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ABSTRACT

Cuckoo search algorithm is considered one of the promising 
metaheuristic algorithms applied to solve numerous problems in 
different fields. However, it undergoes the premature convergence 
problem for high dimensional problems because the algorithm 
converges rapidly. Therefore, we proposed a robust approach to 
solve this issue by hybridizing optimization algorithm, which 
is a combination of Cuckoo search algorithmand Hill climbing 
called CSAHC discovers many local optimum traps by using 
local and global searches, although the local search method is 
trapped at the local minimum point. In other words, CSAHC has 
the ability to balance between the global exploration of the CSA 
and the deep exploitation of the HC method. The validation of 
the performance is determined by applying 13 benchmarks. The 
results of experimental simulations prove the improvement in 
the efficiency and the effect of the cooperation strategy and the 
promising of CSAHC. 
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INTRODUCTION

Optimization resides in many domains, such as engineering, energy, economics, 
medical, and computer science (Mustaffa, Yusof, & Kamaruddin, 2013). 
It is mainly concerned with finding the optimal values for several decision 
variables to form a solution to problem optimization. This solution is optimally 
considered when the decision maker is satisfied with it. An optimization 
problem is the minimization or maximization of a suitable decision-making 
algorithm normally adapted to the approximation methods. The principle of 
decision making entails choosing between several alternatives. The result of 
this choice is the selection of the best decision from all choices (Mohammed, 
Khader, & Al-Betar, 2016).

Figure 1. Optimization Algorithms (M. Shehab, Khader, & Al-Betar, 2017).

Optimization algorithms developed based on nature-inspired ideas deal with 
selecting the best alternative in the sense of the given objective function. 
The optimization algorithm can be either a heuristic or a metaheuristic 
approach. Heuristic approaches are problem-designed approaches where each 
optimization problem has its own heuristic methods that are not applicable for 
other kinds of optimization problems. The metaheuristic-based algorithm is also 
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The performance of the population-based algorithms is measured through checking its ability to 
establish a proper trade-off between exploration and exploitation. Where the algorithm has a weak 
balance between exploration and exploitation be more likely to the trapping in local optima, 
premature convergence and stagnation (M. M. Shehab, Khader, & Al-Betar, 2016). 
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a general solver template that can be adapted for various kinds of optimization 
problems by properly tweaking its operators and configuring its parameters 
(Hasan, Quo, & Shamsuddin, 2012). As shown in Figure 1, each optimization 
algorithm can be categorized into three classes: evolutionary algorithms (EAs), 
swarm-based algorithms, and trajectory-based algorithms. Examples of EAs 
include genetic algorithms (GAs) (Holland, 1975), genetic programming (GP) 
(Koza, 1994), and differential evolution (DE) (Storn & Price, 1996). Examples 
of swarm-based algorithms include artificial bee colony (ABC) (Karaboga, 
2005), particle swarm optimization (PSO)(James & Russell, 1995), and cuckoo 
search algorithm (CSA) (Yang & Deb, 2009). Examples of trajectory- based 
algorithms includes tabu search (TS) (Glover, 1977), simulated annealing (SA) 
(Kirkpatrick, Gelatt, Vecchi, & et. al., 1983),  hill climbing (Schaerf & Meisels, 
1999). 

The performance of the population-based algorithms is measured through 
checking its ability to establish a proper trade-off between exploration and 
exploitation. Where the algorithm has a weak balance between exploration 
and exploitation be more likely to the trapping in local optima, premature 
convergence and stagnation (Shehab, Khader, & Al-Betar, 2016).

Population-based search algorithm is normally very powerful in exploring 
several regions of the problem search space. However, it has difficulty in 
determining the local optima in each region. By contrast, deep searching of the 
local search-based algorithm is very efficient in a single search space region 
but not for several search space regions (McMinn, 2004). Thus, sometimes, it 
is very beneficial to hybridize a local and a population search-based method 
to complement their advantages in a single optimization framework. Based on 
the above suggestion and through hybridization, the search can strike a balance 
between the wide range of exploration and nearby exploitation of the problem 
search space. In this context, CSA has been hybridized with other local search-
based algorithm to improve its performance in tackling complex optimization 
problems.

