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ABSTRACT

The JPEG2000 is the more efficient next generation coding 
standard than the current JPEG standard. It can code files with 
less visual loss, and the file format is less likely to be affected 
by system file or bit errors. On the encryption side, the current 
128-bit image encryption schemes are reported to be vulnerable 
to brute force. So there is a need for stronger schemes that not 
only utilize the efficient coding structure of the JPEG2000, but 
also apply stronger encryption with better key management. This 
research investigated a two-layer 256-bit encryption technique 
proposed for the JPEG2000 compatible images. In the first step, 
the technique used a multilayer neural network with a 128-bit 
key to generate single layer encrypted sequences. The second 
step used a cellular neural network with a different 128-bit key 
to finally generate a two-layer encrypted image. The projected 
advantages were compatible with the JPEG2000, 256-bit long 
key, managing each 128-bit key at separate physical locations, 
and flexible to opt for a single or a two-layer encryption. In 
order to test the proposed encryption technique for robustness, 
randomness tests on random sequences, correlation and 
histogram tests on encrypted images were conducted. The results 
show that random sequences pass the NIST statistical tests and 
the 0/1 balancedness test; the bit sequences are decorrelated, and 
the histogram of the resulting encrypted images is fairly uniform 
with the statistical properties of those of the white noise.
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INTRODUCTION

In the current multimedia environment, security and protection of data is 
essential to fulfil vendor rights and client requirements. As Internet is evolving 
so are the tools, applications and threats. People are fascinated by recent 
applications to simplify their professional work (Memon & Khoja, 2009), 
and secure their data access (Memon, Akhtar, & Aly, 2007). With respect 
to the storage or transfer of images and videos, organizations prefer to use 
the encryption of image/video data as an alternative to other approaches. 
Nowadays, a great deal of money is being invested to increase the security 
level of the image data transmitted or stored over public channels, and a lot of 
research is are being reported in this field. 

Since the encryption process is a one way function, the artificial neural 
networks are claimed to be best suited for this purpose as they possess features 
like high security, no distortion and their ability to perform nonlinear input-
output characteristics. Thus, the need for key exchange can be eliminated, 
which otherwise is a perquisite for most of the algorithms used today. As an 
example, Lian (2007) investigated the neural network properties to propose 
a low-cost authentication for images or videos. The author claimed that the 
approach has the embedded ability to detect whether the data is modified 
maliciously. The author finally highlighted several open issues in this field 
like: which property of neural networks has to be exploited for data protection; 
which neural network models are suitable for data protection; and the learning 
ability of neural networks. In another work Munukur and Gnanam, (2009), 
used neural network in the receiver for the purpose of decryption by exploiting 
back propagation algorithm in the receiver to train it with a 12-bit cipher text 
as an input, and a 8-bit plain text being the target output. The plain text at 
the input also included some impurity based on some pre-determined key to 
mislead any possible eavesdropper. 

Chaos has also been investigated in combination with neural networks. As an 
example, a neural network was proposed by Lian (2009), which was composed 
of a chaotic neuron layer and a linear neuron layer. The network was then used 
to construct a block cipher that encrypted the plaintext into a cipher text using 
a key in order to construct a chaotic neural network-based block cipher with 
good computing security. In that, the block cipher involved two processes: 
a diffusion process implemented by a chaotic neuron layer and a confusion 
process implemented by a linear neuron layer. These processes were iterated 
a number of times to improve encryption complexity. In another work that 
used chaos and neural network together, Lian (2011) exploited the neural 
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network structure to process much media contents in a parallel manner. The 
scheme combined encryption and watermarking together. The encryption part 
used random sequences generated from the chaos system with the help of an 
encryption key. This key was then used to encrypt the media contents with a 
neural network structure. However, the apparent disadvantage in this scheme 
was that more sub-keys needed to be transmitted to the receiver. Similarly, the 
work of Joshi, Udupi, and Joshi (2012) targeted the securing of image data 
transmission using a randomness algorithm by introducing confusion in the 
data, and the addition of impurities to misguide the cryptanalyst. In another 
research Bigdeli, Farid, & Afshar (2012a), proposed an image encryption/
decryption algorithm based on chaotic neural network. The employed 
network comprised two layers: chaotic neuron layer (CNL) and permutation 
neuron layer (PNL), each with three layers. The approach used a 160-bit-long 
authentication code to generate initial conditions and the parameters of both 
layers. The overall process was repeated several times to make it robust and 
increase complexity. The proposed method used two more keys where a slight 
mismatch in one of them will fail in successfully decrypting an image. In 
another work, the same authors (Bigdeli et al., 2012b) proposed an encryption 
method based on a hybrid chaos-based encryption algorithm. The algorithm 
employed permutation–diffusion architecture that used chaotic control 
parameters for permutation. These control parameters for the permutation 
stage were generated by a logistic map. In the diffusion stage, another chaotic 
logistic map with different initial conditions and parameters was used to 
generate initial conditions for a hyper-chaotic Hopfield neural network to 
generate a key stream for the image homogenization of the shuffled image. 
Zirra (2011) tried techniques different from the chaotic neural networks, 
where scrambling was used to transform the information into a set of linear 
equations and deciphering was achieved by solving the systems of the linear 
equations together with principles of the delta encoding scheme, a formula 
and a lookup table. For further reading on this subject, readers are encouraged 
to refer to Memon (2014 and 2006). 

