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ABSTRACT

In any metaheuristic, the parameter values strongly affect the efficiency
of an algorithm’s search. This research aims to find the optimal
parameter values for the Pareto Ant Colony System (PACS) algorithm,
which is used to obtain solutions for the generator maintenance
scheduling problem. For optimal maintenance scheduling with low
cost, high reliability, and low violation, the parameter values of the
PACS algorithm were tuned using the Taguchi and Gray Relational
Analysis (Taguchi-GRA) method through search-based approach.
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The new parameter values were tested on two systems. i.e., 26- and
36-unit systems for window with operational hours [3000-5000]. The
gray relational grade (GRG) performance metric and the Friedman
test were used to evaluate the algorithm’s performance. The Taguchi-
GRA method that produced the new values for the algorithm’s
parameters was shown to be able to provide a better multi-objective
generator maintenance scheduling (GMS) solution. These values can
be benchmarked in solving multi-objective GMS problems using the
multi-objective PACS algorithm and its variants.

Keywords: Optimization, Scheduling, Taguchi method, Gray
Relational Analysis, Generator maintenance.

INTRODUCTION

Parameter tuning enhances an algorithm’s flexibility and robustness
because parameters strongly affect efficient and effective search
for solutions (Negulescu, 2017; Talbi, 2009). However, careful
initialization is required (Sagban, 2016; Talbi, 2009). Optimal values
for the parameters mainly depend on the problem and the instance it
deals with, which also depends on the search time needed to solve the
problem (Talbi, 2009). Two different strategies exist for parameter
tuning, comprising offline and online parameter tunings (Negulescu,
2017; Sagban, 2016; Talbi, 2009).

Under offline parameter tuning, different parameter values are fixed
ahead of the metaheuristic execution (Talbi, 2009). Traditionally,
“trial and error” is applied mostly in the execution of offline tuning.
In addition, under the offline parameter tuning strategy, the Taguchi
method is widely used in engineering analysis. The greater advantages
of this method are saving efforts in conducting experiments, saving
experimental time, and discovering significant factors quickly
(Manikandan et al., 2015). Recently, increasing effort has been made
to allow the tuning of algorithm parameters to be through a search-
based approach (Negulescu, 2017). Under online tuning, in the
process of metaheuristic execution, the control of parameters involves
an updated dynamic or adaptive approach (Talbi, 2009). Under the
dynamic update approach, parameter value changes are executed
without consideration of the search progress, and parameter value
update is carried out in a random or deterministic order. However,
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in the adaptive approach, values are changed in accordance with the
search progress, which is mostly through memory of the search (Talbi,
2009).

Conventionally, “trial and error” is applied primarily in the execution
of offline tuning. Nevertheless, this method is effortful and time-
consuming without guaranteeing optimal values (Negulescu,
2017). The tuning parameters with the Taguchi method, which is
an offline method, has shown to produce a robust design with less
experimentation (Kolahan & Azadi Moghaddam, 2015). As for online
parameter tuning methods, these methods generally use feedback from
the optimization process to continuously update their parameters. For
instance, when increasing the size of the dataset, the algorithm may
not be able to improve its solutions.

In this research, the Taguchi and Gray Relational Analysis (Taguchi-
GRA) method is used for tuning parameter values in a Pareto Ant
Colony System (PACS) algorithm (Muthana & Ku-Mahamud, 2021;
2022). This algorithm is used to solve the multi-objective generator
maintenance scheduling (GMS) problem. A review of previous tuning
methods on variants of Ant Colony Optimization (ACO) algorithms
is presented in the second section, followed by the description of the
Taguchi-GRA method. The experimental results and discussion are
then presented, followed by the conclusion and future research in the
last section.

RELATED LITERATURE

The ACO algorithms’ behaviors largely depend on the wvalues
associated with the parameters (Lopez-Ibafiez et al., 2015; Negulescu,
2017; Yasear & Ku-Mahamud, 2021). Several studies have been
carried out for developing parameterization strategies to ensure that
the metaheuristics trade-off is achieved between exploration and
exploitation. The aim is to discover global optimal solutions in the
quickest time possible (Zheng et al., 2017). Two different strategies
exist for parameter tuning, namely offline and online parameter
tunings (Negulescu, 2017; Sagban, 2016).

Under offline parameter tuning, different parameter values are fixed
ahead of the metaheuristic execution (Talbi, 2009). The “trial and
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error” method is applied mostly in the execution of offline tuning.
This process is considered to be human-intensive, time-consuming,
and error-prone and, in most instances, results in the uneven tuning
of different algorithms (Negulescu, 2017). Negulescu (2017) used the
normalization method to regulate the parameter values of the Elitist
Ant System algorithm. The advantage of this method is that it spares
computational time for otherwise running empirical test runs for
determining a good set of parameter values, and the determination of
parameter values can be extrapolated for other similar maps.

