
469

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

How to cite this paper:

Shehab, M., Khader, A. T., & Laouchedi, M. (2018). A hybrid method based on
cuckoo search algorithm for global optimization problems. Journal of Information and
Communication Technology, 17 (3), 469-491.

A HYBRID METHOD BASED ON CUCKOO SEARCH
ALGORITHM FOR GLOBAL OPTIMIZATION PROBLEMS

1Mohammad Shehab, 1Ahamad Tajudin Khader &
2Makhlouf Laouchedi

1School of Computer Sciences, Universiti Sains Malaysia, Malaysia
2 Université des Sciences et de Technologies Houari Boumediene,

Algeria

moh.shehab12@gmail.com; tajudin@usm.my; laoumakhl@yahoo.fr

ABSTRACT

Cuckoo search algorithm is considered one of the promising
metaheuristic algorithms applied to solve numerous problems in
different fields. However, it undergoes the premature convergence
problem for high dimensional problems because the algorithm
converges rapidly. Therefore, we proposed a robust approach to
solve this issue by hybridizing optimization algorithm, which
is a combination of Cuckoo search algorithmand Hill climbing
called CSAHC discovers many local optimum traps by using
local and global searches, although the local search method is
trapped at the local minimum point. In other words, CSAHC has
the ability to balance between the global exploration of the CSA
and the deep exploitation of the HC method. The validation of
the performance is determined by applying 13 benchmarks. The
results of experimental simulations prove the improvement in
the efficiency and the effect of the cooperation strategy and the
promising of CSAHC.

Keywords: Cuckoo search algorithm, Hill climbing, optimization problems,
slow convergence, exploration and exploitation.

Received: 3 August 2017 Accepted: 14 May 2018 Published: 12 June 2018

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

470

INTRODUCTION

Optimization resides in many domains, such as engineering, energy, economics,
medical, and computer science (Mustaffa, Yusof, & Kamaruddin, 2013).
It is mainly concerned with finding the optimal values for several decision
variables to form a solution to problem optimization. This solution is optimally
considered when the decision maker is satisfied with it. An optimization
problem is the minimization or maximization of a suitable decision-making
algorithm normally adapted to the approximation methods. The principle of
decision making entails choosing between several alternatives. The result of
this choice is the selection of the best decision from all choices (Mohammed,
Khader, & Al-Betar, 2016).

Figure 1. Optimization Algorithms (M. Shehab, Khader, & Al-Betar, 2017).

Optimization algorithms developed based on nature-inspired ideas deal with
selecting the best alternative in the sense of the given objective function.
The optimization algorithm can be either a heuristic or a metaheuristic
approach. Heuristic approaches are problem-designed approaches where each
optimization problem has its own heuristic methods that are not applicable for
other kinds of optimization problems. The metaheuristic-based algorithm is also

minimization or maximization of a suitable decision-making algorithm normally adapted to the
approximation methods. The principle of decision making entails choosing between several
alternatives. The result of this choice is the selection of the best decision from all choices
(Mohammed, Khader, & Al-Betar, 2016).
Optimization algorithms developed based on nature-inspired ideas deal with selecting the best
alternative in the sense of the given objective function. The optimization algorithm can be either a
heuristic or a metaheuristic approach. Heuristic approaches are problem-designed approaches where
each optimization problem has its own heuristic methods that are not applicable for other kinds of
optimization problems. The metaheuristic-based algorithm is also a general solver template that can
be adapted for various kinds of optimization problems by properly tweaking its operators and
configuring its parameters (Hasan, Quo, & Shamsuddin, 2012). As shown in Fig. 1, each optimization
algorithm can be categorized into three classes: evolutionary algorithms (EAs), swarm-based
algorithms, and trajectory-based algorithms. Examples of EAs include genetic algorithms (GAs)
(Holland, 1975), genetic programming (GP) (Koza, 1994), and differential evolution (DE) (Storn &
Price, 1996). Examples of swarm-based algorithms include artificial bee colony (ABC) (Karaboga,
2005), particle swarm optimization (PSO)(James & Russell, 1995), and cuckoo search algorithm
(CSA) (Yang & Deb, 2009). Examples of trajectory- based algorithms includes tabu search (TS)
(Glover, 1977), simulated annealing (SA) (Kirkpatrick, Gelatt, Vecchi, & others, 1983), hill climbing
(Schaerf & Meisels, 1999).

Figure 1. Optimization Algorithms (M. Shehab, Khader, & Al-Betar, 2017).

The performance of the population-based algorithms is measured through checking its ability to
establish a proper trade-off between exploration and exploitation. Where the algorithm has a weak
balance between exploration and exploitation be more likely to the trapping in local optima,
premature convergence and stagnation (M. M. Shehab, Khader, & Al-Betar, 2016).

471

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

a general solver template that can be adapted for various kinds of optimization
problems by properly tweaking its operators and configuring its parameters
(Hasan, Quo, & Shamsuddin, 2012). As shown in Figure 1, each optimization
algorithm can be categorized into three classes: evolutionary algorithms (EAs),
swarm-based algorithms, and trajectory-based algorithms. Examples of EAs
include genetic algorithms (GAs) (Holland, 1975), genetic programming (GP)
(Koza, 1994), and differential evolution (DE) (Storn & Price, 1996). Examples
of swarm-based algorithms include artificial bee colony (ABC) (Karaboga,
2005), particle swarm optimization (PSO)(James & Russell, 1995), and cuckoo
search algorithm (CSA) (Yang & Deb, 2009). Examples of trajectory- based
algorithms includes tabu search (TS) (Glover, 1977), simulated annealing (SA)
(Kirkpatrick, Gelatt, Vecchi, & et. al., 1983), hill climbing (Schaerf & Meisels,
1999).

The performance of the population-based algorithms is measured through
checking its ability to establish a proper trade-off between exploration and
exploitation. Where the algorithm has a weak balance between exploration
and exploitation be more likely to the trapping in local optima, premature
convergence and stagnation (Shehab, Khader, & Al-Betar, 2016).

Population-based search algorithm is normally very powerful in exploring
several regions of the problem search space. However, it has difficulty in
determining the local optima in each region. By contrast, deep searching of the
local search-based algorithm is very efficient in a single search space region
but not for several search space regions (McMinn, 2004). Thus, sometimes, it
is very beneficial to hybridize a local and a population search-based method
to complement their advantages in a single optimization framework. Based on
the above suggestion and through hybridization, the search can strike a balance
between the wide range of exploration and nearby exploitation of the problem
search space. In this context, CSA has been hybridized with other local search-
based algorithm to improve its performance in tackling complex optimization
problems.

The linear least squares problem solved by hybridization algorithm between
Newton method (NM) and CSA is called CSANM (Abdel-Baset & Hezam,
2016). The authors benefited from CSA for fast convergence and global search
as well as from NM for the ability of strong local search. The experimental
results showed the convergence efficiency and computational accuracy of the
CSANM in comparison with the basic CSA and HS based on NM (HSNM).