Cellular neural networks (CNNs) provide both continuous time and local 
interconnection features. The basic circuit is called a cell, which contains 
linear and non-linear elements and sources. Cells can be characterized as 
multiple input-single output nonlinear processors all described by one, or 
one among several different, parametric functionals (Chua & Yang, 1988). 
A state variable characterizes a cell itself, and the notion of distance implies 
that the network is intrinsically defined in space; and typically a 1-, 2- or 
3- dimensional space is considered. The neighborhood adjacent cells only 
connect directly to each other, but are indirectly affected by other cells due 



Journal of ICT, 16, No. 1 (June) 2017, pp: 137-155

140

to propagation effects caused by the continuous time dynamics of the system. 
The cell topology can be considered as rectangular, triangular, hexagonal or a 
3-dimensional array realized as a stack of 2-dimensional layers. Cells may be 
identical or different, otherwise with typically a small neighborhood. Though 
cells are characterized by adjacent neighbors due to local nature, they are 
assigned some global properties due to continuous time features.

Because of afore-mentioned properties, cellular neural networks have received 
greater attention by researchers. For example, Xu et al. (2005) explored 
the criteria for the existence of a unique equilibrium point and its global 
asymptotic stability of continuous delayed CNNs to offset oscillations caused 
by the existence of time delays in CNNs. Likewise, Yi et al. (2015) proposed 
two kinds of cellular neural networks based on mem-elements -- MC-CNN 
lets a mem-capacitor replace the conventional linear capacitor of a cellular 
neural network cell, while EM-CNN is economical in fabricating cost for 
better implementation of CNN. In another work, a new model of CNNs with 
transient chaos was proposed by Wang et al. (2007), who proposed adding 
negative self-feedback once dynamic equations have been transformed into 
discrete time, resulting in transient chaos. Peng, Zhang, Liao, (2009) showed 
that as the number of cells increases beyond four, a hyper chaotic behavior 
is observed in the cellular neural network, and thus requires more keys to 
describe the state of the system.

Due to the dynamics in CNNs, cellular neural networks have found applications 
in image processing, pattern recognition, classification, and combinatorial 
optimization amongst others. CNN has typically one type of unit processor 
in one layer, however, some applications require the collaboration of distinct 
dynamics. Ayhan and Yalcin (2011) proposed the randomly reconfigurable 
cellular neural network to mimic the joint effort of distinct types of neurons. 
In the biomedicine area, recently a new algorithm using fuzzy cellular neural 
network has been proposed Shitong and Min, (2006) to automatically detect 
white blood cells by developing a complete contour around cell. 

To summarize, much research has appeared in literature to address the 
encryption of data either before transmission or for storage. The issues that 
are still being investigated are complexity, the robustness in the presence 
of malicious attack, as well as compatibility with current standards. In this 
research, neural network structures are examined in combination with wavelet 
transform for image encryption and decryption. The motivation behind the 
use of wavelets is that current image transmission and storage was mostly 
preferred using the JPEG2000, which is a new evolving standard for image 
transmission and coding. This is motivated by the fact that the JPEG2000 is 
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better at compressing images (up to 20 per cent plus), and that it can allow an 
image to be retained without any distortion or loss (Nguyen & Marpe, 2014). 
The paper is structured as follows. In the next section, background information 
about some of the steps in the proposed approach is briefly discussed. 
Following that, the proposed approach is presented that describes the key 
parts of the solution. The following section analyzes the performance of the 
approach with regard to key space, NIST statistical test, histogram, correlation 
coefficient and the 0/1 balancedness test. In the end, conclusions are presented 
followed by references.

BACKGROUND 

This section presents background information about some needed steps, which 
are required to be executed in the proposed approach. Each of these is briefly 
discussed below.

Bit Plane Decomposition: By bit plane decomposition, it is meant that an 
image p(x, y) of size NxN with 256 gray levels is decomposed into eight (~ 
log 2 (number of gray levels)) binary images. Similarly, a 16-bit data will have 
sixteen binary images. Each of these binary images is called a bit plane with 
sets of bits corresponding to a given bit position in each of the binary numbers 
representing the gray level. The first bit plane will contain the set of most 
significant bit of each gray level value; likewise the last bit plane will contain 
the set of least significant bits. Thus, the first bit plane gives the roughest but 
most critical approximation of the pixel, whereas each later bit plane improves 
this approximation as we continue to add on successive bit planes.

XOR operation: This is one of the Boolean operations that can be done on 
binary images. Typically, these operations are known as masking functions, 
where p(x, y) is a binary image and a masking binary pattern is chosen to mask 
its bits. In the case of the XOR operator, it inverts bits. It produces output 
value of logical one, whenever p(x, y) and the masking bit are different. In 
other words, it is used to highlight differences in a binary image. Likewise, 
XNOR is used to highlight similarities in a binary image. The XOR operation 
is commutative, associative and self-inverse. For example, we want to XOR 
8-bit gray level values of 166 and 210 together. 166 is 10100110 in binary 
and 210 is 11010010 in binary. The result of XOR in bitwise operation is 
01110100 in binary or 116 in decimal. Interestingly, if this result is XORed 
with 210 again, we get back the original value of 166. This reversible property 
of XOR is used in encryption, where masking is used in the transmitter and 
unmasking is done on the receiver side.
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PROPOSED APPROACH

In this section, we present the proposed approach. Consider plain image p(x, y) 
of size NxN. The first step in JPEG2000 is to apply n-level wavelet transform 
to the image. For the purpose of simplicity, we assume n=2. In wavelet 
transform decomposition, each level produces four frequency subbands of the 
input image, where each one is the quarter-size of the original. In the proposed 
approach, we do not apply encryption on these subbands directly; rather these 
subbands undergo bit plane decomposition to generate eight binary images for 
each subband. Depending upon complexity need, a set of these binary images 
is transformed into encrypted bit plane images. If desired, these encrypted 
subbands can then undergo the next step of the JPEG2000 encoder, or otherwise 
inverse wavelet transform is applied to generate the encrypted image. There 
are three variables that add complexity to the encryption process executed 
through random chaotic sequences: one is the number of levels the image 
undergoes wavelet decomposition; another is the number of subbands that are 
bit plane decomposed; and the third is the set of bit planes for encryption. The 
proposed approach is shown in Figure 1, where we have the XOR operation 
between the pseudo-random sequence generated by 8-4-2-1 chaotic neural 
network and the binary bits from the subband image pixels. We call this first 
step single encryption. 