The Taguchi method, which is used for parameter design, is based
on the theory that the experimental designs use orthogonal matrices,
making it possible to easily determine the effects of the variables
(Sihem & Benmansour, 2018). The Taguchi method is an important
tool for robust design in which the best setting of the control factors
(parameters) is determined. The two major tools used in the Taguchi
methodology are: (1) orthogonal array and (2) signal-to-noise ratio
(S/N) analysis (Vinay & Sridharan, 2013). Orthogonal arrays are used
to analyze design parameters, and the S/N ratio measures production
quality (Yuan-Kang et al., 2013). However, the Taguchi method does
not consider the search-based approach. Instead, it uses feedback
from the optimization process by analyzing the results of the objective
functions, which allows it to obtain optimal or near optimal parameter
values even in big system sizes.

Under online tuning, in the process of metaheuristic execution,
the control of parameters involves updated dynamic or adaptive
approaches (Talbi, 2009). Under the dynamic update approach,
parameter value changes are executed without consideration of the
search progress, and a random or deterministic update of the parameter
values is performed. Differently, in the adaptive approach, the values
are changed according to the search progress, mostly through memory
of the search. The most generic strategies of the online approach are
pre-scheduled strategy, adaptive strategy, and self-adaptive strategy,
which include pure self-adaptive strategy and search-adaptive strategy.
The pre-scheduled strategy involves observation of the problem
from an offline perspective. The substitution of static parameters
is achieved through either deterministic or randomized functions.
The functions depend on the volumes of algorithm iterations, or
computational in which the change of parameter values is achieved in
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the optimization process, based on some programmed rules, while any
feedback is ignored during the search (Sagban, 2016). An adaptive
strategy approach uses feedback from the optimization process for
the continuous update of parameters (Drozdik et al., 2015). In this
strategy, ACO algorithm changes are made to parameters based on
specific rules that consider the importance of ACO algorithm search
behavior (Sagban, 2016).

With the self-adaptive strategy, a further possibility is to have
parameter modification by the algorithm itself during the run time, this
approach is called self-adaptation (Sagban, 2016). Many strategies for
adaptive ACO are classified within the components of self-adaptive
strategies. The algorithm utilizes itself instead of using other search
methods for adapting its parameters. This strategy is classified as the
“pure self-adaptive strategy”, which is a way of implicitly adapting
the ACO parameters where the algorithm utilizes itself for adapting
its parameters (Sagban, 2016). Meanwhile, the “search-adaptive
strategy” implicitly adapts the ACO algorithm’s parameters in
which the algorithm utilizes alternative search methods to adapt its
parameters (Sagban, 2016).

Table 1 presents the summary of several studies for different application
domains that include the offline and online tuning strategies in ACO
algorithm variants from 2017 to 2022. The variants of ACO include
the Ant System (AS), Elitist Ant System (EAS), Rank-based Ant
System (ASrank), Ant Colony System (ACS), and Max-Min Ant
System (MMAS). This research focuses on parameter tuning for the
Pareto Ant Colony System (PACS) algorithm, which is a variant of
the ACS algorithm. The parameters that are used in ACO variants are:
1) (o) and (f) to control the relative importance of pheromone trails
and heuristic information on the decision probabilities, respectively;
ii) uniform distributed variable (g); iii) evaporation parameters
(p and ¢); iv) number of iterations (S); v) parameter (m) representing
number of ants and neighbors, respectively; vi) (0) effectiveness
factor of pheromone deviation from the upper bound of pheromone
trail; vii) (dzxy) represents deposited pheromone amount; viii) (P0O)
represents the threshold probability, which is selected out of the
calculated probability values; ix) (ptries) is the number of attempts of
the randomized packing heuristic; x) (localsearch) controls whether
and what local search procedure to apply; and finally, xi) (P) is the
transfer probability parameter.
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Table 1

Parameter Tuning Strategies in ACO

Authors Type of Strategy ACO Parameter  Type of
Variant Problem
Sihem and Offline strategy/ AS o, b p q Electric
Benmansour Taguchi power system
(2018) reliability
Tirkolaee al. Offline strategy/ MMAS o, f, p, m,  Multi-trip
(2019) Taguchi S, 0 capacitated
arc routing
Ragmani al. Offline strategy/ AS a, B, p, m, S ldentification
(2019) Taguchi of the optimal
configuration
of virtual
machine
placement
Lyu et al. Offline strategy/ ACS PpmS Tilt quad rotor
(2020) Taguchi problem
Ragmani etal. Offline strategy/ ACS a, B, p, m, S Scheduling/
(2020) Taguchi Virtual
machine
Lezamaetal.  Offline strategy/ ACS a, f,p, m, S Local
(2020) Trial and error electricity
markets
Ankita and Online strategy/ ACS Azxy, PO Scheduling/
Sahana (2019)  Pre-scheduled Grid
environment
Mavrovouniotis Online strategy/ MMAS m Dynamic
et al. (2017) Pre-scheduled traveling
salesman
problem
Zheng et al. Online strategy/ ASrank « Water
(2017) Adaptive distribution
system design
problems
Chagas and Online strategy/ AS m, a, B, p,  Thief
Wagner (2020) Pure self- ptries orienteering
adaptive problem
(continued)
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Authors Type of Strategy ACO Parameter  Type of
Variant Problem
Chagas and Online strategy/ MMAS m, o, f5, p,  Thief
Wagner (2022) Search-adaptive localsearch, orienteering
ptries problem
Wang and Han  Online strategy/ ACS o, f Traveling
(2021) Search- salesman
adaptive problem
Han et al. Online strategy/ ACS o, p,p Assembly
(2021) Search-adaptive sequence
planning
Ariyaratne Online strategy/ ACS Specific Traveling
and Fernando  Search-adaptive parameters  salesman
(2018) problem