A novel CSA base on the Gauss distribution (GCSA) was proposed by Zheng
et al. (2012). In the basic CSA, although it finds the optimum solution, the
search entirely depends on random walks. By contrast, fast convergence and

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

472

precision cannot be guaranteed. For this purpose, GCSA was introduced to solve
the low convergence rate of the basic CSA. GCSA has been applied to solve
the standard test functions and engineering design optimization problems. The
obtained results showed that the GCSA proved its efficiency through achieving
better solutions compared with basic CSA.

Wang et al. (2016) proposed a hybrid algorithm that combined CSA and a HS
(HS/CSA) for continuous optimization problems. In the HS/CSA method, the
pitch adjustment of HS was used to update the process of the CSA, which leads
to the increase of population diversity. The improved elitism scheme was used
to retain the best individuals in the cuckoo population as well. The performance
of HS/CSA was evaluated by means of testing the set of benchmark functions.
The obtained results showed that the HS/CSA achieved better outcomes in
comparison with ACO, PSO, GA, HS, DE, and basic CSA.

Quadratic assignment problems (QAPs) are considered to be NP-hard problems,
which cannot be easily solved by exact methods. Therefore, Dejam et al., (2012)
proposed a hybrid algorithm combined with the CSA of TS (i.e., CSA-TS) to
solve QAPs. In their research, the QAPs were initially tackled using CSA.
Thereafter, these were combined with TS, which focused on the local search to
increase the optimization precision. The experimental results indicated that the
proposed algorithm performs better than ABC and GA.

In this work, a new hybrid optimization approach is developed by hybridizing
the cuckoo search algorithm with hill climbing to solve global optimization
problems. The proposed approach is evaluated on thirteen benchmark functions
carefully selected from the literature. Experimental results demonstrate that
the CSAHC performs better than Krill heard (KH) (Gandomi & Alavi, 2012),
Harmony Search (HS) (Geem, Kim, & Loganathan, 2001), Bat Algorithm (BA)
(Yang, 2010a), GA, and the basic CSA.

The paper is organized as follows. Next section describes the CSA and HC in
brief. The Proposed Methodology section presents the CSAHC approach in
details. Subsequently, our method is evaluated through 13 benchmarks and
comparing with 5 methods in the Experimental Results Analysis section. Finally,
the conclusion and future works are given in the last section.

PRELIMINARY

Cuckoo Search Algorithm

The use of CSA in the optimization context was proposed by Yang and Deb,
(2009). To date, work on this algorithm has significantly increased, and the

473

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

CSA has succeeded in having its rightful place among other optimization
methodologies (Fister Jr, Yang, Fister, & Fister, 2014). This algorithm is
based on the obligate brood parasitic behavior found in some cuckoo species,
in combination with the Levy flight behavior discovered in some birds and
fruit flies. The CSA is an efficient metaheuristic swarm based algorithm that
efficiently strikes a balance between local nearby exploitation and global-
wide exploration in the search space problem (Shehab, Khader, & Laouchedi,
2017).

The cuckoo has a specific way of laying its eggs to distinguish it from the rest
of the birds (Yang & Deb, 2014). The following three idealized rules clarify
and describe the standard cuckoo search:

o Each cuckoo lays one egg at a time and dumps it in a randomly chosen
nest.

o The best nests with high-quality eggs will be carried over to the next
generations.

o The number of available host nests is fixed, and the egg laid by a cuckoo
is discovered by the host bird with a probability Pα∈(0,1). In this case,
the host bird can either get rid of the egg or simply abandon the nest and
build a completely new nest. In addition, probability Pα can be used by
the n host nest to replace the new nests.

 Figure 2. Pseudo code of the Cuckoo Search Algorithm

1: Objective function 𝑓𝑓(𝑋𝑋),𝑋𝑋 = (𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑥𝑥) ᵀ
2: Generate initial population of n host nests Xi (i=1, 2, …, n)
3: While t < Max_itertions do
4: Get a cuckoo randomly by Levy flights
5: Evaluate its quality/ fitness Fi
6: Choose a nest among n (say, j) randomly
7: If Fi > Fj then
8: replace j by the new solution;
9: End If
10: A fraction (Pa) of worse nests are abandoned and
 new ones are built;
11: Keep the best solutions
12: Rank the solutions and find the current best
13: End While
14: Postprocess results and visualization

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

474

Figure 2 shows the pseudo code of the CSA search process. Similar to other
swarm-based algorithms, the CSA starts with an initial population of n host
nests. These initial host nests will be randomly attracted by the cuckoos with
eggs and also by random Levy flights to lay the eggs. Thereafter, nest quality
will be evaluated and compared with another random host nest. In case the
host nest is better, it will replace the old host nests. This new solution has
the egg laid by a cuckoo. If the host bird discovers the egg with a probability
Pα∈(0,1), the host either throws out the eggs, or abandons it and builds a
new nest. This step is done by replacing the abundant solutions with the new
random solutions.

Yang and Deb used a certain and simple representation of the implementation,
with each egg representing a solution. As the cuckoo lays only one egg, it also
represents one solution. The purpose is to increase the diversity of new, and
probably better, cuckoos (solutions) and replace them instead with the worst
solutions. By contrast, the CSA can be more complicated by using multiple
eggs in each nest to represent a set of solutions.

The CSA, as a bat algorithm (Yang, 2010a) and an FA (Yang, 2010b), uses a
balance between exploration and exploitation. The CSA is equiponderance to
the integration of a Levy flights. When generating new solutions xt+1 for, say,
a cuckoo i, a Levy flight is performed

 (1)

where α > 0 is the step size which should be related to the scales of the problem
of interests. In most cases, we can use α = 1. The in the above equation
represents the current location, which is the only way to determine the next
location . This is called random walk or Markov chain. The product ⊕ means
entry wise multiplications. This entry wise product is similar to those used in
PSO, but here the random walk via Levy flight is more efficient in exploring
the search space as its step length is much longer in the long run. A global
explorative random walk by using Levy flights can be expressed as follows:

 (2)

where λ is a parameter which is the mean or expectation of the occurrence of
the event during a unit interval. Here the steps essentially form a random walk
process with a power law step-length distribution with a heavy tail. Some of

 Figure 2. Pseudo code of the Cuckoo Search Algorithm

Yang and Deb used a certain and simple representation of the implementation, with each egg
representing a solution. As the cuckoo lays only one egg, it also represents one solution. The purpose
is to increase the diversity of new, and probably better, cuckoos (solutions) and replace them instead
with the worst solutions. By contrast, the CSA can be more complicated by using multiple eggs in
each nest to represent a set of solutions.