Figure 1. Proposed approach.
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In order to generate the pseudo-random sequence, an 8-4-2-1 neural network, 
as shown in Figure 2, is employed to introduce non-linearity in generating a 
sequence. A 64-bit input key i.e. A= [A1, A2, A3, ……, A64] is applied at the 
input layer such that 8-bits enter at each node of the layer. The output of this 
layer can be written as:

								             (1)

where w0 is the matrix of size 8x8 i.e., w0=[w0,0, w0,1 w0,2 w0,3 w0,4 w0,5 w0,6 w0,7; 
w1,0,………; w7,7], A is the input vector, the bias is A0 = [a0, a1, a2, a3, a4, a5, a6, 
a7], K0 is the control parameter [k0, k1, k2, ……, k7] and n0 is the random number 
generated by the key generator in the range 1≤ n0 ≤10. The function f is the 
transfer function based on the piecewise linear chaotic map (PWLCM) (El 
Assad, et al., 2008) and is given by:

				  

where  k ε [0, 0.5[ and x(n) ε [0, 1]. x(0) and k are used as secret keys. For a 
dynamical system to generate the highest Lyapunov exponent, k is typically 
chosen to be 0.5.

Figure 2. Generation of N-bit pseudorandom sequence for chaos.
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The output of each layer becomes input to the next layer, apart from becoming 
input to that neuron itself. Continuing in the same fashion, the output of the 
remaining layers is calculated as follows:

								             (2)

								             (3)

								             (4)

where the matrices w1, w2, w3 have sizes equivalent to 4x8, 2x4 and 1x2; B0, 
C0, D0 with sizes 4x1, 2x1, and 1x1; K1, K2, K3 with sizes 4x1, 2x1, and 1x1, 
respectively. During iterations at each layer, the control parameters are also 
adjusted using the respective layer outputs in such a way that the respective 
range lies in [0.4, 0.6]; for example K0=0.2xB+0.4 to get chaotic behavior.  
Like n0, the values of n1, n2, and n3 are obtained through key generation. Once 
the value of the output is obtained between 0 and 1, this value is normalized in 
the range 0-255. In order to enforce randomness, this normalized value is then 
compared with a threshold of 127 to obtain 0 or 1 in the sequence.

Key Generator: Many chaotic key generators exist but the one used 
in this research involves the 1-D cubic map (Djellit Ilhem and  
Kara Amel, 2006). It takes a 64-bit random key Key = [Key1, Key2, Key3, 
Key4] to calculate the initial conditions based on its 16-bit component (Keyi) 

such that                                             of the 1-D cubic map and returns values 
of the map using iterations. The states of the cubic map are written as (Gao 
and Chen, 2008):

								             (5)

where λ is typically set at 2.59 as a control parameter, and the state of 
equation is satisfied by 0 ≤ y(n) ≤1. In order to generate initial conditions for 
the neural network, Equation (5) is first iterated 50 times and the values are 
discarded, and then iterated again to initialize w0, w1, w2, w3, A0, B0, C0, D0, 
K0, K1, K2, K3, n0, n1, n2, n3. In order for Equation (5) to provide randomness 
and reproducibility of the same initial conditions each time it is run even 
on different computing machines, it should be ensured that values like Key, 
λ set at 2.59, and initial iteration of 50 to discard values are used with the 
same precision arithmetic. Further test analysis for robustness of sequences is 
discussed in the performance analysis section.

𝐵𝐵 = 𝑓𝑓𝑛𝑛0(𝐴𝐴𝑤𝑤𝑜𝑜 + 𝐴𝐴𝑜𝑜,𝐾𝐾0)                                                                                                                                      (1) 

𝑥𝑥(𝑛𝑛) = 𝑓𝑓(𝑥𝑥(𝑛𝑛 − 1)) =

{
 
 
 
 𝑥𝑥(𝑛𝑛 − 1)

𝑘𝑘              𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0,𝑘𝑘[
𝑥𝑥(𝑛𝑛 − 1)− 𝑘𝑘

0.5− 𝑘𝑘       𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈ [𝑘𝑘, 0.5[
𝑓𝑓(1− 𝑥𝑥(𝑛𝑛 − 1))   𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0.5, 1]

 

 

𝐶𝐶 = 𝑓𝑓𝑛𝑛1(𝐵𝐵𝑤𝑤1 + 𝐵𝐵𝑜𝑜,𝐾𝐾1)                                                                                                                                      (2) 

𝐷𝐷 = 𝑓𝑓𝑛𝑛2(𝐶𝐶𝑤𝑤2 + 𝐶𝐶𝑜𝑜,𝐾𝐾2)                                                                                                                                      (3) 

𝑂𝑂 = 𝑓𝑓𝑛𝑛3(𝐷𝐷𝑤𝑤3 + 𝐷𝐷𝑜𝑜,𝐾𝐾3)                                                                                                                                     (4) 

𝑦𝑦(𝑛𝑛 + 1) = 𝜆𝜆𝜆𝜆(𝑛𝑛)(1− 𝑦𝑦(𝑛𝑛).𝑦𝑦(𝑛𝑛))                                                                                                                 (5) 
𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑 = −𝑥𝑥𝑗𝑗 + 𝑎𝑎𝑗𝑗𝑓𝑓(𝑥𝑥𝑗𝑗) + ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑓𝑓(𝑥𝑥𝑘𝑘) + ∑ 𝑆𝑆𝑗𝑗𝑗𝑗𝑥𝑥𝑘𝑘 + 𝐼𝐼𝑗𝑗  ̌5