In summary, most of the studies used online parameter tuning
strategies because this type of method has shown its efficiency in
obtaining better results with less computational time although it is
not always the best for some problems. Most of the tuned parameters
are the standard parameters for ACO and its variants, while the
parameters that are not usually tuned are J, localsearch, ptries, PO,
and P, which are used in the ACO algorithms for a special purpose.
The Taguchi method proved its proficiency to calibrate parameters
for ACS by optimizing solutions for single objective GMS (Fattahi
et al., 2014). In this research, the Taguchi-GRA method is adopted
to enhance the work of Muthana and Ku-Mahamud (2021; 2022) in
finding the optimal parameter values for the proposed PACS algorithm
to optimize solutions for multi-objective GMS.

TAGUCHI-GRAY RELATIONAL ANALYSIS METHOD
FOR DETERMINING OPTIMAL PARAMETERS

The PACS algorithm proposed by Muthana and Ku-Mahamud (2021;
2022) was used to obtain solutions for the multi-objective GMS
problem in electrical power systems. In this section, the Taguchi-
GRA method was employed to determine the optimal value for each
parameter in PACS for optimal maintenance scheduling. The Taguchi
method was used to configure the design of parameter values for the
PACS algorithm, while GRA analyzed the output from Taguchi to
obtain the gray relational grade (GRG) values. GRG converted the
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multi-objective PACS solution to a single solution to be evaluated by
the signal-to-noise ratio (S/N) approach.

There were five main steps for implementing the Taguchi-GRA
method as shown in Figure 1. The first step was to identify the factors
(parameters) and levels (values) for each parameter. In this research,
six parameters with five levels of values for each parameter were
tested. The second step was to select an appropriate orthogonal array
and assign the parameters to the array. The third step was to assign
the parameters to the columns of the orthogonal array and conduct
the experiments. The fourth step was to analyze the output from the
experiments in the previous step using the GRA method. The fifth step
determined the best levels for parameters using responses of the S/N
analysis that determined the best levels for parameters.

Figure 1

Taguchi-GRA Method

Identify parameters &
levels for each parameter

L 2

Select appropriate
orthogonal array (OA) Ly
& assign parameters to OA

Pheromone (a) {0.005, 0.500, 1.000, 1.500, 2.000}

{0.005, 0.500, 1.000, 1.500, 2.000}
Initial pheromone {0.01, 0.10, 0.20, 0.50, 1.50}
{0.005, 0.050, 0.100, 0.200, 0.250}
Global rate (p) {0.005, 0.050, 0.100, 0.200, 0.250}
-~ Exploration probability {0.1, 0.6, 0.7, 0.8, 0.9}

Initial Exploration
Pheromone Probability

[ 0.005 0.005 0.01 0.005 0.005
5 0.005 0.500 0.10 0.050 0.050

P53 2.000 2.000 0.50 0.100 0.050 0.1
[F13] 1.000 0.005 0.01 0.100 0.005 0.1

~

N

Conduct experiments

R 2

Analyze output using GRA

$

Determine optimal levels ]

\

for parameters using
responses of S/N analysis

T

The initial values (or candidate values) that were used in the
experiments for testing the PACS parameters are displayed in Table
2. These parameters and values were constantly being used when
scheduling the maintenance of generating units in electrical power
systems using the ACS algorithm and multi-objective scheduling
using the PACS algorithm (Berrichi et al., 2010; Fattahi et al., 2014).
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Table 2

Test Parameter Values

Parameters Candidate Values

Pheromone power (o) {0.005, 0.500, 1.000, 1.500, 2.000}
Heuristic power (B) {0.005, 0.500, 1.000, 1.500, 2.000}
Initial pheromone (t0) {0.01, 0.10, 0.20, 0.50, 1.50}
Local rate (&) {0.005, 0.050, 0.100, 0.200, 0.250}
Global rate (p) {0.005, 0.050, 0.100, 0.200, 0.250}
Exploration probability {0.1,0.6,0.7,0.8, 0.9}

Experimental Design for Taguchi

Tables 3 and 4 show the results of using the Taguchi design on the
initial values of the PACS algorithm for the 26-unit and 36-unit
systems, respectively. These results were obtained from ten runs. The
[3,000-5,000] maintenance window were used because the results for
this window had been previously obtained in all the unit systems.
There were 25 rows in the tables as the results of the Taguchi method
that used six parameters in the proposed PACS and five levels of
values for each parameter as proposed by Berrichi et al. (2010) in their
research on multi-objective scheduling. The experimental design for
six controllable parameters with five levels was organized by Taguchi
in an orthogonal array of 25 rows (i.e., L,5(5°)). However, in this
research, an additional combination was added, giving the final
orthogonal array of 26 rows (L,). The additional combination was to
provide an extra alternative solution (Fattahi et al., 2014).
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The results of cost, reliability, and violation were converted to a single
value (i.e., GRG) using the GRA method. This process involved data
normalization, deviation sequences, and gray relational coefficient
(GRC). The obtained GRG values were used in the S/N analysis
to produce the new parameter values for the PACS algorithm. The
following sections describe the steps in implementing GRA, followed
by the S/N analysis.