The CSA, as a bat algorithm (Yang, 2010a) and an FA (Yang, 2010b), uses a balance between
exploration and exploitation. The CSA is equiponderance to the integration of a Levy flights. When
generating new solutions 1tx for, say, a cuckoo i, a Levy flight is performed

)(1 vyelxx t
i

t
i (1)

 where 0 is the step size which should be related to the scales of the problem of interests. In

most cases, we can use 1 . The t
ix in the above equation represents the current location, which is

the only way to determine the next location 1t
ix . This is called random walk or Markov chain. The

productmeans entry wise multiplications. This entry wise product is similar to those used in PSO,
but here the random walk via Levy flight is more efficient in exploring the search space as its step
length is much longer in the long run. A global explorative random walk by using Levy flights can be
expressed as follows:

 31,~ tuvyel (2)

 Figure 2. Pseudo code of the Cuckoo Search Algorithm

Yang and Deb used a certain and simple representation of the implementation, with each egg
representing a solution. As the cuckoo lays only one egg, it also represents one solution. The purpose
is to increase the diversity of new, and probably better, cuckoos (solutions) and replace them instead
with the worst solutions. By contrast, the CSA can be more complicated by using multiple eggs in
each nest to represent a set of solutions.

The CSA, as a bat algorithm (Yang, 2010a) and an FA (Yang, 2010b), uses a balance between
exploration and exploitation. The CSA is equiponderance to the integration of a Levy flights. When
generating new solutions 1tx for, say, a cuckoo i, a Levy flight is performed

)(1 vyelxx t
i

t
i (1)

 where 0 is the step size which should be related to the scales of the problem of interests. In

most cases, we can use 1 . The t
ix in the above equation represents the current location, which is

the only way to determine the next location 1t
ix . This is called random walk or Markov chain. The

productmeans entry wise multiplications. This entry wise product is similar to those used in PSO,
but here the random walk via Levy flight is more efficient in exploring the search space as its step
length is much longer in the long run. A global explorative random walk by using Levy flights can be
expressed as follows:

 31,~ tuvyel (2)

 Figure 2. Pseudo code of the Cuckoo Search Algorithm

Yang and Deb used a certain and simple representation of the implementation, with each egg
representing a solution. As the cuckoo lays only one egg, it also represents one solution. The purpose
is to increase the diversity of new, and probably better, cuckoos (solutions) and replace them instead
with the worst solutions. By contrast, the CSA can be more complicated by using multiple eggs in
each nest to represent a set of solutions.

The CSA, as a bat algorithm (Yang, 2010a) and an FA (Yang, 2010b), uses a balance between
exploration and exploitation. The CSA is equiponderance to the integration of a Levy flights. When
generating new solutions 1tx for, say, a cuckoo i, a Levy flight is performed

)(1 vyelxx t
i

t
i (1)

 where 0 is the step size which should be related to the scales of the problem of interests. In

most cases, we can use 1 . The t
ix in the above equation represents the current location, which is

the only way to determine the next location 1t
ix . This is called random walk or Markov chain. The

productmeans entry wise multiplications. This entry wise product is similar to those used in PSO,
but here the random walk via Levy flight is more efficient in exploring the search space as its step
length is much longer in the long run. A global explorative random walk by using Levy flights can be
expressed as follows:

 31,~ tuvyel (2)

 Figure 2. Pseudo code of the Cuckoo Search Algorithm

Yang and Deb used a certain and simple representation of the implementation, with each egg
representing a solution. As the cuckoo lays only one egg, it also represents one solution. The purpose
is to increase the diversity of new, and probably better, cuckoos (solutions) and replace them instead
with the worst solutions. By contrast, the CSA can be more complicated by using multiple eggs in
each nest to represent a set of solutions.

The CSA, as a bat algorithm (Yang, 2010a) and an FA (Yang, 2010b), uses a balance between
exploration and exploitation. The CSA is equiponderance to the integration of a Levy flights. When
generating new solutions 1tx for, say, a cuckoo i, a Levy flight is performed

)(1 vyelxx t
i

t
i (1)

 where 0 is the step size which should be related to the scales of the problem of interests. In

most cases, we can use 1 . The t
ix in the above equation represents the current location, which is

the only way to determine the next location 1t
ix . This is called random walk or Markov chain. The

productmeans entry wise multiplications. This entry wise product is similar to those used in PSO,
but here the random walk via Levy flight is more efficient in exploring the search space as its step
length is much longer in the long run. A global explorative random walk by using Levy flights can be
expressed as follows:

 31,~ tuvyel (2)

475

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

the new solutions should be generated by Levy walk around the best solution
obtained so far, this will speed up the local search. However, a substantial
fraction of the new solutions should be generated by far field randomization
and whose locations should be far enough from the current best solution, this
will make sure the system will not be trapped in a local optimum.

Hill Climbing

Hill Climbing (HC) is a mathematical optimization technique which belongs
to the family of local search (Schaerf & Meisels, 1999). It searches for a better
solution in the neighborhood through evaluating the current state. If it is also
goal state, then return to it and quit. Otherwise, continue updating the current
state, if possible. Then, loop until a solution is found or until there are no new
operators left to be applied in the current state. Also, inside the loop there are
two steps. The first step, select an operator that has not yet been applied to the
current state and apply it to produce the new state. The second step, evaluate
the new state. Figure 3 shows the pseudo-code of the HC algorithm, which
proves the simplicity of hill climbing.

Based on the above, in HC the basic idea is to always head towards a state
which is better than the current one. So, it always improves the quality of a
solution (Burke & Newall, 2002).

Figure 3. Pseudo code of the Hill Climbing method

HC has some advantages, such as it can easily be adjusted to the problem at
hand. Almost any aspect of the algorithm may be changed and customized. For
example, It can be used in conversions as well as discrete domains (Alajmi et
al., 2011; Rubio & Gámez, 2011).

THE PROPOSED METHODOLOGY: CSA-HILL CLIMBING

Based on the introduction of CSA and HC in the previous sections, this section
provides a detailed description of the proposed cuckoo search algorithm with
hill climbing (CSAHC).

where is a parameter which is the mean or expectation of the occurrence of the event during a unit
interval. Here the steps essentially form a random walk process with a power law step-length
distribution with a heavy tail. Some of the new solutions should be generated by Levy walk around
the best solution obtained so far, this will speed up the local search. However, a substantial fraction of
the new solutions should be generated by far field randomization and whose locations should be far
enough from the current best solution, this will make sure the system will not be trapped in a local
optimum.

Hill Climbing

Hill Climbing (HC) is a mathematical optimization technique which belongs to the family of local
search (Schaerf & Meisels, 1999). It searches for a better solution in the neighborhood through
evaluating the current state. If it is also goal state, then return to it and quit. Otherwise, continue
updating the current state, if possible. Then, loop until a solution is found or until there are no new
operators left to be applied in the current state. Also, inside the loop there are two steps. The first step,
select an operator that has not yet been applied to the current state and apply it to produce the new
state. The second step, evaluate the new state. Fig. 3 shows the pseudo-code of the HC algorithm,
which proves the simplicity of hill climbing.

Based on the above, in HC the basic idea is to always head towards a state which is better than the
current one. So, it always improves the quality of a solution (Burke & Newall, 2002).