The linear least squares problem solved by hybridization algorithm between 
Newton method (NM) and CSA is called CSANM (Abdel-Baset & Hezam, 
2016). The authors benefited from CSA for fast convergence and global search 
as well as from NM for the ability of strong local search. The experimental 
results showed the convergence efficiency and computational accuracy of the 
CSANM in comparison with the basic CSA and HS based on NM (HSNM).

A novel CSA base on the Gauss distribution (GCSA) was proposed by Zheng 
et al. (2012). In the basic CSA, although it finds the optimum solution, the 
search entirely depends on random walks. By contrast, fast convergence and 
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precision cannot be guaranteed. For this purpose, GCSA was introduced to solve 
the low convergence rate of the basic CSA. GCSA has been applied to solve 
the standard test functions and engineering design optimization problems. The 
obtained results showed that the GCSA proved its efficiency through achieving 
better solutions compared with basic CSA.
 
Wang et al. (2016) proposed a hybrid algorithm that combined CSA and a HS 
(HS/CSA) for continuous optimization problems. In the HS/CSA method, the 
pitch adjustment of HS was used to update the process of the CSA, which leads 
to the increase of population diversity. The improved elitism scheme was used 
to retain the best individuals in the cuckoo population as well. The performance 
of HS/CSA was evaluated by means of testing the set of benchmark functions. 
The obtained results showed that the HS/CSA achieved better outcomes in 
comparison with ACO, PSO, GA, HS, DE, and basic CSA.

Quadratic assignment problems (QAPs) are considered to be NP-hard problems, 
which cannot be easily solved by exact methods. Therefore, Dejam et al., (2012) 
proposed a hybrid algorithm combined with the CSA of TS (i.e., CSA-TS) to 
solve QAPs. In their research, the QAPs were initially tackled using CSA. 
Thereafter, these were combined with TS, which focused on the local search to 
increase the optimization precision. The experimental results indicated that the 
proposed algorithm performs better than ABC and GA.

In this work, a new hybrid optimization approach is developed by hybridizing 
the cuckoo search algorithm with hill climbing to solve global optimization 
problems.  The proposed approach is evaluated on thirteen  benchmark functions 
carefully selected from the literature. Experimental results demonstrate that 
the CSAHC performs better than Krill heard (KH) (Gandomi & Alavi, 2012), 
Harmony Search (HS) (Geem, Kim, & Loganathan, 2001), Bat Algorithm (BA) 
(Yang, 2010a), GA, and the basic CSA.

The paper is organized as follows. Next section describes the CSA and HC in 
brief. The Proposed Methodology section presents the CSAHC approach in 
details. Subsequently, our method is evaluated through 13 benchmarks and 
comparing with 5 methods in the Experimental Results Analysis section. Finally, 
the conclusion and future works are given in the last section.

PRELIMINARY

Cuckoo Search Algorithm

The use of CSA in the optimization context was proposed by Yang and Deb, 
(2009). To date, work on this algorithm has significantly increased, and the 
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CSA has succeeded in having its rightful place among other optimization 
methodologies (Fister Jr, Yang, Fister, & Fister, 2014). This algorithm is 
based on the obligate brood parasitic behavior found in some cuckoo species, 
in combination with the Levy flight behavior discovered in some birds and 
fruit flies. The CSA is an efficient metaheuristic swarm based algorithm that 
efficiently strikes a balance between local nearby exploitation and global-
wide exploration in the search space problem (Shehab, Khader, & Laouchedi, 
2017). 

The cuckoo has a specific way of laying its eggs to distinguish it from the rest 
of the birds (Yang & Deb, 2014). The following three idealized rules clarify 
and describe the standard cuckoo search:

o Each cuckoo lays one egg at a time and dumps it in a randomly chosen 
nest.

o The best nests with high-quality eggs will be carried over to the next 
generations.

o The number of available host nests is fixed, and the egg laid by a cuckoo 
is discovered by the host bird with a probability Pα∈(0,1). In this case, 
the host bird can either get rid of the egg or simply abandon the nest and 
build a completely new nest. In addition, probability Pα can be used by 
the n host nest to replace the new nests.