Gray Relational Analysis Method and Signal-to-Noise Ratio
Analysis for Optimal Parameters Values

In this section, the use of the GRA method and S/N analysis in
determining the optimal parameters to be used in the PACS algorithm
for GMS are discussed. The gray relational grade (GRG) of the
objective functions of the PACS solution algorithm was considered
as the response variable of the design. In contrary to Fattahi et al.
(2014), the operation cost objective function of the solution algorithm
was considered as the response variable of the design. The design of
ACS parameter values proposed by Fattahi et al. (2014) considered
the S/N analysis to determine the best set of parameter levels based
on a single objective only. Here, the problem under consideration had
three distinctive conflicting objectives. In many practical cases, it is
desirable to make a balance among these objectives. To overcome
this shortcoming of S/N, this research employed GRA to turn all three
objectives into a single criterion called GRGs (Kolahan & Azadi
Moghaddam, 2015). The following subsections represent the steps in
implementing GRA and S/N ratio analysis.

Data Normalization

Data normalization was performed on the values obtained from the
Taguchi design (i.e., Tables 3 and 4). Numerical data were normalized
between zero and one. In this research, the normalized values (x;) for
cost and convenience (violation) objective functions were calculated
based on Equation 1 (Jozi¢ et al., 2015):

_ max(yy) - yy
Xij = ;
max(y,-j) —min(y;; )
where y; is the value for cost and convenience, and max (yij) and min
(v,) are the maximum and minimum values for cost and convenience,

respectively. This equation was used because a smaller value of cost or
violation indicated a better result for the objective function. However,

(M
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in the case of reliability, a larger value specified a better result for the
objective function. Therefore, the normalization calculation reliability
is based on Equation 2 (Jozi¢ et al., 2015):

Table 5

Normalization Experimental Results for 26 Units

Yij— min {yij)

X = -
v max{}’i;) — min(y; )

where y, is the value for reliability, and max (yij) and min (y,;) are the
maximum and minimum values for reliability. The normalized values
of cost, reliability, and violation are demonstrated in Tables 5 and 6.

2

Runs Cost Reliability
1 0.072706431 0.867187581
2 0.448748694 0.730166172
3 0.402297342 0.88002292
4 0.561214914 0.381559619
5 0.558303255 0.208657603
6 0.207638495 0.899744752
7 0.190312039 0.855341981
8 0.676018218 0.462655623
9 0.312009526 0.911507006
10 0.601710253 0.164577799
11 0.115641375 0.966328072
12 0.131218144 0.954649164
13 0.266678747 0.812043548
14 0.318311027 0.864916393
15 0.272872551 0.843235922
16 0.39804113 0.770547481
17 0.081348066 0.996655727
18 1 0
19 0.280437213 0.761806532
20 0 0.859842684
21 0.415491692 0.838380997
22 0.9617838 0.272761369
23 0.242375823 1
24 0.449677809 0.872011252
25 0.259744637 0.802656665
26 0.534877004 0.963567224

Max 1 1
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Table 6

Normalization Experimental Results for 36 Units

Runs Cost Reliability Violation
1 0.806659467 0.955622677 -
2 0.123507715 0.392832249 -
3 0.589150411 0.734549257 -
4 0.718656399 0.477375697 -
5 0.544546437 0.969505112 -
6 0.203554256 0 -
7 0.835546179 0.654158922 -
8 0.754032586 1 -
9 0.700512962 0.636355716 -
10 0.270038405 0.479234433 -
11 0.543570407 0.74018355 -
12 0.120652021 0.765741171 -
13 0.21074714 0.325627323 -
14 0.885680843 0.841049024 -
15 0.984033191 0.676579926 -
16 0.744013001 0.492768355 -
17 0.777012835 0.206145446 -
18 0.837953521 0.794057853 -
19 0.898214659 0.742652184 -
20 0 0.526399861 -
21 0.55966564 0.699378485 -
22 0.642033997 0.687732342 -
23 0.284407175 0.207888011 -
24 1 0.444731645 -
25 0.51857709 0.296061803 -
26 0.861636639 0.484142658 -
Max 1 1 -

Deviation Sequences

The normalized data for cost, reliability, and violation were then used
to calculate the deviation sequence (d,) using Equation 3 (Jozi¢ et al.,

2015):

b

= max(xl]) - x,-j

3)

where x, is the normalization value. Tables 7 and 8 display the

deviation sequence for cost, reliability, and violation.
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Table 7

Deviation Sequences (d) for 26 Units

Runs Cost Reliability Violation
1 0.927293569 0.132812419 -
2 0.551251306 0.269833828 -
3 0.597702658 0.11997708 -
4 0.438785086 0.618440381 -
5 0.441696745 0.791342397 -
6 0.792361505 0.100255248 -
7 0.809687961 0.144658019 -
8 0.323981782 0.537344377 -
9 0.687990474 0.088492994 -
10 0.398289747 0.835422201 -
11 0.884358625 0.033671928 -
12 0.868781856 0.045350836 -
13 0.733321253 0.187956452 -
14 0.681688973 0.135083607 -
15 0.727127449 0.156764078 -
16 0.60195887 0.229452519 -
17 0.918651934 0.003344273 -
18 0 1 -
19 0.719562787 0.238193468 -
20 1 0.140157316 -
21 0.584508308 0.161619003 -
22 0.0382162 0.727238631 -
23 0.757624177 0 -
24 0.550322191 0.127988748 -
25 0.740255363 0.197343335 -
26 0.465122996 0.036432776 -