Figure 2. Pseudo code of the Cuckoo Search Algorithm

Figure 3. Pseudo code of the Hill Climbing method

HC has some advantages, such as it can easily be adjusted to the problem at hand. Almost any aspect
of the algorithm may be changed and customized. For example, It can be used in conversions as well
as discrete domains (Alajmi et al., 2011; Rubio and Gámez, 2011).

THE PROPOSED METHODOLOGY: CSA-HILL CLIMBING

1: i = initial solution
2: While f(s) ≤ f (i) s € Neighbours (i) do
3: Generates an s € Neighbours (i);
4: If fitness (s) > fitness (i) then
5: Replace s with the i;
6: End If

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

476

CSA based on the obligate brood parasitic behavior found in some cuckoo
species, in combination with the Levy flight, which it is a type of random walk
which has a power law step length distribution with a heavy tail. It is inspired
from behavior discovered of some birds and fruit flies (Yang & Deb, 2009).
Levy flight used for global exploration and proved its efficiency through
achieving good results (Pavlyukevich, 2007; Yang & Deb, 2013). Thus, the
CSA is considered as an efficient metaheuristic swarm-based algorithm that
efficiently strikes a balance between local nearby exploitation and global wide
exploration in the search space problem (Roy & Chaudhuri, 2013b). However,
sometimes it exploits solutions poorly with slow convergence. For that reason,
the proposed algorithm improves the search ability of the basic CSA through
combining it with HC method for deepening exploitation; so-called CSAHC
algorithm is used to optimize the benchmark functions (refer Figure 4).

Figure 4. Flowchart of the CSAHC Algorithm.

CSAHC starts the search by applying the standard cuckoo search for the
number of iterations. The best-obtained solution is then passed to the HC

Figure 4. Flowchart of the CSAHC Algorithm
Table 2 shows that CSAHC performs the best on 11 of the 13 benchmarks which are F1-F4, F6-F10,
and F12-F13. CSA is the second most effective, performing the best on the benchmarks F1-F2, F4-F5,
and F13. Followed by GA, KH, BA, HS, respectively. Table 3 illustrated the average of results.
Where, could be observed CSAHC method performs the most effective at determining objective
function minimum on 10 of the 13 benchmarks F2-F4, F6-F9, and F11-F13. CSA and GA are the
second most effective, performing best on the benchmarks F4-F5, F10, and F13 for the CSA. While,
F2, F11-F12, and F13 for the GA. Followed by KH, BA, and HS, respectively.

Start

Initial population of n host nests Xi

Get a cuckoo randomly by Levy Flight, i

Evaluate its fitness, F (i)

Select a nest (j) of n host nest randomly

Let i as a solution

F(i) ≥ F(j)

Find the maximum
neighbouring nest

Calculate the neighbouring nest

Abandon a fraction Pa of the worst nests and
build new ones at new locations via Levy Flight

Let j as a solution

yes

yes

no

no

no

yes

Keep the current best

 t ≤ Maxlteration

Rank the solutions and find the best

End

Larger than
current?

Local maximum found

Larger than
current local
maximum?

no

yes

477

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

to accelerate the search and overcome the slow convergence of the standard
cuckoo search algorithm. HC is an iterative algorithm that starts with an
arbitrary solution to a problem and subsequently attempts to determine a
better solution by incrementally changing a single element of the solution.
When the change produces a better solution, incremental change is performed
on the new solution, which is repeated until no further improvements can be
found. It then returns the solution to the CSA to check it through the fraction
probability Pα.

THE EXPERIMENTAL RESULTS ANALYSIS

In this section, the proposed CSAHC was tested through an array of
experiments. For testing purposes, we implemented the original version of
CSA. We compared results of CSAHC with other methods. This comparison
is shown in the tables within this section.

All the experiments are conducted using a computer with processor Intel(R)
Core (TM) i7-6700K CPU 4.00 GHz with 16 GB of RAM and 64-bit for
Microsoft Windows 10 Pro. The source code is implemented using MATLAB
(R2015a).

Benchmark Functions

To test the performance of a CSAHC, 13 well-known benchmark functions
are used for comparison. Table 1 describes these benchmark functions in
terms of the optimum solution after a predefined number of iterations and the
rate of convergence to the optimum solution. Further information about all the
benchmark functions can be found in (Yao, Liu, & Lin, 1999; Simon, 2008;
Jamil & Yang, 2013).

Table 1

Benchmark Functions

symbol Function Definition

F1 Ackley

F2 Griewank

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

(continued)

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

478

symbol Function Definition

F3 Penalty #1

F4 Penalty #2

F5 Quartic with
noise

F6 Rastrigin

F7 Rosenbrock

F8 Schwefel 2.26

F9 Schwefel 1.2

F10 Schwefel 2.22

F11 Schwefel 2.21

F12 Sphere

F13 Step

Experimental results and algorithms settings

A. Comparisons with other methods

CSAHC was initially compared with the global optimization problems of five
optimization algorithms, namely, KH, HS, GA, BA, and CSA.

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 Table 1

Benchmark Functions

symbol Function Definition
F1 Ackley

𝑓𝑓(�̅�𝑥) = 20 + 𝑒𝑒 − 20. 𝑒𝑒 √1
2

−0.2
∑ 𝑥𝑥 1

𝑛𝑛
1

𝑛𝑛=1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

F2 Griewank 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥12

4000 −∏ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥√𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
+ 1

F3 Penalty #1 𝑓𝑓(�̅�𝑥) = 𝜋𝜋

30 {10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥) + ∑ (𝜋𝜋𝑥𝑥 − 1)2 • [1 + 10𝑐𝑐𝑥𝑥𝑛𝑛2(𝜋𝜋𝜋𝜋𝑥𝑥 + 1)] + (𝜋𝜋𝑛𝑛 − 1)2
𝑛𝑛−1

𝑖𝑖=1
}

∑ 𝑢𝑢𝑛𝑛
𝑖𝑖+1 (𝑥𝑥𝑖𝑖 , 10, 100, 4), 𝜋𝜋𝑥𝑥 =1+0.25(𝑥𝑥𝑖𝑖 + 1)

F4 Penalty #2 𝑓𝑓(�̅�𝑥) = 0.1 {𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑥𝑥 − 1)2 •
𝑛𝑛−1

𝑖𝑖=1
[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(3𝜋𝜋𝑥𝑥𝑥𝑥 + 1)] + (𝑥𝑥𝑛𝑛

− 1)2[1 + 𝑐𝑐𝑥𝑥𝑛𝑛2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5, 100, 4)
𝑛𝑛

𝑖𝑖=1

F5 Quartic with

noise
𝑓𝑓(�̅�𝑥) = ∑ (𝑥𝑥. 𝑥𝑥𝑖𝑖4 + 𝑈𝑈(0, 1))

𝑛𝑛

𝑖𝑖=1

F6 Rastrigin 𝑓𝑓(�̅�𝑥) = 10.𝑛𝑛∑ (𝑥𝑥12

𝑛𝑛

𝑖𝑖=1
− 10. cos (2𝜋𝜋𝑥𝑥𝑥𝑥))