𝑘𝑘=1                  𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,2, … ,5 5
𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

               (6) 

Based on these parameters, the state equations can be generated as follows: 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑 = −𝑥𝑥3 − 𝑥𝑥4          (7) 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑 = 2𝑥𝑥2 + 𝑥𝑥3 

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑 = 11𝑥𝑥1 − 12𝑥𝑥2 

𝑑𝑑𝑥𝑥4
𝑑𝑑𝑑𝑑 = 92𝑥𝑥1 − 95𝑥𝑥4 − 𝑥𝑥5 + 202𝑓𝑓(𝑥𝑥4) 

𝑑𝑑𝑥𝑥5
𝑑𝑑𝑑𝑑 = 15𝑥𝑥3 − 2𝑥𝑥5 

𝑦𝑦𝑛𝑛+1=𝑦𝑦𝑛𝑛 + ℎ
6 (𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)                          (8) 

where 

𝑘𝑘1 = 𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛); 𝑘𝑘2 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘1) ,𝑘𝑘3 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘2) ,𝑘𝑘4

= 𝑓𝑓(𝑡𝑡𝑛𝑛 + ℎ,𝑦𝑦𝑛𝑛 + ℎ𝑘𝑘3) 

𝑥𝑥𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚 

𝑥𝑥𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚 

 

𝑦𝑦(0) = (∑𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖
216 )𝑚𝑚𝑚𝑚𝑚𝑚(1) 

𝐵𝐵 = 𝑓𝑓𝑛𝑛0(𝐴𝐴𝑤𝑤𝑜𝑜 + 𝐴𝐴𝑜𝑜,𝐾𝐾0)                                                                                                                                      (1) 

𝑥𝑥(𝑛𝑛) = 𝑓𝑓(𝑥𝑥(𝑛𝑛 − 1)) =

{
 
 
 
 𝑥𝑥(𝑛𝑛 − 1)

𝑘𝑘              𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0,𝑘𝑘[
𝑥𝑥(𝑛𝑛 − 1)− 𝑘𝑘

0.5− 𝑘𝑘       𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈ [𝑘𝑘, 0.5[
𝑓𝑓(1− 𝑥𝑥(𝑛𝑛 − 1))   𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0.5, 1]

 

 

𝐶𝐶 = 𝑓𝑓𝑛𝑛1(𝐵𝐵𝑤𝑤1 + 𝐵𝐵𝑜𝑜,𝐾𝐾1)                                                                                                                                      (2) 

𝐷𝐷 = 𝑓𝑓𝑛𝑛2(𝐶𝐶𝑤𝑤2 + 𝐶𝐶𝑜𝑜,𝐾𝐾2)                                                                                                                                      (3) 

𝑂𝑂 = 𝑓𝑓𝑛𝑛3(𝐷𝐷𝑤𝑤3 + 𝐷𝐷𝑜𝑜,𝐾𝐾3)                                                                                                                                     (4) 

𝑦𝑦(𝑛𝑛 + 1) = 𝜆𝜆𝜆𝜆(𝑛𝑛)(1− 𝑦𝑦(𝑛𝑛).𝑦𝑦(𝑛𝑛))                                                                                                                 (5) 
𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑 = −𝑥𝑥𝑗𝑗 + 𝑎𝑎𝑗𝑗𝑓𝑓(𝑥𝑥𝑗𝑗) + ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑓𝑓(𝑥𝑥𝑘𝑘) + ∑ 𝑆𝑆𝑗𝑗𝑗𝑗𝑥𝑥𝑘𝑘 + 𝐼𝐼𝑗𝑗  ̌5

𝑘𝑘=1                  𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,2, … ,5 5
𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

               (6) 

Based on these parameters, the state equations can be generated as follows: 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑 = −𝑥𝑥3 − 𝑥𝑥4          (7) 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑 = 2𝑥𝑥2 + 𝑥𝑥3 

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑 = 11𝑥𝑥1 − 12𝑥𝑥2 

𝑑𝑑𝑥𝑥4
𝑑𝑑𝑑𝑑 = 92𝑥𝑥1 − 95𝑥𝑥4 − 𝑥𝑥5 + 202𝑓𝑓(𝑥𝑥4) 

𝑑𝑑𝑥𝑥5
𝑑𝑑𝑑𝑑 = 15𝑥𝑥3 − 2𝑥𝑥5 

𝑦𝑦𝑛𝑛+1=𝑦𝑦𝑛𝑛 + ℎ
6 (𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)                          (8) 

where 

𝑘𝑘1 = 𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛); 𝑘𝑘2 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘1) ,𝑘𝑘3 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘2) ,𝑘𝑘4

= 𝑓𝑓(𝑡𝑡𝑛𝑛 + ℎ,𝑦𝑦𝑛𝑛 + ℎ𝑘𝑘3) 

𝑥𝑥𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚 

𝑥𝑥𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚 
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Reproducibility: Reproducibility  is the ability of an entire program to yield 
the same results each time it is run, either by the same person or a different 
one working independently. This means that, every time the code is run, it 
will produce the same results with a high degree of precision. Reproducibility 
is important for debugging and building confidence. Sometimes, a lack of 
reproducibility is termed as a shortcoming of any random generator. Thus, 
there are general conditions for the random generator for reproducibility:

1.	 One should use the same random number generator seed.
2.	 The model of the generating code shall not change. 
3.	 The same initial values or conditions are used.
4.	 The precision of computation shall remain the same as originally used.
5.	 Avoid running macros or custom visual basic for application (VBA) 

functions, which do not exactly generate the same results from 
simulation to simulation.