Min 0 0 -

Max 1 1 -
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Table 8

Deviation Sequences (d) for 36 Units

Runs Cost Reliability Violation
1 0.193340533 0.044377323 -
2 0.876492285 0.607167751 -
3 0.410849589 0.265450743 -
4 0.281343601 0.522624303 -
5 0.455453563 0.030494888 -
6 0.796445744 1 -
7 0.164453821 0.345841078 -
8 0.245967414 0 -
9 0.299487038 0.363644284 -
10 0.729961595 0.520765567 -
11 0.456429593 0.25981645 -
12 0.879347979 0.234258829 -
13 0.78925286 0.674372677 -
14 0.114319157 0.158950976 -
15 0.015966809 0.323420074 -
16 0.255986999 0.507231645 -
17 0.222987165 0.793854554 -
18 0.162046479 0.205942147 -
19 0.101785341 0.257347816 -
20 1 0.473600139 -
21 0.44033436 0.300621515 -
22 0.357966003 0.312267658 -
23 0.715592825 0.792111989 -
24 0 0.555268355 -
25 0.48142291 0.703938197 -
26 0.138363361 0.515857342 -

Min 0 0 -

Max 1 1 -

Gray Relational Coefficients and Gray Relational Grade

The gray relational coefficient (GRC) can be expressed as in Equation

4 (Jozi¢ et al., 2015):
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coefficient. In this research, the value of § was assumed to be 0.5 as
in Jozi¢ et al. (2015). The GRG values were calculated after obtaining
the GRC values, which can be expressed as in Equation 5 (Jozi¢ et
al., 2015):

1

GRG = — GRC 5

" 2 (5)
In this research, the number of objectives was three. Tables 9 and 10
show the GRC and GRG values for the three systems. In particular,
the GRG values in Tables 9 and 10 were obtained by dividing the
sum of GRC by 2 because there was no GRC value for violation. The
higher values of GRG were preferred (Kolahan & Azadi Moghaddam,
2015).

Table 9

Gray Relational Coefficients and Gray Relational Grade for 26 Units

Runs GRC (Cost) GRC (Reliability) GRC (Violation) GRG
1 0.350313356  0.790123558 0.570218457
2 0.475623666 0.649490814 0.56255724
3 0.455496756  0.806481427 0.630989092
4 0.532603263 0.447051098 0.48982718
5 0.530956492  0.387193978 0.459075235
6  0.386888652 0.832978973 0.609933812
7 0.381770326  0.775605026 0.578687676
8  0.606809532 0.48200001 0.544404771
9 0.420878796  0.849627787 0.635253291
10  0.556613277 0.374413425 0.465513351
11 0.361178087  0.936905192 0.649041639
12 0.365288302  0.916840989 0.641064646
13 0.405409376 0.72679019 0.566099783
14 0.423123183  0.787297916 0.60521055
15 0.40745564 0.761308386 0.584382013
16 0.453737443  0.685445574 0.569591508
17 0.352447269  0.993355894 0.672901582
18 1 0.333333333 0.666666667
19 0.409982992  0.677329212 0.543656102
20 0.333333333  (.781058011 0.557195672
21 0.461038423  0.755721945 0.608380184
22 0.928994706  0.407418726 0.668206716
(continued)
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Runs GRC (Cost) GRC (Reliability) GRC (Violation) GRG
23 0.397575054 1 - 0.698787527
24 0.476044402  0.796192609 - 0.636118506
25 0.403142784  0.717006925 - 0.560074854
26  0.518068684 0.93208324 - 0.725075962
Table 10

Gray Relational Coefficients and Gray Relational Grade for 36 Units

Runs GRC (Cost)  GRC (Reliability) GRC GRG
(Violation)
1 0.721146358 0.91848058 - 0.819813469
2 0.363242138 0.451602749 - 0.407422443
3 0.548938053 0.653209895 - 0.601073974
4 0.639923331 0.488938116 - 0.564430724
5 0.523311671 0.94251615 - 0.73291391
6 0.385669822 0.333333333 - 0.359501578
7 0.752497742 0.591127592 - 0.671812667
8 0.670270565 1 - 0.835135283
9 0.625401009 0.578942059 - 0.602171534
10 0.406516758 0.489828435 - 0.448172596
11 0.522777634 0.658053666 - 0.59041565
12 0.362490109 0.680958785 - 0.521724447
13 0.387821517 0.425759224 - 0.406790371
14 0.813909178 0.758781789 - 0.786345483
15 0.969054581 0.607223476 - 0.788139028
16 0.661387035 0.496410138 - 0.578898587
17 0.691575209 0.3864422 - 0.539008705
18  0.755233985 0.708273337 - 0.731753661
19 0.83086105 0.660198642 - 0.745529846
20 0.333333333 0.513557856 - 0.423445595
21 0.531725758 0.624514818 - 0.578120288
22 0.582773675 0.615560641 - 0.599167158
23 0.411321941 0.386963363 - 0.399142652
24 1 0.473813128 - 0.736906564
25 0.509464365 0.41530371 - 0.462384038
26  0.783252972 0.492195094 - 0.637724033