F7 Rosenbrock 𝑓𝑓(�̅�𝑥) = ∑ [100(𝑥𝑥𝑥𝑥 + 1 − 𝑥𝑥12) + (𝑥𝑥𝑖𝑖 − 1)2]

𝑛𝑛−1

𝑖𝑖=1

F8

Schwefel 2.26 𝑓𝑓(�̅�𝑥) = 418.9829 x 𝐷𝐷 − ∑ 𝑥𝑥𝑖𝑖

𝐷𝐷

𝐼𝐼=1
sin (|𝑥𝑥𝑖𝑖|

1
2)

F9 Schwefel 1.2 𝑓𝑓(�̅�𝑥) = ∑ (∑ 𝑥𝑥𝑥𝑥

𝑖𝑖

𝑗𝑗=1
)

𝑛𝑛

𝑖𝑖=1
2

F10 Schwefel 2.22 𝑓𝑓(�̅�𝑥) = ∑ |𝑥𝑥𝑥𝑥|

𝑛𝑛

𝑖𝑖=1
+ ∏ |𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
|

F11 Schwefel 2.21 𝑓𝑓(�̅�𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑥𝑥<−𝑛𝑛}

F12 Sphere 𝑓𝑓(�̅�𝑥) = ∑ 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

F13 Step 𝑓𝑓(�̅�𝑥) = 6.𝑛𝑛 + ∑ |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

479

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

In our simulations, similar parameters for CSA have been used, the number of
host nests n = 20 and probability of discovery Pα = 0.25. The tests have been
run on 10, 25, 50, and 100 dimensions for a maximum of 100000 function
evaluations. All tests have been run 100 times. Tables 2 and 3 show the
different scales used to normalize the values to illustrate the differences of the
six methods.

Table 2 shows that CSAHC performs the best on 11 of the 13 benchmarks
which are F1-F4, F6-F10, and F12-F13. CSA is the second most effective,
performing the best on the benchmarks F1-F2, F4-F5, and F13. Followed
by GA, KH, BA, HS, respectively. Table 3 illustrated the average of results.
Where, could be observed CSAHC method performs the most effective at
determining objective function minimum on 10 of the 13 benchmarks F2-F4,
F6-F9, and F11-F13. CSA and GA are the second most effective, performing
best on the benchmarks F4-F5, F10, and F13 for the CSA. While, F2, F11-F12,
and F13 for the GA. Followed by KH, BA, and HS, respectively.

Table 2

Best normalized optimization results

Fun CSAHC CAS BA GA HS KH

F1 1.00 1.00 8.22E_06 2.98E+02 4.29E+05 1.00

F2 1.00 1.00 3.09E+05 9.32E+02 6.15E+04 2.51E+04

F3 1.00 3.25E+02 8.64E+03 7.45E+01 5.08E+03 1.00

F4 1.00 1.00 2.85E+05 3.63E+02 3.85E+04 8.25E+04

F5 4.25E+00 1.00 7.66E+01 1.00 1.00 5.44E+00

F6 1.00 8.29E+03 1.25E+04 2.21E+02 8.22+05 4.36E+04

F7 1.00 5.02 E+02 8.68 E_05 6.78 E+01 1.52 E+05 1.27 E+05

F8 1.00 2.98E+03 5.43E+05 9.33E+02 7.69E+06 4.02E+05

F9 1.00 3.39E+02 7.09E+05 1.28E+02 7.63E+04 5.46E+02

F10 1.00 1.68E+03 4.21E+04 1.00 1.08E+03 3.31E+02

F11 7.54E+01 3.52E+01 8.59E+01 1.00 9.79E+01 7.25E+01

F12 1.00 8.29E+00 1.00 7.02E+02 5.93E+03 1.41E+04

F13 1.00 1.00 1.00 1.00 1.00 1.00

Total 11 5 2 4 2 3

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

480

Table 3

Mean Normalized Optimization Results

Fun CSAHC CAS BA GA HS KH

F1 2.15E-01 5.18E+01 5.32E+04 2.72E+03 6.96E+03 1.00

F2 1.00 4.38E+02 8.87E+05 1.00 2.36E+04 725E+03

F3 1.00 6.35E+01 2.41E+36 1.93E+03 2.02E+05 5.17E+02

F4 1.00 1.00 7.11E+06 2.11E+02 8.80E+04 5.67E+05

F5 8.51E+00 1.00 1.84E+05 4.22E+03 1.65E+05 1.89E+04

F6 1.00 5.75E+03 9.42E+03 5.01E+02 7.35E+04 9.78E+03

F7 1.00 9.89E+02 4.08E+05 9.85E+03 9.52E+06 2.74E+05

F8 1.00 1.75E+01 7.49E+05 9.15E+01 2.59E+04 7.35E+04

F9 1.00 7.07E+02 1.69E+06 3.46E+03 7.13E+05 1.28 E+05

F10 1.08E+00 1.00 3.28E+06 1.00 1.84E+04 1.30E+03

F11 1.00 4.26E+02 8.32E+06 1.00 8.63E+05 3.82 E+03

F12 1.00 4.73E+03 1.54E+03 8.55E+02 124E+06 1.68E+05

F13 1.00 1.00 1.00 1.00 1.00 1.00

Total 10 4 1 4 1 2

Further, the most representative convergent curves are provided (see Figure
5 - Figure 10). The values in the figures are the mean function optimum,
which are the true values.

From Figure 5, apparently, CSAHC is well capable of finding the better
solutions than all other methods. Here, HS converges sharply at the first
search stage, however, soon it gets trapped into the sub-minima and the

481

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

global minimum decreases slightly. In addition, in this function, BA is closed
to CSAHC in the first stage, but the difference is increasing in the second
stage. Each of BA, CSA, GA, and KH have moved to the best solutions
initially, while later CSA converges to the better minimum than the others
and CSAHC is the best of all. Figure 6 shows that CSAHC has the best
performance among the six methods, while CSA ranks second. GA has the
third best performance with a relatively slow and stable convergence rate.

Figure 5. Performance comparison for the F1 Ackley function.

Figure 6. Performance comparison for the F3 Penalty 1.

F13 1.00 1.00 1.00 1.00 1.00 1.00

Total 10 4 1 4 1 2

Further, the most representative convergent curves are provided (see Fig. 5 - Fig. 10). The values in
the figures are the mean function optimum, which are the true values.

From Fig. 5, apparently, CSAHC is well capable of finding the better solutions than all other methods.
Here, HS converges sharply at the first search stage, however, soon it gets trapped into the sub-
minima and the global minimum decreases slightly. In addition, in this function, BA is closed to
CSAHC in the first stage, but the difference is increasing in the second stage. Each of BA, CSA, GA,
and KH have moved to the best solutions initially, while later CSA converges to the better minimum
than the others and CSAHC is the best of all.

Fig. 6 shows that CSAHC has the best performance among the six methods, while CSA ranks second.
GA has the third best performance with a relatively slow and stable convergence rate.