 Figure 2. Pseudo code of the Cuckoo Search Algorithm

 

 

 

 

 

 

 

 

 

 

 

1: Objective function 𝑓𝑓(𝑋𝑋),𝑋𝑋 =  (𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑥𝑥) ᵀ 
2: Generate initial population of n host nests Xi (i=1, 2, …, n) 
3: While t < Max_itertions do 
4: Get a cuckoo randomly by Levy flights 
5: Evaluate its quality/ fitness Fi 
6: Choose a nest among n (say, j) randomly 
7: If Fi > Fj then 
8: replace j by the new solution; 
9: End If 
10: A fraction (Pa) of worse nests are abandoned and  
 new ones are built; 
11: Keep the best solutions 
12: Rank the solutions and find the current best 
13: End While 
14: Postprocess results and visualization 
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Figure 2 shows the pseudo code of the CSA search process. Similar to other 
swarm-based algorithms, the CSA starts with an initial population of n host 
nests. These initial host nests will be randomly attracted by the cuckoos with 
eggs and also by random Levy flights to lay the eggs. Thereafter, nest quality 
will be evaluated and compared with another random host nest. In case the 
host nest is better, it will replace the old host nests. This new solution has 
the egg laid by a cuckoo. If the host bird discovers the egg with a probability 
Pα∈(0,1), the host either throws out the eggs, or abandons it and builds a 
new nest. This step is done by replacing the abundant solutions with the new 
random solutions.

Yang and Deb used a certain and simple representation of the implementation, 
with each egg representing a solution. As the cuckoo lays only one egg, it also 
represents one solution. The purpose is to increase the diversity of new, and 
probably better, cuckoos (solutions) and replace them instead with the worst 
solutions. By contrast, the CSA can be more complicated by using multiple 
eggs in each nest to represent a set of solutions.

The CSA, as a bat algorithm (Yang, 2010a) and an FA (Yang, 2010b), uses a 
balance between exploration and exploitation. The CSA is equiponderance to 
the integration of a Levy flights. When generating new solutions xt+1 for, say, 
a cuckoo i, a Levy flight is performed
 

                                                                                       (1)

where α > 0 is the step size which should be related to the scales of the problem 
of interests. In most cases, we can use α = 1. The      in the above equation 
represents the current location, which is the only way to determine the next 
location        . This is called random walk or Markov chain. The product ⊕  means 
entry wise multiplications. This entry wise product is similar to those used in 
PSO, but here the random walk via Levy flight is more efficient in exploring 
the search space as its step length is much longer in the long run. A global 
explorative random walk by using Levy flights can be expressed as follows: 
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the new solutions should be generated by Levy walk around the best solution 
obtained so far, this will speed up the local search. However, a substantial 
fraction of the new solutions should be generated by far field randomization 
and whose locations should be far enough from the current best solution, this 
will make sure the system will not be trapped in a local optimum.

Hill Climbing

Hill Climbing (HC) is a mathematical optimization technique which belongs 
to the family of local search (Schaerf & Meisels, 1999). It searches for a better 
solution in the neighborhood through evaluating the current state. If it is also 
goal state, then return to it and quit. Otherwise, continue updating the current 
state, if possible. Then, loop until a solution is found or until there are no new 
operators left to be applied in the current state. Also, inside the loop there are 
two steps. The first step, select an operator that has not yet been applied to the 
current state and apply it to produce the new state. The second step, evaluate 
the new state. Figure 3 shows the pseudo-code of the HC algorithm, which 
proves the simplicity of hill climbing.

Based on the above, in HC the basic idea is to always head towards a state 
which is better than the current one. So, it always improves the quality of a 
solution (Burke & Newall, 2002).

 

Figure 3. Pseudo code of the Hill Climbing method

HC has some advantages, such as it can easily be adjusted to the problem at 
hand. Almost any aspect of the algorithm may be changed and customized. For 
example, It can be used in conversions as well as discrete domains (Alajmi et 
al., 2011; Rubio & Gámez, 2011).