Signal-to-Noise Ratio Analysis

The GRA method was employed to transform all three objectives into
a single criterion called GRG. The S/N analysis was then applied to
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the GRG results to determine the new values for the parameters of
the PACS algorithm. The S/N ratio was calculated using Equation 6
(Kolahan & Azadi Moghaddam, 2015):

s 1 1

~=—10log (E;—GRGZ) (6)
where m is the number of runs in a trial and GRG is the value obtained
as the result of the GRA process. In this research, m is equal to 1 as

considered by Kolahan and Azadi Moghaddam (2015). Tables 11 and
12 display the results of S/N for the three systems.

Table 11

Response of S/N for 26 Units

Runs Alpha Beta Initial Global Local Exploration S/N
Pheromone Rate  Rate Probability

1 0.005 0.005 0.01 0.005 0.005 0.1 -4.87917
2 0.005 0.500 0.10 0.050 0.050 0.6 -4.99667
3 0.005 1.000 0.20 0.100  0.100 0.7 -3.99956
4 0.005 1.500 0.50 0.200 0.200 0.8 -6.19914
5 0.005 2.000 1.50 0.250 0.250 0.9 -6.76232
6 0.500 0.005 0.10 0.100  0.200 0.9 -4.29435
7 0.500 0.500 0.20 0.200 0.250 0.1 -4.75112
8 0.500 1.000 0.50 0.250  0.005 0.6 -5.28156
9 0.500 1.500 1.50 0.005 0.050 0.7 -3.94106
10 0.500 2.000 0.01 0.050 0.100 0.8 -6.64136
11 1.000 0.005 0.20 0.250 0.050 0.8 -3.75455
12 1.000 0.500 0.50 0.005 0.100 0.9 -3.86196
13 1.000 1.000 1.50 0.050  0.200 0.1 -4.94214
14 1.000 1.500 0.01 0.100 0.250 0.6 -4.36187
15 1.000 2.000 0.10 0.200 0.005 0.7 -4.66606
16 1.500 0.005 0.50 0.050 0.250 0.7 -4.88873
17 1.500 0.500 1.50 0.100  0.005 0.8 -3.44097
18 1.500 1.000 0.01 0.200 0.050 0.9 -3.52183
19 1.500 1.500 0.10 0.250 0.100 0.1 -5.29351
20 1.500 2.000 0.20 0.005 0.200 0.6 -5.07985
21 2.000 0.005 1.50 0.200 0.100 0.6 -4.31650
22 2.000 0.500 0.01 0.250 0.200 0.7 -3.50178
23 2.000 1.000 0.10 0.005 0.250 0.8 -3.11310
24 2.000 1.500 0.20 0.050 0.005 0.9 -3.92924
25 2.000 2.000 0.50 0.100  0.050 0.1 -5.03508
26 1.000 0.005 0.01 0.100  0.005 0.1 -2.79233
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Table 12

Response of S/N for 36 Units

Runs Alpha Beta Initial Global Local Exploration S/N
pheromone rate  rate  probability
1 0.005 0.005 0.01 0.005 0.005 0.1 -1.72570
2 0.005 0.500 0.10 0.050 0.050 0.6 -7.79910
3 0.005 1.000 0.20 0.100 0.100 0.7 -4.42144
4 0.005 1.500 0.50 0.200 0.200 0.8 -4.96779
5 0.005 2.000 1.50 0.250 0.250 0.9 -2.69894
6  0.500 0.005 0.10 0.100 0.200 0.9 -8.88598
7 0.500 0.500 0.20 0.200 0.250 0.1 -3.45504
8 0.500 1.000 0.50 0.250 0.005 0.6 -1.56486
9 0.500 1.500 1.50 0.005 0.050 0.7 -4.40560
10 0.500 2.000 0.01 0.050 0.100 0.8 -6.97109
11 1.000 0.005 0.20 0.250 0.050 0.8 -4.57684
12 1.000 0.500 0.50 0.005 0.100 0.9 -5.65118
13 1.000 1.000 1.50 0.050 0.200 0.1 -7.81259
14 1.000 1.500 0.01 0.100 0.250 0.6 -2.08773
15 1.000 2.000 0.10 0.200 0.005 0.7 -2.06794
16  1.500 0.005 0.50 0.050 0.250 0.7 -4.74795
17 1.500 0.500 1.50 0.100 0.005 0.8 -5.36808
18  1.500 1.000 0.01 0.200 0.050 0.9 -2.71270
19  1.500 1.500 0.10 0.250 0.100 0.1 -2.55070
20 1.500 2.000 0.20 0.005 0.200 0.6 -7.46405
21 2.000 0.005 1.50 0.200 0.100 0.6 -4.75964
22 2.000 0.500 0.01 0.250 0.200 0.7 -4.44904
23 2.000 1.000 0.10 0.005 0.250 0.8 -7.97744
24 2.000 1.500 0.20 0.050 0.005 0.9 -2.65175
25 2.000 2.000 0.50 0.100 0.050 0.1 -6.69994
26 1.000 0.005 0.01 0.100 0.005 0.1 -3.90734