There are some technical concerns with reproducibility like the portability 
of the code generator from one operating system to another or the use of 
parallelization involving the number of threads on the platform. The first one 
relates to precision, and the second one to the number of threads running for 
the same code. The only caution that should be exercised is that the same 
precision is to be used across platforms, and that one iteration of a random 
number generation model shall not refer directly or indirectly to another value 
in an independent thread. This same concern holds for multiple CPUs, that is, 
if the code is run on multiple CPUs or a CPU with multiple threads, the order 
of generating random numbers shall remain the same as that generated by 
using serial computation. With these constraints in mind, 100,000 bits of code 
sequences were generated on the same machine twice and once on another 
machine, and were found to be the same each time.

For the interest of the reader, the single level encryption achieved in step 
1 is exemplified in Figure 3, where the original ‘woman’ image is shown 
followed by the wavelet decomposition to generate four subband images, each 
the quarter size of the original. In order to enter the next step, each of the 
subbands or the desired set of subbands are bit level decomposed to generate 
eight binary images. In Figure 3, eight binary images of only one subband 
image are shown. Once the pseudo-random sequence is generated, Figure 3 
shows the XOR operation between one binary image and the pseudo-random 
sequence. Continued in this way, once all binary images are encrypted by 
the pseudo-random sequence, the binary images enter the reverse process 
to generate the desired encrypted subband(s) followed by inverse wavelet 
transform to generate the encrypted image.
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Figure 3. Sample view of single level encryption.  

For the second step, a 5th order CNN model is used and its state equations are 
described as (Chua, Yang, 1988):

             								           (6)

In Equation (6), the parameters are set as follows:

Ĩ is a threshold and is generally set to 0; a4 = 202, which means that output of 
the cell 4 affects the 4th cell and its influence is 202; aj = 0 (for j=1,2,3,5); Ajk=0 
means the output of the cell and its adjacent cells has no influence on the state of 
the cell except the fourth cell; Sjk represents the influence weight that k cell has 
on cell j: S11=S23=S33=1; S13=S14=S45= S55=-1; S12=S15=S21=S24=S25=S34=S35= 
S51=S52=S54=-1; S22=3; S31=11; S32=-12; S41=92; S44=-94; S53=15

𝐵𝐵 = 𝑓𝑓𝑛𝑛0(𝐴𝐴𝑤𝑤𝑜𝑜 + 𝐴𝐴𝑜𝑜,𝐾𝐾0)                                                                                                                                      (1) 

𝑥𝑥(𝑛𝑛) = 𝑓𝑓(𝑥𝑥(𝑛𝑛 − 1)) =

{
 
 
 
 𝑥𝑥(𝑛𝑛 − 1)

𝑘𝑘              𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0,𝑘𝑘[
𝑥𝑥(𝑛𝑛 − 1)− 𝑘𝑘

0.5− 𝑘𝑘       𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈ [𝑘𝑘, 0.5[
𝑓𝑓(1− 𝑥𝑥(𝑛𝑛 − 1))   𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0.5, 1]

 

 

𝐶𝐶 = 𝑓𝑓𝑛𝑛1(𝐵𝐵𝑤𝑤1 + 𝐵𝐵𝑜𝑜,𝐾𝐾1)                                                                                                                                      (2) 

𝐷𝐷 = 𝑓𝑓𝑛𝑛2(𝐶𝐶𝑤𝑤2 + 𝐶𝐶𝑜𝑜,𝐾𝐾2)                                                                                                                                      (3) 

𝑂𝑂 = 𝑓𝑓𝑛𝑛3(𝐷𝐷𝑤𝑤3 + 𝐷𝐷𝑜𝑜,𝐾𝐾3)                                                                                                                                     (4) 

𝑦𝑦(𝑛𝑛 + 1) = 𝜆𝜆𝜆𝜆(𝑛𝑛)(1− 𝑦𝑦(𝑛𝑛).𝑦𝑦(𝑛𝑛))                                                                                                                 (5) 
𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑 = −𝑥𝑥𝑗𝑗 + 𝑎𝑎𝑗𝑗𝑓𝑓(𝑥𝑥𝑗𝑗) + ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑓𝑓(𝑥𝑥𝑘𝑘) + ∑ 𝑆𝑆𝑗𝑗𝑗𝑗𝑥𝑥𝑘𝑘 + 𝐼𝐼𝑗𝑗  ̌5

𝑘𝑘=1                  𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,2, … ,5 5
𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

               (6) 

Based on these parameters, the state equations can be generated as follows: 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑 = −𝑥𝑥3 − 𝑥𝑥4          (7) 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑 = 2𝑥𝑥2 + 𝑥𝑥3 

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑 = 11𝑥𝑥1 − 12𝑥𝑥2 

𝑑𝑑𝑥𝑥4
𝑑𝑑𝑑𝑑 = 92𝑥𝑥1 − 95𝑥𝑥4 − 𝑥𝑥5 + 202𝑓𝑓(𝑥𝑥4) 

𝑑𝑑𝑥𝑥5
𝑑𝑑𝑑𝑑 = 15𝑥𝑥3 − 2𝑥𝑥5 

𝑦𝑦𝑛𝑛+1=𝑦𝑦𝑛𝑛 + ℎ
6 (𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)                          (8) 

where 

𝑘𝑘1 = 𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛); 𝑘𝑘2 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘1) ,𝑘𝑘3 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘2) ,𝑘𝑘4

= 𝑓𝑓(𝑡𝑡𝑛𝑛 + ℎ,𝑦𝑦𝑛𝑛 + ℎ𝑘𝑘3) 

𝑥𝑥𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚 

𝑥𝑥𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚 
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Based on these parameters, the state equations can be generated as follows:
										        
								            (7)