THE PROPOSED METHODOLOGY: CSA-HILL CLIMBING

Based on the introduction of CSA and HC in the previous sections, this section 
provides a detailed description of the proposed cuckoo search algorithm with 
hill climbing (CSAHC).
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THE PROPOSED METHODOLOGY: CSA-HILL CLIMBING 

 

1: i = initial solution 
2: While f(s) ≤ f (i) s € Neighbours (i) do 
3: Generates an s € Neighbours (i); 
4: If fitness (s) > fitness (i) then 
5: Replace s with the i; 
6: End If 
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CSA based on the obligate brood parasitic behavior found in some cuckoo 
species, in combination with the Levy flight, which it is a type of random walk 
which has a power law step length distribution with a heavy tail. It is inspired 
from behavior discovered of some birds and fruit flies (Yang & Deb, 2009). 
Levy flight used for global exploration and proved its efficiency through 
achieving good results (Pavlyukevich, 2007; Yang & Deb, 2013). Thus, the 
CSA is considered as an efficient metaheuristic swarm-based algorithm that 
efficiently strikes a balance between local nearby exploitation and global wide 
exploration in the search space problem (Roy & Chaudhuri, 2013b). However, 
sometimes it exploits solutions poorly with slow convergence. For that reason, 
the proposed algorithm improves the search ability of the basic CSA through 
combining it with HC method for deepening exploitation; so-called CSAHC 
algorithm is used to optimize the benchmark functions (refer Figure 4).   

Figure 4. Flowchart of the CSAHC Algorithm.

CSAHC starts the search by applying the standard cuckoo search for the 
number of iterations. The best-obtained solution is then passed to the HC 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Flowchart of the CSAHC Algorithm 
Table 2 shows that CSAHC performs the best on 11 of the 13 benchmarks which are F1-F4, F6-F10, 
and F12-F13. CSA is the second most effective, performing the best on the benchmarks F1-F2, F4-F5, 
and F13. Followed by GA, KH, BA, HS, respectively. Table 3 illustrated the average of results. 
Where, could be observed CSAHC method performs the most effective at determining objective 
function minimum on 10 of the 13 benchmarks  F2-F4, F6-F9, and F11-F13. CSA and GA are the 
second most effective, performing best on the benchmarks F4-F5, F10, and F13 for the CSA. While, 
F2, F11-F12, and F13 for the GA. Followed by KH, BA, and HS, respectively. 
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to accelerate the search and overcome the slow convergence of the standard 
cuckoo search algorithm. HC is an iterative algorithm that starts with an 
arbitrary solution to a problem and subsequently attempts to determine a 
better solution by incrementally changing a single element of the solution. 
When the change produces a better solution, incremental change is performed 
on the new solution, which is repeated until no further improvements can be 
found. It then returns the solution to the CSA to check it through the fraction 
probability Pα.    

THE EXPERIMENTAL RESULTS ANALYSIS

In this section, the proposed CSAHC was tested through an array of 
experiments. For testing purposes, we implemented the original version of 
CSA. We compared results of CSAHC with other methods. This comparison 
is shown in the tables within this section.

All the experiments are conducted using a computer with processor Intel(R) 
Core (TM) i7-6700K CPU 4.00 GHz with 16 GB of RAM and 64-bit for 
Microsoft Windows 10 Pro. The source code is implemented using MATLAB 
(R2015a).

Benchmark Functions

To test the performance of a CSAHC, 13 well-known benchmark functions 
are used for comparison. Table 1 describes these benchmark functions in 
terms of the optimum solution after a predefined number of iterations and the 
rate of convergence to the optimum solution. Further information about all the 
benchmark functions can be found in (Yao, Liu, & Lin, 1999; Simon, 2008; 
Jamil & Yang, 2013).

Table 1

Benchmark Functions

symbol Function Definition

F1 Ackley

F2 Griewank
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Benchmark Functions 

symbol Function Definition 
F1 Ackley 

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 
F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1 

 
F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
} 

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1) 

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1
 

 
F5 Quartic with 

noise 
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1
 

 
F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥)) 

 
F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1
 

 
F8 

 
Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 −  ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2) 

 
F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2 

 
F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
| 

 
F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛} 
 

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1
 

 
F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1
 

 

 

 Table 1 

Benchmark Functions 

symbol Function Definition 
F1 Ackley 

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 
F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1 

 
F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
} 

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1) 

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1
 

 
F5 Quartic with 

noise 
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1
 

 
F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥)) 

 
F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1
 

 
F8 

 
Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 −  ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2) 

 
F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2 

 
F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
| 

 
F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛} 
 

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1
 

 
F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1
 

 

 

(continued)



Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

478

symbol Function Definition

F3 Penalty #1

F4 Penalty #2

F5 Quartic with 
noise

F6 Rastrigin

F7 Rosenbrock

F8 Schwefel 2.26

F9 Schwefel 1.2

F10 Schwefel 2.22

F11 Schwefel 2.21

F12 Sphere

F13 Step

Experimental results and algorithms settings

A. Comparisons with other methods

CSAHC was initially compared with the global optimization problems of five 
optimization algorithms, namely, KH, HS, GA, BA, and CSA.
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In our simulations, similar parameters for CSA have been used, the number of 
host nests n = 20 and probability of discovery Pα = 0.25. The tests have been 
run on 10, 25, 50, and 100 dimensions for a maximum of 100000 function 
evaluations. All tests have been run 100 times. Tables 2 and 3 show the 
different scales used to normalize the values to illustrate the differences of the 
six methods.

Table 2 shows that CSAHC performs the best on 11 of the 13 benchmarks 
which are F1-F4, F6-F10, and F12-F13. CSA is the second most effective, 
performing the best on the benchmarks F1-F2, F4-F5, and F13. Followed 
by GA, KH, BA, HS, respectively. Table 3 illustrated the average of results. 
Where, could be observed CSAHC method performs the most effective at 
determining objective function minimum on 10 of the 13 benchmarks  F2-F4, 
F6-F9, and F11-F13. CSA and GA are the second most effective, performing 
best on the benchmarks F4-F5, F10, and F13 for the CSA. While, F2, F11-F12, 
and F13 for the GA. Followed by KH, BA, and HS, respectively.

Table 2

Best normalized optimization results

Fun CSAHC CAS BA GA HS KH

F1 1.00 1.00 8.22E_06 2.98E+02 4.29E+05 1.00

F2 1.00 1.00 3.09E+05 9.32E+02 6.15E+04 2.51E+04

F3 1.00 3.25E+02 8.64E+03 7.45E+01 5.08E+03 1.00

F4 1.00 1.00 2.85E+05 3.63E+02 3.85E+04 8.25E+04

F5 4.25E+00 1.00 7.66E+01 1.00 1.00 5.44E+00

F6 1.00 8.29E+03 1.25E+04 2.21E+02 8.22+05 4.36E+04

F7 1.00 5.02 E+02 8.68 E_05 6.78 E+01 1.52 E+05 1.27 E+05

F8 1.00 2.98E+03 5.43E+05 9.33E+02 7.69E+06 4.02E+05

F9 1.00 3.39E+02 7.09E+05 1.28E+02 7.63E+04 5.46E+02

F10 1.00 1.68E+03 4.21E+04 1.00 1.08E+03 3.31E+02

F11 7.54E+01 3.52E+01 8.59E+01 1.00 9.79E+01 7.25E+01

F12 1.00 8.29E+00 1.00 7.02E+02 5.93E+03 1.41E+04

F13 1.00 1.00 1.00 1.00 1.00 1.00

Total 11 5 2 4 2 3
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Table 3

Mean Normalized Optimization Results

Fun CSAHC CAS BA GA HS KH

F1 2.15E-01 5.18E+01 5.32E+04 2.72E+03 6.96E+03 1.00

F2 1.00 4.38E+02 8.87E+05 1.00 2.36E+04 725E+03

F3 1.00 6.35E+01 2.41E+36 1.93E+03 2.02E+05 5.17E+02

F4 1.00 1.00 7.11E+06 2.11E+02 8.80E+04 5.67E+05

F5 8.51E+00 1.00 1.84E+05 4.22E+03 1.65E+05 1.89E+04

F6 1.00 5.75E+03 9.42E+03 5.01E+02 7.35E+04 9.78E+03

F7 1.00 9.89E+02 4.08E+05 9.85E+03 9.52E+06 2.74E+05

F8 1.00 1.75E+01 7.49E+05 9.15E+01 2.59E+04 7.35E+04

F9 1.00 7.07E+02 1.69E+06 3.46E+03 7.13E+05 1.28 E+05

F10 1.08E+00 1.00 3.28E+06 1.00 1.84E+04 1.30E+03

F11 1.00 4.26E+02 8.32E+06 1.00 8.63E+05 3.82 E+03

F12 1.00 4.73E+03 1.54E+03 8.55E+02 124E+06 1.68E+05

F13 1.00 1.00 1.00 1.00 1.00 1.00

Total 10 4 1 4 1 2

Further, the most representative convergent curves are provided (see Figure 
5 - Figure 10). The values in the figures are the mean function optimum, 
which are the true values.