Based on the S/N values, the analysis
determine a new combination of parameter values produced from the
two systems (i.e., 26- and 36-unit systems). The means of the S/N
values at different levels are calculated for each design parameter.
A greater S/N corresponds to a better performance (Kolahan &
Azadi Moghaddam, 2015). The mean S/N values for the parameters
at each level are presented in Tables 13 and 14 for the 26- and 36-
unit systems, respectively. The optimal mean S/N values for each
parameter were highlighted. The optimal S/N values were used to
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determine the new parameter values. This can be done by plotting a
graph of candidate values against mean S/N values for each parameter
as shown in Figures 2 and 3. The new candidate values were those that
corresponded to the highest mean of S/N values.

Table 13

Mean of S/N for 26-Unit System

Parameters Level 1 Level2 Level3 Level4 Level5
Alpha -5.367 -4.982 -4.063 -4.445 -3.979
Beta -4.154 -4110 -4.172 -4.745 -5.637
Initial Pheromone -4.283 -4473 -4303 -5.053 -4.681
Global Rate -4.175 -5.080 -3.987 -4.691 -4919
Local Rate -4.165 -4250 -4.823 -4.803 -4.775
Exploration Probability -4.616 -4.807 -4.199 -4.630 -4.474

Figure 2

Mean of S/N and Candidate Values for 26-Unit System
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Table 14

Mean of S/N for 36-Unit System

Parameters Level 1 Level2 Level 3 Level4 Level 5
Alpha -4.323  -5.057 -4.351 -4.569 -5.308
Beta -4.767 -5344 -4.898 -3.333 -5.180
Initial Pheromone -3.642 -5.856 -4.514 -4.726 -5.009
Global Rate -5.445 -5996 -5.228 -3.593 -3.168
Local Rate -2.881 -5239 -4871 -6.716 -4.193

Exploration Probability -4359 -4.735 -4.018 -5972 -4.520

Figure 3

Mean of S/N and Candidate Values for 36-Unit System
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Table 15 presents the summary of the new values of the parameters
for the two unit systems. For each parameter, only one new value
was used for all three systems in the experiment to test the PACS
algorithm. For the Alpha parameter, if Alpha>Beta, the pheromone
would guide the algorithm toward solutions with priority given to the
objective functions. This also takes into consideration the operation
hours of units in deciding their maintenance outage. However,
if Beta>Alpha, the heuristic would guide the algorithm toward a
solution with priority to the operating hours. This also takes into
account the objective functions in deciding the maintenance outage
of units. Therefore, for maintenance scheduling of units based on a
sequential approach (i.e., operational hours) with priority given to the
objective functions, i.e., low cost, high reliability, and low violation,
such as in Muthana and Ku-Mahamud (2021; 2022), Alpha>Beta
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should be chosen. This is supported by the findings in a research by
Moncayo-Martinez and Zhang (2011), which obtained better multi-
objective optimization results when Alpha>Beta. The finding is also
similar to Fattahi et al. (2014), which obtained better single objective
optimization results based on operational hours when Alpha>Beta.
For this reason, the value of Alpha was set to 2, and the value of Beta
was 0.5. Furthermore, the value of Beta was the same as suggested
by Berrichi et al. (2010). Fattahi et al. (2014) also chose a small
value for Beta. The values for the initial pheromone and the local rate
were set to 0.01 and 0.005, respectively since these values were the
same for all unit systems. Additionally, Fattahi et al. (2014) selected
a smaller value for the global rate, whereas in the current research,
the global rate was set to 0.1. A small value for the global rate would
always lead to the accumulation of pheromones on the best solution
(Fattahi et al., 2014). According to Wang et al. (2015), if Exp<0.5,
the algorithm was fond of exploitation. For Exp=0.5, the algorithm
had the same probability to perform exploration and exploitation.
Nevertheless, if Exp>0.5, the algorithm preferred exploration. Higher
exploration might also lead to improved solution quality (Malisia,
2008). Therefore, in this research, the value 0.7 was chosen for the
probability of the exploration. The chosen values for the parameters
were highlighted.

Table 15

New Parameter Values

Test  Alpha Beta  Initial  Global Local Rate  Exploration

Systems Pheromone Rate Probability (Exp)
26-unit 2 0.5 0.01 0.1 0.005 0.7
system
36-unit 0.005 1.5 0.01 0.25 0.005 0.7
system

RESULTS AND DISCUSSIONS

Experiments were performed to evaluate the proposed Pareto Ant
Colony System I (PACSI) algorithm, which used new values for the
parameters. In evaluating the proposed new parameter values, the
GRG metric was used. This metric was also applied in Jozi¢ et al.
(2015) and Kolahan and Azadi Moghaddam (2015) for evaluating
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the new parameter values in their multi-objective studies. The PACS
benchmark algorithm described in Muthana and Ku-Mahamud
(2021; 2022) was used for the comparison. A Friedman test was
utilized to show the significant performance of the new parameter
values. The experimental results are presented in Table 16 for the
objective functions cost, reliability, and violation. In Table 16, PACSI1
represented the results of PACS using the new values. In general, it
can be seen that the results for all the cost and reliability objective
functions were better with the new parameter values for the 26- and
36-unit systems. The results for the violation objective function
showed that in all two unit systems, there was no violation in most of
the maintenance windows.