The Lyapunov exponents (being important characteristics of a chaotic system) 
of Equation (7) are: 0.2953, 0.5285, 0.1264, -3.9205, -17.4382, which proves 
that the system is hyper chaotic. In order to solve these state equations, the 
classical fourth-order Runga-Kutta method (Kumar, et al., 1977) is used, as:
                			      				  
								             (8)

where

In Equation (8), the initial values are set as: step size h=0.005, x1(0)=0.1, 
x2(0)=x3(0)=x4(0)=x5(0)=0.2, and the number of iterations μ is set at 16384 
to generate μ hyper chaotic values.  Thus five channels of hyper chaotic 
sequences are generated with each channel having 16384 values. The mean 
‘m’ of channel x1 is calculated as follows:

𝐵𝐵 = 𝑓𝑓𝑛𝑛0(𝐴𝐴𝑤𝑤𝑜𝑜 + 𝐴𝐴𝑜𝑜,𝐾𝐾0)                                                                                                                                      (1) 

𝑥𝑥(𝑛𝑛) = 𝑓𝑓(𝑥𝑥(𝑛𝑛 − 1)) =

{
 
 
 
 𝑥𝑥(𝑛𝑛 − 1)

𝑘𝑘              𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0,𝑘𝑘[
𝑥𝑥(𝑛𝑛 − 1)− 𝑘𝑘

0.5− 𝑘𝑘       𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈ [𝑘𝑘, 0.5[
𝑓𝑓(1− 𝑥𝑥(𝑛𝑛 − 1))   𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0.5, 1]

 

 

𝐶𝐶 = 𝑓𝑓𝑛𝑛1(𝐵𝐵𝑤𝑤1 + 𝐵𝐵𝑜𝑜,𝐾𝐾1)                                                                                                                                      (2) 

𝐷𝐷 = 𝑓𝑓𝑛𝑛2(𝐶𝐶𝑤𝑤2 + 𝐶𝐶𝑜𝑜,𝐾𝐾2)                                                                                                                                      (3) 

𝑂𝑂 = 𝑓𝑓𝑛𝑛3(𝐷𝐷𝑤𝑤3 + 𝐷𝐷𝑜𝑜,𝐾𝐾3)                                                                                                                                     (4) 

𝑦𝑦(𝑛𝑛 + 1) = 𝜆𝜆𝜆𝜆(𝑛𝑛)(1− 𝑦𝑦(𝑛𝑛).𝑦𝑦(𝑛𝑛))                                                                                                                 (5) 
𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑 = −𝑥𝑥𝑗𝑗 + 𝑎𝑎𝑗𝑗𝑓𝑓(𝑥𝑥𝑗𝑗) + ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑓𝑓(𝑥𝑥𝑘𝑘) + ∑ 𝑆𝑆𝑗𝑗𝑗𝑗𝑥𝑥𝑘𝑘 + 𝐼𝐼𝑗𝑗  ̌5

𝑘𝑘=1                  𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,2, … ,5 5
𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

               (6) 

Based on these parameters, the state equations can be generated as follows: 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑 = −𝑥𝑥3 − 𝑥𝑥4          (7) 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑 = 2𝑥𝑥2 + 𝑥𝑥3 

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑 = 11𝑥𝑥1 − 12𝑥𝑥2 

𝑑𝑑𝑥𝑥4
𝑑𝑑𝑑𝑑 = 92𝑥𝑥1 − 95𝑥𝑥4 − 𝑥𝑥5 + 202𝑓𝑓(𝑥𝑥4) 

𝑑𝑑𝑥𝑥5
𝑑𝑑𝑑𝑑 = 15𝑥𝑥3 − 2𝑥𝑥5 

𝑦𝑦𝑛𝑛+1=𝑦𝑦𝑛𝑛 + ℎ
6 (𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)                          (8) 

where 

𝑘𝑘1 = 𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛); 𝑘𝑘2 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘1) ,𝑘𝑘3 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘2) ,𝑘𝑘4

= 𝑓𝑓(𝑡𝑡𝑛𝑛 + ℎ,𝑦𝑦𝑛𝑛 + ℎ𝑘𝑘3) 

𝑥𝑥𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚 

𝑥𝑥𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚 

 

𝐵𝐵 = 𝑓𝑓𝑛𝑛0(𝐴𝐴𝑤𝑤𝑜𝑜 + 𝐴𝐴𝑜𝑜,𝐾𝐾0)                                                                                                                                      (1) 

𝑥𝑥(𝑛𝑛) = 𝑓𝑓(𝑥𝑥(𝑛𝑛 − 1)) =

{
 
 
 
 𝑥𝑥(𝑛𝑛 − 1)

𝑘𝑘              𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0,𝑘𝑘[
𝑥𝑥(𝑛𝑛 − 1)− 𝑘𝑘

0.5− 𝑘𝑘       𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈ [𝑘𝑘, 0.5[
𝑓𝑓(1− 𝑥𝑥(𝑛𝑛 − 1))   𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0.5, 1]

 

 

𝐶𝐶 = 𝑓𝑓𝑛𝑛1(𝐵𝐵𝑤𝑤1 + 𝐵𝐵𝑜𝑜,𝐾𝐾1)                                                                                                                                      (2) 

𝐷𝐷 = 𝑓𝑓𝑛𝑛2(𝐶𝐶𝑤𝑤2 + 𝐶𝐶𝑜𝑜,𝐾𝐾2)                                                                                                                                      (3) 

𝑂𝑂 = 𝑓𝑓𝑛𝑛3(𝐷𝐷𝑤𝑤3 + 𝐷𝐷𝑜𝑜,𝐾𝐾3)                                                                                                                                     (4) 