From Figure 5, apparently, CSAHC is well capable of finding the better 
solutions than all other methods. Here, HS converges sharply at the first 
search stage, however, soon it gets trapped into the sub-minima and the 
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global minimum decreases slightly. In addition, in this function, BA is closed 
to CSAHC in the first stage, but the difference is increasing in the second 
stage.  Each of BA, CSA, GA, and KH have moved to the best solutions 
initially, while later CSA converges to the better minimum than the others 
and CSAHC is the best of all. Figure 6 shows that CSAHC has the best 
performance among the six methods, while CSA ranks second. GA has the 
third best performance with a relatively slow and stable convergence rate.

Figure 5. Performance comparison for the F1 Ackley function.

Figure 6. Performance comparison for the F3 Penalty 1.
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Figures 7, 8, and 9 shows that CSAHC is capable of finding better solutions 
compared with all the other methods. In the Figure 7  CSA achieved best 
solutions from the beginning until 25th generation, and then GA got the best 
solutions from 26th generation until 43rd generation, followed by CSAHC 
with best solutions until the end. The results in Fig. 8 are almost same with 
the results achieved in Figure 7. But, in Fig. 8, the results of CSAHC, GA, 
CSA, and KH are close together with a preference for CSAHC. Figure 9, 
have the same ranking for Figure 7 and Figure 8. However, the CSAHC in 
Figure 9 has clear outperformed comparing with the other methods. 

Figure 7. Performance comparison for the F6 Rastrigin function.

Figure 8. Performance comparison for the F9 Schwefel 1.2 function
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Figure 9. Performance comparison for the F12 Sphere function.

Figure 10 shows that CSAHC achieved the best solution in the especially in 
the first part of the results, with simple superiority for basic CSA. However, 
the GA outperforms both of basic CSA and CSAHC especially at the last 
part.   An analysis of Figures 5 to 10 reveals that our proposed metaheuristic 
CSAHC method greatly outperforms the other methods.

Figure 10. Performance comparison for the F13 Step function.
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methods when solving different problems. In this article are the number 
of host nests (population size n) and the probability of discovery (Pα) are 
thoroughly studied with 100 trials, which are implemented in the above 
problems to search for the best solution and mean as shown in Tables 4, 5, 
6, and 7.
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● Population size n

The influence of n is investigated through an array of simulations with n = 5, 
10, 15, 20, 50, 100, 150, 250, 500. Pα = 0.25 (see Tables 4 and 5).

From Tables 4 and 5, we can see that the superior performance of CSAHC 
when the value of n = 20. While performance decreases as the value of n 
increases. This due to increasing the value of n that mean increase the search 
space, therefore the performance of CSAHC will decrease.

Table 4

Best Normalized Optimization Results with Different n

Population size n

5 10S 15 20 50 100 150 250 500

F1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 26.07 41.29

F2 0.84 0.84 0.18 1.00 1.32 16.32 23.32 37.32 56.32

F3 1.00 1.00 1.00 1.00 1.16 1.00 72.12 82.23 29.16

F4 12.67 1.08 1.41 1.00 1.74 19.43 14.34 58.27 38.04

F5 10.25 39.02 6.83 1.00 1.00 18.24 26.34 24.51 47.70

F6 50.47 53.44 1.65 0.02 1.00 33.83 62.69 61.83 56.65

F7 1.00 1.00 1.00 1.00 1.13 51.40 21.45 19.33 31.60

F8 13.25 1.00 2.09 1.74 1.39 45.24 63.16 83.13 52.08

F9 44.86 67.99 35.67 17.2 1.02 91.54 88.07 91.00 64.17

F10 1.00 1.00 1.00 1.00 1.00 57.09 39.81 33.92 38.91

F11 18.02 22.80 4.05 2.98 1.08 19.06 31.51 82.07 75.06

F12 15.20 22.24 10.07 1.00 1.14 28.20 47.09 73.30 95.10

F13 5.99 7.98 1.00 1.00 1.02 36.01 71.02 64.07 82.01

Total 4 5 5 9 3 2 1 0 0

● Discovery rate Pα

Firstly, the effect of the elitism parameter is studied in the benchmark 
problems with the elitism parameter Pα = 0, 0.1, 0.2, ..., 0.8, 0.9, 1 and n 
= 20 (see Tables 6 and 7 ).
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Table 5

