 21 − 𝑥𝑥, 21 − 𝑦𝑦}  
 
 
 
 
 
 

𝐴𝐴2,𝑖𝑖  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝑛𝑛  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
s 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
𝐴𝐴1,3 = {{0, 17, 6}, {0, 13, 10}}, 
𝐴𝐴1,4 = {{0, 1, 18}}, 
𝐴𝐴1,5 = ∅, 
𝐴𝐴1,6 = {{0, 16, 7}}, 
𝐴𝐴1,7 = ∅. 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴2,1 = {{0, 12, 20}, {0, 3, 5}, {0, 14, 19}}, 
𝐴𝐴2,2 = {{0, 19, 4}, {0, 15, 8}, {0, 11, 12}}, 
𝐴𝐴2,3 = {{0, 4, 15}, {0, 8, 11}}, 
𝐴𝐴2,4 = {{0, 20, 3}}, 
𝐴𝐴2,5 = ∅, 
𝐴𝐴2,6 = {{0, 5, 14}}, 
𝐴𝐴2,7 = ∅. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21) 
 
{0, 𝑥𝑥, 𝑦𝑦}  
 
{0, 21 − 𝑥𝑥, 21 − 𝑦𝑦}  
 
 
 
 
 
 

𝐴𝐴2,𝑖𝑖  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝑛𝑛  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
s 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
𝐴𝐴1,3 = {{0, 17, 6}, {0, 13, 10}}, 
𝐴𝐴1,4 = {{0, 1, 18}}, 
𝐴𝐴1,5 = ∅, 
𝐴𝐴1,6 = {{0, 16, 7}}, 
𝐴𝐴1,7 = ∅. 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴2,1 = {{0, 12, 20}, {0, 3, 5}, {0, 14, 19}}, 
𝐴𝐴2,2 = {{0, 19, 4}, {0, 15, 8}, {0, 11, 12}}, 
𝐴𝐴2,3 = {{0, 4, 15}, {0, 8, 11}}, 
𝐴𝐴2,4 = {{0, 20, 3}}, 
𝐴𝐴2,5 = ∅, 
𝐴𝐴2,6 = {{0, 5, 14}}, 
𝐴𝐴2,7 = ∅. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21) 
 
{0, 𝑥𝑥, 𝑦𝑦}  
 
{0, 21 − 𝑥𝑥, 21 − 𝑦𝑦}  
 
 
 
 
 
 

𝐴𝐴2,𝑖𝑖  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝑛𝑛  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
s 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
𝐴𝐴1,3 = {{0, 17, 6}, {0, 13, 10}}, 
𝐴𝐴1,4 = {{0, 1, 18}}, 
𝐴𝐴1,5 = ∅, 
𝐴𝐴1,6 = {{0, 16, 7}}, 
𝐴𝐴1,7 = ∅. 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴2,1 = {{0, 12, 20}, {0, 3, 5}, {0, 14, 19}}, 
𝐴𝐴2,2 = {{0, 19, 4}, {0, 15, 8}, {0, 11, 12}}, 
𝐴𝐴2,3 = {{0, 4, 15}, {0, 8, 11}}, 
𝐴𝐴2,4 = {{0, 20, 3}}, 
𝐴𝐴2,5 = ∅, 
𝐴𝐴2,6 = {{0, 5, 14}}, 
𝐴𝐴2,7 = ∅. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21) 
 
{0, 𝑥𝑥, 𝑦𝑦}  
 
{0, 21 − 𝑥𝑥, 21 − 𝑦𝑦}  
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However, a cyclic               is constructed by repeatedly adding 
      modulo to a starter of cyclic . As noted above, the starter of cyclic     
                consists of       distinct triples in which the vertex zero meets 
every other vertex exactly twice. Furthermore, for any triple  
contained in the first half of the wings, the triple  
is contained in the second half of the wings.

Simply said, the starter of the cyclic Butterfly triple system can be 
generated by the following algorithm 1.