𝑦𝑦(𝑛𝑛 + 1) = 𝜆𝜆𝜆𝜆(𝑛𝑛)(1− 𝑦𝑦(𝑛𝑛).𝑦𝑦(𝑛𝑛))                                                                                                                 (5) 
𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑 = −𝑥𝑥𝑗𝑗 + 𝑎𝑎𝑗𝑗𝑓𝑓(𝑥𝑥𝑗𝑗) + ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑓𝑓(𝑥𝑥𝑘𝑘) + ∑ 𝑆𝑆𝑗𝑗𝑗𝑗𝑥𝑥𝑘𝑘 + 𝐼𝐼𝑗𝑗  ̌5

𝑘𝑘=1                  𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,2, … ,5 5
𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

               (6) 

Based on these parameters, the state equations can be generated as follows: 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑 = −𝑥𝑥3 − 𝑥𝑥4          (7) 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑 = 2𝑥𝑥2 + 𝑥𝑥3 

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑 = 11𝑥𝑥1 − 12𝑥𝑥2 

𝑑𝑑𝑥𝑥4
𝑑𝑑𝑑𝑑 = 92𝑥𝑥1 − 95𝑥𝑥4 − 𝑥𝑥5 + 202𝑓𝑓(𝑥𝑥4) 

𝑑𝑑𝑥𝑥5
𝑑𝑑𝑑𝑑 = 15𝑥𝑥3 − 2𝑥𝑥5 

𝑦𝑦𝑛𝑛+1=𝑦𝑦𝑛𝑛 + ℎ
6 (𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)                          (8) 

where 

𝑘𝑘1 = 𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛); 𝑘𝑘2 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘1) ,𝑘𝑘3 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘2) ,𝑘𝑘4

= 𝑓𝑓(𝑡𝑡𝑛𝑛 + ℎ,𝑦𝑦𝑛𝑛 + ℎ𝑘𝑘3) 

𝑥𝑥𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚 

𝑥𝑥𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚 

 

𝐵𝐵 = 𝑓𝑓𝑛𝑛0(𝐴𝐴𝑤𝑤𝑜𝑜 + 𝐴𝐴𝑜𝑜,𝐾𝐾0)                                                                                                                                      (1) 

𝑥𝑥(𝑛𝑛) = 𝑓𝑓(𝑥𝑥(𝑛𝑛 − 1)) =

{
 
 
 
 𝑥𝑥(𝑛𝑛 − 1)

𝑘𝑘              𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0,𝑘𝑘[
𝑥𝑥(𝑛𝑛 − 1)− 𝑘𝑘

0.5− 𝑘𝑘       𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈ [𝑘𝑘, 0.5[
𝑓𝑓(1− 𝑥𝑥(𝑛𝑛 − 1))   𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0.5, 1]

 

 

𝐶𝐶 = 𝑓𝑓𝑛𝑛1(𝐵𝐵𝑤𝑤1 + 𝐵𝐵𝑜𝑜,𝐾𝐾1)                                                                                                                                      (2) 

𝐷𝐷 = 𝑓𝑓𝑛𝑛2(𝐶𝐶𝑤𝑤2 + 𝐶𝐶𝑜𝑜,𝐾𝐾2)                                                                                                                                      (3) 

𝑂𝑂 = 𝑓𝑓𝑛𝑛3(𝐷𝐷𝑤𝑤3 + 𝐷𝐷𝑜𝑜,𝐾𝐾3)                                                                                                                                     (4) 

𝑦𝑦(𝑛𝑛 + 1) = 𝜆𝜆𝜆𝜆(𝑛𝑛)(1− 𝑦𝑦(𝑛𝑛).𝑦𝑦(𝑛𝑛))                                                                                                                 (5) 
𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑 = −𝑥𝑥𝑗𝑗 + 𝑎𝑎𝑗𝑗𝑓𝑓(𝑥𝑥𝑗𝑗) + ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑓𝑓(𝑥𝑥𝑘𝑘) + ∑ 𝑆𝑆𝑗𝑗𝑗𝑗𝑥𝑥𝑘𝑘 + 𝐼𝐼𝑗𝑗  ̌5

𝑘𝑘=1                  𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,2, … ,5 5
𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

               (6) 

Based on these parameters, the state equations can be generated as follows: 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑 = −𝑥𝑥3 − 𝑥𝑥4          (7) 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑 = 2𝑥𝑥2 + 𝑥𝑥3 

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑 = 11𝑥𝑥1 − 12𝑥𝑥2 

𝑑𝑑𝑥𝑥4
𝑑𝑑𝑑𝑑 = 92𝑥𝑥1 − 95𝑥𝑥4 − 𝑥𝑥5 + 202𝑓𝑓(𝑥𝑥4) 

𝑑𝑑𝑥𝑥5
𝑑𝑑𝑑𝑑 = 15𝑥𝑥3 − 2𝑥𝑥5 

𝑦𝑦𝑛𝑛+1=𝑦𝑦𝑛𝑛 + ℎ
6 (𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)                          (8) 

where 

𝑘𝑘1 = 𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛); 𝑘𝑘2 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘1) ,𝑘𝑘3 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘2) ,𝑘𝑘4

= 𝑓𝑓(𝑡𝑡𝑛𝑛 + ℎ,𝑦𝑦𝑛𝑛 + ℎ𝑘𝑘3) 

𝑥𝑥𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚 

𝑥𝑥𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚 

 

𝐵𝐵 = 𝑓𝑓𝑛𝑛0(𝐴𝐴𝑤𝑤𝑜𝑜 + 𝐴𝐴𝑜𝑜,𝐾𝐾0)                                                                                                                                      (1) 

𝑥𝑥(𝑛𝑛) = 𝑓𝑓(𝑥𝑥(𝑛𝑛 − 1)) =

{
 
 
 
 𝑥𝑥(𝑛𝑛 − 1)

𝑘𝑘              𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0,𝑘𝑘[
𝑥𝑥(𝑛𝑛 − 1)− 𝑘𝑘