Best normalized optimization results with different n

Population size n

5 10S 15 20 50 100 150 250 500

F1 1.00 1.00 1.00 1.00 1.00 1.00 2.85 11.77 25.63

F2 4.52 1.80 1.07 1.00 5.32 11.32 18.39 33.50 51.22

F3 6.03 1.17 1.00 1.00 7.08 17.21 22.02 47.13 55.27

F4 3.52 3.01 1.00 1.01 6.12 10.17 14.61 28.32 37.26

F5 2.49 1.89 1.22 1.00 3.74 21.55 31.76 69.08 92.15

F6 8.26 4.92 3.08 1.00 9.51 17.65 29.72 42.30 66.85

F7 1.67 1.01 1.00 1.00 5.27 9.53 16.17 24.12 48.06

F8 4.00 1.64 4.97 1.13 1.00 8.92 19.63 31.27 57.67

F9 1.00 1.00 2.51 1.00 2.99 13.37 21.61 35.53 60.01

F10 1.00 1.00 1.00 1.00 2.05 4.07 11.79 19.08 34.17

F11 38.30 25.73 12.59 3.73 1.00 41.26 47.84 67.11 82.65

F12 8.63 4.22 2.58 1.00 10.24 14.32 22.09 40.89 65.89

F13 1.00 1.00 1.00 1.00 1.00 9.01 15.28 21.01 43.05

Total 4 4 6 10 4 1 0 0 0

From Table 6, obviously, it can be seen that CSAHC performs the best when  
Pα = 0.1 and 0.2. Especially, for the F1 until F5, CSAHC has the similar 
performance; that is, the elitism parameter  Pα has little influence on these 
three benchmark functions. Furthermore, when Pα = 0 and from 0.3 until 
0.8, CSAHC performs achieved almost same results. However, the worst 
results when  Pα = 0.9 and 1. In Table 7, there is a clear superiority for the 
CSAHC when the Pα = 0.2, followed by Pα = 0.1 and 0.3 almost the same 
results. Finally, all other values of are achieved nearby results. In short, 
CSAHC has the best performance when  Pα = 0.2.
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Table 6

Best Normalised Optimization Results with Different Pα

Discovery rate Pa
Fun. 0 0.1 0.2 0.3 0.4
F1 2.93E+01 1.00 1.00 1.00 1.24E+02
F2 3.28E+02 1.00 1.00 5.36E+02 1.69E+01
F3 1.16E+01 1.00 1.00 7.30E+02 6.46E+01
F4 2.48E+00 1.00 1.00 6.22E+01 5.32E+02
F5 2.55E+01 1.00 1.00 2.14E+00 6.62E+02
F6 2.48E+01 1.21E+00 1.00 4.22E+01 9.43E+01
F7 2.55E+00 2.81E+02 1.00 6.24E+00 1.57E+02
F8 1.00 1.00 1.00 5.84E+02 3.89E+02
F9 1.00 2.22E+01 1.00 3.46E+01 8.33E+01
F10 1.01E+00 3.71E+02 1.00 1.00 6.31E+01
F11 2.12E+00 4.65E+00 1.17E+00 2.18E+01 1.00
F12 1.01E+00 9.39E+01 1.00 5.15E+02 2.31E+02
F13 2.12E+00 4.65E+01 1.17E+00 1.00 1.00
Total 2 6 11 3 2