Figs. 7, 8, and 9 shows that CSAHC is capable of finding better solutions compared with all the other
methods. In the Fig. 7, CSA achieved best solutions from the beginning until 25th generation, and
then GA got the best solutions from 26th generation until 43rd generation, followed by CSAHC with
best solutions until the end. The results in Fig. 8 are almost same with the results achieved in Fig. 7.
But, in Fig. 8, the results of CSAHC, GA, CSA, and KH are close together with a preference for
CSAHC. Fig. 9, have the same ranking for Fig. 7 and Fig.8. However, the CSAHC in Fig. 9 has clear
outperformed comparing with the other methods.

Fig. 10 shows that CSAHC achieved the best solution in the especially in the first part of the results,
with simple superiority for basic CSA. However, the GA outperforms both of basic CSA and CSAHC
especially at the last part. An analysis of Figures 5 to 10 reveals that our proposed metaheuristic
CSAHC method greatly outperforms the other methods.

Figure 3. Performance comparison for the F1 Ackley function.

Figure 6. Performance comparison for the F3 Penalty 1.

Figure 7. Performance comparison for the F6 Rastrigin function.

Figure 8. Performance comparison for the F9 Schwefel 1.2 function.

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

482

Figures 7, 8, and 9 shows that CSAHC is capable of finding better solutions
compared with all the other methods. In the Figure 7 CSA achieved best
solutions from the beginning until 25th generation, and then GA got the best
solutions from 26th generation until 43rd generation, followed by CSAHC
with best solutions until the end. The results in Fig. 8 are almost same with
the results achieved in Figure 7. But, in Fig. 8, the results of CSAHC, GA,
CSA, and KH are close together with a preference for CSAHC. Figure 9,
have the same ranking for Figure 7 and Figure 8. However, the CSAHC in
Figure 9 has clear outperformed comparing with the other methods.

Figure 7. Performance comparison for the F6 Rastrigin function.

Figure 8. Performance comparison for the F9 Schwefel 1.2 function

Figure 6. Performance comparison for the F3 Penalty 1.

Figure 7. Performance comparison for the F6 Rastrigin function.

Figure 8. Performance comparison for the F9 Schwefel 1.2 function.

Figure 6. Performance comparison for the F3 Penalty 1.

Figure 7. Performance comparison for the F6 Rastrigin function.

Figure 8. Performance comparison for the F9 Schwefel 1.2 function.

483

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

Figure 9. Performance comparison for the F12 Sphere function.

Figure 10 shows that CSAHC achieved the best solution in the especially in
the first part of the results, with simple superiority for basic CSA. However,
the GA outperforms both of basic CSA and CSAHC especially at the last
part. An analysis of Figures 5 to 10 reveals that our proposed metaheuristic
CSAHC method greatly outperforms the other methods.

Figure 10. Performance comparison for the F13 Step function.

B. Influence of control parameter

Parameter setting plays an important role in the performance of metaheuristic
methods when solving different problems. In this article are the number
of host nests (population size n) and the probability of discovery (Pα) are
thoroughly studied with 100 trials, which are implemented in the above
problems to search for the best solution and mean as shown in Tables 4, 5,
6, and 7.

Figure 9. Performance comparison for the F12 Sphere function.

Figure 10. Performance comparison for the F13 Step function.

B. Influence of control parameter

Parameter setting plays an important role in the performance of metaheuristic methods when solving
different problems. In this article are the number of host nests (population size n) and the probability
of discovery (P) are thoroughly studied with 100 trials, which are implemented in the above
problems to search for the best solution and mean as shown in Tables 4, 5, 6, and 7.

● Population size n

The influence of n is investigated through an array of simulations with n = 5, 10, 15, 20, 50,
100, 150, 250, 500. P = 0.25 (see Tables 4 and 5).

From Tables 4 and 5, we can see that the superior performance of CSAHC when the value of
n = 20. While performance decreases as the value of n increases. This due to increasing the
value of n that mean increase the search space, therefore the performance of CSAHC will
decrease.

Figure 9. Performance comparison for the F12 Sphere function.

Figure 10. Performance comparison for the F13 Step function.

B. Influence of control parameter

Parameter setting plays an important role in the performance of metaheuristic methods when solving
different problems. In this article are the number of host nests (population size n) and the probability
of discovery (P) are thoroughly studied with 100 trials, which are implemented in the above
problems to search for the best solution and mean as shown in Tables 4, 5, 6, and 7.

● Population size n

The influence of n is investigated through an array of simulations with n = 5, 10, 15, 20, 50,
100, 150, 250, 500. P = 0.25 (see Tables 4 and 5).

From Tables 4 and 5, we can see that the superior performance of CSAHC when the value of
n = 20. While performance decreases as the value of n increases. This due to increasing the
value of n that mean increase the search space, therefore the performance of CSAHC will
decrease.

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

484

● Population size n

The influence of n is investigated through an array of simulations with n = 5,
10, 15, 20, 50, 100, 150, 250, 500. Pα = 0.25 (see Tables 4 and 5).

From Tables 4 and 5, we can see that the superior performance of CSAHC
when the value of n = 20. While performance decreases as the value of n
increases. This due to increasing the value of n that mean increase the search
space, therefore the performance of CSAHC will decrease.

Table 4

Best Normalized Optimization Results with Different n

Population size n

5 10S 15 20 50 100 150 250 500

F1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 26.07 41.29

F2 0.84 0.84 0.18 1.00 1.32 16.32 23.32 37.32 56.32

F3 1.00 1.00 1.00 1.00 1.16 1.00 72.12 82.23 29.16

F4 12.67 1.08 1.41 1.00 1.74 19.43 14.34 58.27 38.04

F5 10.25 39.02 6.83 1.00 1.00 18.24 26.34 24.51 47.70

F6 50.47 53.44 1.65 0.02 1.00 33.83 62.69 61.83 56.65

F7 1.00 1.00 1.00 1.00 1.13 51.40 21.45 19.33 31.60

F8 13.25 1.00 2.09 1.74 1.39 45.24 63.16 83.13 52.08

F9 44.86 67.99 35.67 17.2 1.02 91.54 88.07 91.00 64.17

F10 1.00 1.00 1.00 1.00 1.00 57.09 39.81 33.92 38.91

F11 18.02 22.80 4.05 2.98 1.08 19.06 31.51 82.07 75.06

F12 15.20 22.24 10.07 1.00 1.14 28.20 47.09 73.30 95.10

F13 5.99 7.98 1.00 1.00 1.02 36.01 71.02 64.07 82.01

Total 4 5 5 9 3 2 1 0 0

● Discovery rate Pα

Firstly, the effect of the elitism parameter is studied in the benchmark
problems with the elitism parameter Pα = 0, 0.1, 0.2, ..., 0.8, 0.9, 1 and n
= 20 (see Tables 6 and 7).