Algorithm 1: Starter of Cyclic 

𝐴𝐴2,𝑖𝑖  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝑛𝑛  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
s 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
𝐴𝐴1,3 = {{0, 17, 6}, {0, 13, 10}}, 
𝐴𝐴1,4 = {{0, 1, 18}}, 
𝐴𝐴1,5 = ∅, 
𝐴𝐴1,6 = {{0, 16, 7}}, 
𝐴𝐴1,7 = ∅. 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴2,1 = {{0, 12, 20}, {0, 3, 5}, {0, 14, 19}}, 
𝐴𝐴2,2 = {{0, 19, 4}, {0, 15, 8}, {0, 11, 12}}, 
𝐴𝐴2,3 = {{0, 4, 15}, {0, 8, 11}}, 
𝐴𝐴2,4 = {{0, 20, 3}}, 
𝐴𝐴2,5 = ∅, 
𝐴𝐴2,6 = {{0, 5, 14}}, 
𝐴𝐴2,7 = ∅. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21) 
 
{0, 𝑥𝑥, 𝑦𝑦}  
 
{0, 21 − 𝑥𝑥, 21 − 𝑦𝑦}  
 
 
 
 
 
 

𝐴𝐴2,𝑖𝑖  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝑛𝑛  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
s 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
𝐴𝐴1,3 = {{0, 17, 6}, {0, 13, 10}}, 
𝐴𝐴1,4 = {{0, 1, 18}}, 
𝐴𝐴1,5 = ∅, 
𝐴𝐴1,6 = {{0, 16, 7}}, 
𝐴𝐴1,7 = ∅. 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴2,1 = {{0, 12, 20}, {0, 3, 5}, {0, 14, 19}}, 
𝐴𝐴2,2 = {{0, 19, 4}, {0, 15, 8}, {0, 11, 12}}, 
𝐴𝐴2,3 = {{0, 4, 15}, {0, 8, 11}}, 
𝐴𝐴2,4 = {{0, 20, 3}}, 
𝐴𝐴2,5 = ∅, 
𝐴𝐴2,6 = {{0, 5, 14}}, 
𝐴𝐴2,7 = ∅. 
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21) 
 
{0, 𝑥𝑥, 𝑦𝑦}  
 
{0, 21 − 𝑥𝑥, 21 − 𝑦𝑦}  
 
 
 
 
 
 

𝐴𝐴2,𝑖𝑖  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9)  
 
𝑛𝑛  
 
𝐵𝐵𝐵𝐵𝐵𝐵(21)  
 
s 𝒜𝒜1 = ⋃ 𝐴𝐴1,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴1,1 = {{0, 9, 1}, {0, 18, 16}, {0, 7, 2}},  
𝐴𝐴1,2 = {{0, 2, 17}, {0, 6, 13}, {0, 10, 9}}, 
𝐴𝐴1,3 = {{0, 17, 6}, {0, 13, 10}}, 
𝐴𝐴1,4 = {{0, 1, 18}}, 
𝐴𝐴1,5 = ∅, 
𝐴𝐴1,6 = {{0, 16, 7}}, 
𝐴𝐴1,7 = ∅. 
 
𝒜𝒜2 = ⋃ 𝐴𝐴2,𝑖𝑖7

𝑖𝑖=1 ,  
 
where 
𝐴𝐴2,1 = {{0, 12, 20}, {0, 3, 5}, {0, 14, 19}}, 
𝐴𝐴2,2 = {{0, 19, 4}, {0, 15, 8}, {0, 11, 12}}, 
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Figure 7 

Starter of Cyclic                         when  is Odd
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of       were employed to construct the starter of the cyclic Butterfly 
triple system, which was later called the cycle star construction 
method. This study can be extended to contribute toward solving the 
problem of decomposing all triples of     into cyclic triple systems for 
all odd   .
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CONCLUSION 
 
ℤ𝑣𝑣  
 
𝑣𝑣 ≡ 9 (mod 12).  
 