Discovery rate Pa

Fun. 0.5 0.6 0.7 0.8 0.9 1

F1 3.67E+02 7.36E+03 6.89E+03 7.95E+02 4.28E+02 8.59E+03

F2 1.26E+03 4.23E+02 1.55E+03 4.47E+03 4.21E+02 4.22E+03

F3 5.68E+02 1.22E+03 1.00 2.14E+02 8.58E+03 6.91E+03

F4 1.90E+03 3.31E+02 1.73E+02 8.27E+02 3.38E+02 1.23E+01

F5 1.00 5.11E+02 3.01E+03 2.93E+01 1.42E+03 5.94E+02

F6 4.69E+02 7.01E+02 1.88E+02 3.78E+02 1.64E+02 1.23E+01

F7 7.63E+02 5.17E+01 7.39E+03 5.06E+03 1.15E+03 3.35E+03

F8 5.63E+03 5.39E+03 6.36E+01 4.85E+02 1.02E+03 5.18E+02

F9 8.40E+01 1.82E+02 2.54E+03 7.43E+02 1.11E+03 1.16E+01

F10 5.36E+03 1.00 5.20E+02 1.95E+03 1.08E+02 2.82E+01

F11 7.95E+02 1.72E+02 6.99E+03 1.00 1.17E+02 1.87E+01

F12 5.33E+02 1.00 1.13E+01 9.52E+02 1.06E+03 4.36E+01

F13 8.36E+03 8.39E+01 2.54E+02 4.65E+01 5.94E+03 7.92E+01

Total 1 2 1 1 0 0
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Table 7

Mean normalised optimization results with different Pα

Discovery rate Pa
Fun. 0 0.1 0.2 0.3 0.4
F1 2.81E+01 6.84E+02 1.00 5.84E+02 6.24E+02
F2 1.00 1.00 106.E+00 3.46E+00 2.69E+02
F3 2.22E+02 1.00 1.00 1.00 8.46E+02
F4 3.71E+02 2.48E+01 1.00 2.18E+01 5.32E+01
F5 1.65E+02 2.55E+00 1.00 5.15E+00 1.00
F6 1.21E+00 2.48E+00 1.00 1.10E+01 7.43E+02
F7 1.08E+02 2.55E+01 1.00 6.24E+01 1.95E+02
F8 4.47E+01 1.00 1.00 1.00 1.00
F9 1.14E+02 1.00 1.00 1.26E+01 2.52E+03
F10 6.27E+00 1.00 1.00 1.00 6.89E+01
F11 2.93E+01 1.00 1.00 1.90E+00 5.63E+02
F12 6.27E+02 1.01E+01 1.00 1.00 1.40E+00
F13 2.93E+02 2.12E+01 1.00 1.90E+01 1.94E+01
Total 1 6 12 4 2

Discovery rate Pa

Fun. 0.5 0.6 0.7 0.8 0.9 1

F1 5.06E+02 1.06E+03 4.05E+03 6.89E+03 7.28E+03 8.89E+03

F2 4.85E+03 4.23E+03 8.59E+03 1.55E+04 8.35E+03 8.55E+03

F3 5.11E+02 7.22E+02 4.22E+01 1.00 8.58E+02 1.00
F4 7.01E+01 3.31E+01 6.91E+02 1.73E+03 3.38E+03 4.73E+03
F5 5.17E+02 1.15E+03 2.23E+03 3.01E+03 4.42E+03 4.61E+03
F6 5.39E+01 1.02E+02 1.00 1.88E+02 6.89E+02 8.12E+02
F7 1.82E+03 6.11E+03 7.23E+03 1.35E+04 1.55E+04 3.35E+04
F8 1.00 1.08E+01 5.94E+01 2.18E+02 1.00 5.18E+02
F9 5.81E+03 7.17E+03 6.89E+03 7.21E+03 1.73E+03 1.86E+03
F10 1.00 1.06E+02 4.14E+02 5.55E+02 6.01E+02 6.82E+02
F11 7.32E+03 1.00 1.22E+02 3.17E+02 1.88E+03 2.87E+03
F12 1.94E+02 1.00 1.14E+01 1.00 3.35E+01 1.01E+02
F13 7.95E+02 1.23E+03 3.42E+03 3.17E+03 9.18E+02 1.87E+03
Total 2 2 1 2 1 1
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CONCLUSION AND FUTURE WORK

In the present work, a novel metaheuristic CSAHC method is proposed for 
solving global optimisation tasks. We improved the CSA by combining it 
with HC and evaluated the performance of the CSAHC on the 13 benchmark 
functions. The hybridization enhanced the exploration of basic CSA by using 
the HC which is capable of dealing with local searches. Furthermore, CSAHC 
is investigated on 13 benchmark functions. Results showed that comparing 
CSAHC with other search methods, such as the original CSA, original BA, 
GA, HS, and KH, improves its efficiency and effect. The CSAHC can be 
applied to more benchmark functions, including some real-world optimization 
problems for further examinations.
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