Table 16

Results by PACS I and PACS

Test Algorithms Maintenance Cost Reliability ~ Violation
Systems Window

PACS I [1000-2000] 201,316,761.00 1,972,341.00

[1000-2500] 186,285,879.19 1,967,579.00

[1500-2500] 186,977,072.81 1,985,763.00

[2000-3000] 182,373,580.90 1,972,386.00

[2000-4000] 175,518,540.65 2,007,475.00

26-unit [3000-5000] 176,293,493.30 2,014,789.00

system PACS 1000-2000]  204,759,986.79 1,970,092.00

1000-2500] 186,411,157.10 1,957,553.00

1500-2500]  187,008,609.60 1,970,743.00

2000-3000]  182,654,383.30 1,966,301.00

2000-4000] 176,354,393.80 1,987,411.00

3000-5000] 175,125,928.50 2,013,313.00 0

O O DO N OO = O X

PACS 1 1500-2500] Infeasible Infeasible Infeasible
1500-3000]  361,292,184.40 2,400,355.00 0
2000-3000]  362,144,810.77 2,400,700.00 0
2000-4000] 343,716,769.27 2,411,797.00 0
3000-4000] 344,764,139.14 2,415,513.00 0
, 3000-5000] 335,912,070.79 2,423,701.00 0
36-unit b\ g 1500-2500]  Infeasible Infeasible  Infeasible
system

1500-3000]  363,550,376.90 2,397,544.00 0
2000-3000] 362,531,811.91 2,404,129.00
2000-4000] 345,982,572.00 2,409,526.00
3000-4000] 349,295,226.55 2,399,891.00
3000-5000] 336,980,517.06 2,414,183.00

L

oS O O O
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Table 17 shows the GRG improvement results for the PACS algorithm,
where the parameters take the benchmark values and the new values.
Better PACS performances were obtained with the new values for the
26- and 36-unit systems. In Muthana and Ku-Mahamud (2022), the
p values of 0.001 and 0.017 were recorded for the 26- and 36-unit
systems, respectively, which showed that the performance of these
systems can be improved.

Table 17

Gray Relational Grade of PACS I and PACS

Test Systems ~ Maintenance PACS 1 PACS (GRG) GRG Improvement

Window (GRG) (PACS 1, PACS)
26-unit system [1000-2000]  1.000 0.333 0.667
[1000-2500] 1.000 0.333 0.667
[1500-2500] 1.000 0.333 0.667
[2000-3000]  1.000 0.333 0.667
[2000-4000] 1.000 0.333 0.667
[3000-5000] 0.667 0.667 0.000
36-unit system [1500-2500] Infeasible Infeasible Infeasible
[1500-3000] 1.000 0.333 0.667
[2000-3000]  0.667 0.667 0.000
[2000-4000] 1.000 0.333 0.667
[3000-4000] 1.000 0.333 0.667
[3000-5000]  1.000 0.333 0.667

To show the comparison statically, Table 18 summarizes the results
obtained by the Friedman test in which the p value was used to show
if there was a significant difference in performance. The GRG results
were also used to calculate the p values for the two unit systems. It can
be seen that the PACSI algorithm outperformed the PACS algorithm
in the 26- and 36-unit systems. The computed p values for the 26-
and 36-unit systems were less than 0.05, indicated that there was a
significant difference in terms of the GRG values between PACSI and
PACS. This implied that the PAC algorithm was significantly better
when the new parameter values were used compared to the benchmark
values. The 36-unit system had a bigger p value than the 26-unit
system because of bigger demand and system size, which increased
the problem’s complexity. Therefore, it was difficult for the algorithm
to obtain better solutions.
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Table 18

Results of Friedman Test

Test Systems Algorithms Mean Rank Ranking

PACS 1 1.92 1
26-unit system PACS 1.08 2

P value 0.025

PACS I 1.90 1
36-unit system PACS 1.10 2

P value 0.046

CONCLUSION

This research proposed the optimal parameter values for the multi-
objective PACS algorithm. The Taguchi-GRA method was used to
obtain optimal values for the algorithm’s parameters. Performance
evaluation of the proposed new parameter values for the tested
systems showed that the multi-objective PACSI algorithm was able
to obtain better GRG solutions. Therefore, the algorithm was able to
achieve better maintenance scheduling with low cost, high reliability,
and low violation. The obtained new values for the parameters can be
used as benchmark values in solving multi-objective GMS problems
using the multi-objective PACS algorithm and its variants.

Future research could focus on the weights of the three parameters
that represent the cost, reliability, and violation. These weights can be
tested with fixed values to make a comparison between the random and
fixed values in providing a better maintenance schedule. In addition,
the proposed research has only used a single value for all the constants
attached to the three objective functions, i.e., the constant with value
one was used. The constants were used in deciding the best amount of
pheromone in the reward to the best solution (solution with low cost,
high reliability, and low violation) for the global update process in the
end of every iteration. Other values can be tested to find the best value
for the constant, which will determine the amount of pheromone to be
used for the global update.
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