(𝑣𝑣−1

2 )- 

 
 2𝐾𝐾𝑣𝑣  
 

 
 
Let 𝒯𝒯 be a set of triples obtained from the partitioning of the graphs 𝐺𝐺1 and 𝐺𝐺2. As shown in Figure 6, 
every edge in the set of cycles 𝒮𝒮 = {𝐶𝐶41, 𝐶𝐶42} is contained in exactly one triple of 𝒯𝒯, while every edge 
in the set of stars ℱ = {𝑆𝑆41, 𝑆𝑆42} is contained in exactly two triples of 𝒯𝒯. Therefore, it can be concluded 
that the list of differences from 𝒯𝒯 covers each nonzero element of ℤ5 exactly six times. 
 
Now, all triples of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(9) can be generated from the set of triples 𝒯𝒯 by repeatedly adding 1 
modulo 15, as illustrated previously in Table 2. 
 
Any collection 𝒯𝒯 of triples of ℤ𝑣𝑣 is called a λ-fold triple system if each pair of distinct elements of ℤ𝑣𝑣 
is contained in exactly λ triples of 𝒯𝒯. Then, since a Butterfly triple system of order 𝑣𝑣 is an array of 
𝑣𝑣 × (𝑣𝑣 − 1) triples of ℤ𝑣𝑣 satisfying certain specified conditions, this naturally leads to a question on 
whether there is a relationship between the Butterfly triple system and λ-fold triple system. 
This question will be answered in the next results. 
 
Theorem 15. There exists a cyclic 6-fold Butterfly triple system for 𝑣𝑣 ≡ 9 (mod 12). 
 
Proof. Let 𝑣𝑣 = 12𝑛𝑛 + 9 where 𝑛𝑛 ≥ 0. This theorem is proven by using the cycle star construction 
method for constructing a starter of cyclic 𝐵𝐵𝐵𝐵𝐵𝐵(12𝑛𝑛 + 9) according to the following steps. 
 
Step 1. Construct the starter of cyclic (12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
Suppose that 𝒮𝒮 = {𝐶𝐶(6𝑛𝑛+4)1, 𝐶𝐶(6𝑛𝑛+4)2} is a set of (6𝑛𝑛 + 4)-cycles of 2𝐾𝐾12𝑛𝑛+9, which is defined in 
Equation (1). Then, 𝒮𝒮 is a starter of cyclic (12𝑛𝑛 + 9, 6𝑛𝑛 + 4, 2)-𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 such that 𝒮𝒮 forms a near-two-
factor of 2𝐾𝐾12𝑛𝑛+9 with focus zero and the list of differences from 𝒮𝒮 covers ℤ6𝑛𝑛+5 − {0} exactly twice.  
 
Step 2. Construct the starter of cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9. 
Suppose that ℱ = {𝑆𝑆(6𝑛𝑛+4)1, 𝑆𝑆(6𝑛𝑛+4)2} is a set of (6𝑛𝑛 + 4)-stars of 2𝐾𝐾12𝑛𝑛+9, which is defined in 
Equation (2). Then, ℱ is a starter of cyclic (6𝑛𝑛 + 4)-star decomposition of 2𝐾𝐾12𝑛𝑛+9 such that 
𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)1) ∪ 𝑉𝑉(𝑆𝑆(6𝑛𝑛+4)2) = ℤ12𝑛𝑛+9 and the list of differences from ℱ covers ℤ6𝑛𝑛+5 − {0} exactly 
twice. 
 
Step 3. Combine the similar vertices from Steps 1 and 2. 
Let 𝒢𝒢 = {𝐺𝐺1, 𝐺𝐺2} be a set of graphs obtained by combining the similar vertices of the cycle 𝐶𝐶(6𝑛𝑛+4)𝑖𝑖 and 
the star 𝑆𝑆(6𝑛𝑛+4)𝑖𝑖 for = 1, 2. 
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