485

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

Table 5

Best normalized optimization results with different n

Population size n

5 10S 15 20 50 100 150 250 500

F1 1.00 1.00 1.00 1.00 1.00 1.00 2.85 11.77 25.63

F2 4.52 1.80 1.07 1.00 5.32 11.32 18.39 33.50 51.22

F3 6.03 1.17 1.00 1.00 7.08 17.21 22.02 47.13 55.27

F4 3.52 3.01 1.00 1.01 6.12 10.17 14.61 28.32 37.26

F5 2.49 1.89 1.22 1.00 3.74 21.55 31.76 69.08 92.15

F6 8.26 4.92 3.08 1.00 9.51 17.65 29.72 42.30 66.85

F7 1.67 1.01 1.00 1.00 5.27 9.53 16.17 24.12 48.06

F8 4.00 1.64 4.97 1.13 1.00 8.92 19.63 31.27 57.67

F9 1.00 1.00 2.51 1.00 2.99 13.37 21.61 35.53 60.01

F10 1.00 1.00 1.00 1.00 2.05 4.07 11.79 19.08 34.17

F11 38.30 25.73 12.59 3.73 1.00 41.26 47.84 67.11 82.65

F12 8.63 4.22 2.58 1.00 10.24 14.32 22.09 40.89 65.89

F13 1.00 1.00 1.00 1.00 1.00 9.01 15.28 21.01 43.05

Total 4 4 6 10 4 1 0 0 0

From Table 6, obviously, it can be seen that CSAHC performs the best when
Pα = 0.1 and 0.2. Especially, for the F1 until F5, CSAHC has the similar
performance; that is, the elitism parameter Pα has little influence on these
three benchmark functions. Furthermore, when Pα = 0 and from 0.3 until
0.8, CSAHC performs achieved almost same results. However, the worst
results when Pα = 0.9 and 1. In Table 7, there is a clear superiority for the
CSAHC when the Pα = 0.2, followed by Pα = 0.1 and 0.3 almost the same
results. Finally, all other values of are achieved nearby results. In short,
CSAHC has the best performance when Pα = 0.2.

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

486

Table 6

Best Normalised Optimization Results with Different Pα

Discovery rate Pa
Fun. 0 0.1 0.2 0.3 0.4
F1 2.93E+01 1.00 1.00 1.00 1.24E+02
F2 3.28E+02 1.00 1.00 5.36E+02 1.69E+01
F3 1.16E+01 1.00 1.00 7.30E+02 6.46E+01
F4 2.48E+00 1.00 1.00 6.22E+01 5.32E+02
F5 2.55E+01 1.00 1.00 2.14E+00 6.62E+02
F6 2.48E+01 1.21E+00 1.00 4.22E+01 9.43E+01
F7 2.55E+00 2.81E+02 1.00 6.24E+00 1.57E+02
F8 1.00 1.00 1.00 5.84E+02 3.89E+02
F9 1.00 2.22E+01 1.00 3.46E+01 8.33E+01
F10 1.01E+00 3.71E+02 1.00 1.00 6.31E+01
F11 2.12E+00 4.65E+00 1.17E+00 2.18E+01 1.00
F12 1.01E+00 9.39E+01 1.00 5.15E+02 2.31E+02
F13 2.12E+00 4.65E+01 1.17E+00 1.00 1.00
Total 2 6 11 3 2

Discovery rate Pa

Fun. 0.5 0.6 0.7 0.8 0.9 1

F1 3.67E+02 7.36E+03 6.89E+03 7.95E+02 4.28E+02 8.59E+03

F2 1.26E+03 4.23E+02 1.55E+03 4.47E+03 4.21E+02 4.22E+03

F3 5.68E+02 1.22E+03 1.00 2.14E+02 8.58E+03 6.91E+03

F4 1.90E+03 3.31E+02 1.73E+02 8.27E+02 3.38E+02 1.23E+01

F5 1.00 5.11E+02 3.01E+03 2.93E+01 1.42E+03 5.94E+02

F6 4.69E+02 7.01E+02 1.88E+02 3.78E+02 1.64E+02 1.23E+01

F7 7.63E+02 5.17E+01 7.39E+03 5.06E+03 1.15E+03 3.35E+03

F8 5.63E+03 5.39E+03 6.36E+01 4.85E+02 1.02E+03 5.18E+02

F9 8.40E+01 1.82E+02 2.54E+03 7.43E+02 1.11E+03 1.16E+01

F10 5.36E+03 1.00 5.20E+02 1.95E+03 1.08E+02 2.82E+01

F11 7.95E+02 1.72E+02 6.99E+03 1.00 1.17E+02 1.87E+01

F12 5.33E+02 1.00 1.13E+01 9.52E+02 1.06E+03 4.36E+01

F13 8.36E+03 8.39E+01 2.54E+02 4.65E+01 5.94E+03 7.92E+01

Total 1 2 1 1 0 0

487

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

Table 7

Mean normalised optimization results with different Pα

Discovery rate Pa
Fun. 0 0.1 0.2 0.3 0.4
F1 2.81E+01 6.84E+02 1.00 5.84E+02 6.24E+02
F2 1.00 1.00 106.E+00 3.46E+00 2.69E+02
F3 2.22E+02 1.00 1.00 1.00 8.46E+02
F4 3.71E+02 2.48E+01 1.00 2.18E+01 5.32E+01
F5 1.65E+02 2.55E+00 1.00 5.15E+00 1.00
F6 1.21E+00 2.48E+00 1.00 1.10E+01 7.43E+02
F7 1.08E+02 2.55E+01 1.00 6.24E+01 1.95E+02
F8 4.47E+01 1.00 1.00 1.00 1.00
F9 1.14E+02 1.00 1.00 1.26E+01 2.52E+03
F10 6.27E+00 1.00 1.00 1.00 6.89E+01
F11 2.93E+01 1.00 1.00 1.90E+00 5.63E+02
F12 6.27E+02 1.01E+01 1.00 1.00 1.40E+00
F13 2.93E+02 2.12E+01 1.00 1.90E+01 1.94E+01
Total 1 6 12 4 2

Discovery rate Pa

Fun. 0.5 0.6 0.7 0.8 0.9 1

F1 5.06E+02 1.06E+03 4.05E+03 6.89E+03 7.28E+03 8.89E+03

F2 4.85E+03 4.23E+03 8.59E+03 1.55E+04 8.35E+03 8.55E+03

F3 5.11E+02 7.22E+02 4.22E+01 1.00 8.58E+02 1.00
F4 7.01E+01 3.31E+01 6.91E+02 1.73E+03 3.38E+03 4.73E+03
F5 5.17E+02 1.15E+03 2.23E+03 3.01E+03 4.42E+03 4.61E+03
F6 5.39E+01 1.02E+02 1.00 1.88E+02 6.89E+02 8.12E+02
F7 1.82E+03 6.11E+03 7.23E+03 1.35E+04 1.55E+04 3.35E+04
F8 1.00 1.08E+01 5.94E+01 2.18E+02 1.00 5.18E+02
F9 5.81E+03 7.17E+03 6.89E+03 7.21E+03 1.73E+03 1.86E+03
F10 1.00 1.06E+02 4.14E+02 5.55E+02 6.01E+02 6.82E+02
F11 7.32E+03 1.00 1.22E+02 3.17E+02 1.88E+03 2.87E+03
F12 1.94E+02 1.00 1.14E+01 1.00 3.35E+01 1.01E+02
F13 7.95E+02 1.23E+03 3.42E+03 3.17E+03 9.18E+02 1.87E+03
Total 2 2 1 2 1 1

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

488

CONCLUSION AND FUTURE WORK

In the present work, a novel metaheuristic CSAHC method is proposed for
solving global optimisation tasks. We improved the CSA by combining it
with HC and evaluated the performance of the CSAHC on the 13 benchmark
functions. The hybridization enhanced the exploration of basic CSA by using
the HC which is capable of dealing with local searches. Furthermore, CSAHC
is investigated on 13 benchmark functions. Results showed that comparing
CSAHC with other search methods, such as the original CSA, original BA,
GA, HS, and KH, improves its efficiency and effect. The CSAHC can be
applied to more benchmark functions, including some real-world optimization
problems for further examinations.

ACKNOWLEDGEMENT

This research received no specific grant from any funding agency in the public,
commercial, or not-for profit sectors.

REFERENCES

Abdel-Baset, M., & Hezam, I. M. (2016). Solving linear least squares problems
based on improved cuckoo search algorithm. Mathematical Sciences
Letter, 5(2), 199-202.

Alajmi, B. N.; Ahmed, K. H.; Finney, S. J. & Williams, B. W. (2011).
Fuzzy-logic-control approach of a modified hill-climbing method for
maximum power point in microgrid standalone photovoltaic system
IEEE Transactions on Power Electronics, IEEE, 26, 1022-1030.

Burke, E. K., & Newall, J. P. (2002). Enhancing timetable solutions with
local search methods. In International Conference on the Practice and
Theory of Automated Timetabling, 2740, 195–206.

Dejam, S., Sadeghzadeh, M. & Mirabedini, S. J. (2012). Combining cuckoo
and tabu algorithms for solving quadratic assignment problems. Journal
of Academic and Applied Studies, Liteseer, 2(12), 1-8.

Fister Jr, I., Yang, X.-S., Fister, D., & Fister, I. (2014). Cuckoo search: a brief
literature review. In Cuckoo Search and Firefly Algorithm, 516, 49–62.

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired
optimization algorithm. Communications in Nonlinear Science and
Numerical Simulation, 17(12), 4831–4845.

489

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic
optimization algorithm: Harmony search. Simulation, 76(2), 60–68.

Glover, F. (1977). Heuristics for integer programming using surrogate
constraints. Decision Sciences, 8(1), 156–166.

Hasan, S., Quo, T. S., & Shamsuddin, S. M. (2012). Artificial fish swarm
optmization for multilayer network learning in classification problems.
Journal of Information & Communication Technology, 11, 37-53.

Holland, J. H. (1975). Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and artificial
intelligence. Ann, Anbor, USA: U Michigan Press.

James, K., & Russell, E. (1995). Particle swarm optimization. In Proceedings
of 1995 IEEE International Conference on Neural Networks, 4, 1942–
1948.

Jamil, M., & Yang, X.-S. (2013). A literature survey of benchmark functions for
global optimisation problems. International Journal of Mathematical
Modelling and Numerical Optimisation, 4(2), 150–194.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical
optimization. Technical Report TR06. Technical Report TR06. Erciyes
University, Engineering Faculty, Computer Engineering Department.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., & others. (1983). Optimization by
simmulated annealing. Science, 220(4598), 671–680.

Koza, J. R. (1994). Genetic programming II: Automatic discovery of reusable
subprograms. Cambridge, MA, USA: MIT Press.

McMinn, P. (2004). Search-based software test data generation: A survey.
Software Testing, Verification and Reliability, 14(2), 105–156.

Mohammed, S. M. Z., Khader, A. T., & Al-Betar, M. A. (2016). 3-SAT using
island-based genetic algorithm. IEEJ Transactions on Electronics,
Information and Systems, 136(12), 1694–1698.

Mustaffa, Z., Yusof, Y., & Kamaruddin, S. (2013). Enhanced Abc-Lssvm for
Energy fuel price prediction. Journal of Information and Communication
Technology, 12, 73–101.

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

490

Rubio, A. & Gámez, J. A. (2011).Flexible learning of k-dependence Bayesian
 network classifiers. Proceedings of the 13th Annual Conference

on Genetic and Evolutionary Computation, 1219-1226. Doi:
10.1145/2001576.2001741

Schaerf, A., & Meisels, A. (1999). Solving employee timetabling problems by
generalized local search. In the 6th Congress of the Italian Association
for Artificial Intelligence. Advancec in Artifical Intelligence, Bologna,
Italy, LNAI, 1972, 380–389.

Shehab, M., Khader, A. T., & Al-Betar, M. A. (2017). A survey on applications
and variants of the cuckoo search algorithm. Applied Soft Computing,
61, 1044-1069.

Shehab, M., Khader, A. T., & Laouchedi, M. (2017). Modified Cuckoo
search algorithm for solving global optimization problems. Paper
presented in the International Conference of Reliable Information and
Communication Technology, 5, 561–570.

Shehab, M. M., Khader, A. T., & Al-Betar, M. A. (2016). New selection
schemes for particle swarm optimization. IEEJ Transactions on
Electronics, Information and Systems, 136(12), 1706-1711.

Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on
Evolutionary Computation, 12(6), 702–713.

Storn, R., & Price, K. V. (1996). Minimizing the real functions of the ICEC’96
contest by differential evolution. In International Conference on
Evolutionary Computation, 842–844. Doi: 10.11909/ICEC. 1996.

Yang, X.-S. (2010a). A new metaheuristic bat-inspired algorithm. In Nature
inspired cooperative strategies for optimization, 284, 65-74. Springer.

Yang, X.-S. (2010b). Firefly algorithm. Nature-inspired metaheurictic algorithms.
Wiley Online Library, 221–230. Doi 10.1002/9780470640425

Yang, X.-S., & Deb, S. (2009). Cuckoo search via Lévy flights. Paper presented
in World Congress on Nature & Biologically Inspired Computing, pp.
210–214. Doi: 10.1109/NABIC.2009.5393690

Yang, X.-S., & Deb, S. (2014). Cuckoo search: recent advances and
applications. Neural Computing and Applications, 24(1), 169–174.

491

Journal of ICT, 17, No. 3 (July) 2018, pp: 469–491

Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster.
IEEE Transactions on Evolutionary Computation, 3(2), 82–102.

Wang, G.-G., Gandomi, A. H.; Zhao, X. & Chu, H. C. E. (2016). Hybridizing
harmony search algorithm with cuckoo search for global numerical
optimization. Soft Computing, 20(1), 273-285

Zheng, H. & Zhou, Y. (2012). A novel cuckoo search optimization
algorithm based on Gauss distribution. Journal of Computational
Information Systems, 8(10), 4193-4200.