0.5− 𝑘𝑘       𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈ [𝑘𝑘, 0.5[
𝑓𝑓(1− 𝑥𝑥(𝑛𝑛 − 1))   𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛 − 1) ∈  [0.5, 1]

 

 

𝐶𝐶 = 𝑓𝑓𝑛𝑛1(𝐵𝐵𝑤𝑤1 + 𝐵𝐵𝑜𝑜,𝐾𝐾1)                                                                                                                                      (2) 

𝐷𝐷 = 𝑓𝑓𝑛𝑛2(𝐶𝐶𝑤𝑤2 + 𝐶𝐶𝑜𝑜,𝐾𝐾2)                                                                                                                                      (3) 

𝑂𝑂 = 𝑓𝑓𝑛𝑛3(𝐷𝐷𝑤𝑤3 + 𝐷𝐷𝑜𝑜,𝐾𝐾3)                                                                                                                                     (4) 

𝑦𝑦(𝑛𝑛 + 1) = 𝜆𝜆𝜆𝜆(𝑛𝑛)(1− 𝑦𝑦(𝑛𝑛).𝑦𝑦(𝑛𝑛))                                                                                                                 (5) 
𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑 = −𝑥𝑥𝑗𝑗 + 𝑎𝑎𝑗𝑗𝑓𝑓(𝑥𝑥𝑗𝑗) + ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑓𝑓(𝑥𝑥𝑘𝑘) + ∑ 𝑆𝑆𝑗𝑗𝑗𝑗𝑥𝑥𝑘𝑘 + 𝐼𝐼𝑗𝑗  ̌5

𝑘𝑘=1                  𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,2, … ,5 5
𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

               (6) 

Based on these parameters, the state equations can be generated as follows: 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑 = −𝑥𝑥3 − 𝑥𝑥4          (7) 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑 = 2𝑥𝑥2 + 𝑥𝑥3 

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑 = 11𝑥𝑥1 − 12𝑥𝑥2 

𝑑𝑑𝑥𝑥4
𝑑𝑑𝑑𝑑 = 92𝑥𝑥1 − 95𝑥𝑥4 − 𝑥𝑥5 + 202𝑓𝑓(𝑥𝑥4) 

𝑑𝑑𝑥𝑥5
𝑑𝑑𝑑𝑑 = 15𝑥𝑥3 − 2𝑥𝑥5 

𝑦𝑦𝑛𝑛+1=𝑦𝑦𝑛𝑛 + ℎ
6 (𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)                          (8) 

where 

𝑘𝑘1 = 𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛); 𝑘𝑘2 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘1) ,𝑘𝑘3 = 𝑓𝑓 (𝑡𝑡𝑛𝑛 + 1
2ℎ,𝑦𝑦𝑛𝑛 + 1

2ℎ𝑘𝑘2) ,𝑘𝑘4

= 𝑓𝑓(𝑡𝑡𝑛𝑛 + ℎ,𝑦𝑦𝑛𝑛 + ℎ𝑘𝑘3) 

𝑥𝑥𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚 

𝑥𝑥𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚 
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where i=1,2,3,4,5 and j=1,2,3,4,….,16384. Thus four channels (x1, x2, x3, and 
x4) are quantified into four binary sequences (X1, X2, X3, X4). These four binary 
sequences are XORed with four most significant sequences from step 1 (single 
encryption) to generate four most significant doubly-encrypted sequences. For 
simulation purposes, the various parameters set to run the proposed system are 
shown in Table 1.

Table 1

Parameters for Simulation of the Proposed System

Parameter values
k=0.5
λ=2.59
Ĩ =0 
a1=0; a2=0; a3=0; a4=202; a5=0
S11=S23=S33=1; S13=S14=S45= S55=-1; S12=S15=S21= S24=S25=S34=S35= S51=S52=S54=-1; 
S22=3; S31=11; S32=-12; S41=92; S44=-94; S53=15
h=0.005
x1(0)=0.1; x2(0)=x3(0)=x4(0)=x5(0)=0.2
μ=16384

PERFORMANCE ANALYSIS

In this section, we report the performance of the proposed approach. 
Specifically, different measurements and tests are explained to demonstrate 
complexity, robustness and effectiveness.

Key space: The key space of the proposed scheme can be derived from three 
parts: the 8-4-2-1 neural network key generator, the n-level wavelet signal 
decomposition, and the cellular neural network. Two keys are used in the 8-4-
2-1 neural network: one is the 64-bit seed to neural network and the other 
is the 64-bit to calculate initial conditions. The number of bits needed for 
a typical n-level wavelet transform does not exceed three, and that for how 
many of the bit planes are to be encrypted is also three. A 128-bit key to drive 
a CNN hyper chaotic system is used to map initial conditions of the CNN 
and to calculate the CNN system parameters, as shown in Table 1. Thus, the 
key size for this encryption is 128 (from 8-4-2-1 neural network) + 128 (from 
CNN) + 3 (wavelet decomposition level) + 3 (no. of bit planes) + 3 (no. of 
encrypted planes) ~  >256, thus the key space is at least 2256 ~ 11.56 x 1076.
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NIST Statistical Test: Here, in this subsection, the generated pseudo-random 
sequences are tested by the Statistical Test Suite (STS) by NIST (Rukhin et al., 
2001) to quantify and verify the randomness level. The suite includes statistical 
tests for individual sequences, and in turn generates a p-value. The criterion is 
that if this value is compared to a significance level typically set at 0.01 (for 
confidence of 99%) is determined to be equal to 1, then the sequence appears 
to be random; otherwise, non-random. The results of all of these tests run on 
the first 100,000 bits sequence are shown in Table 2, where we notice that the 
sequence generated passes the NIST statistical test for individual sequences. 

Table 2

NIST Statistical Tests

NIST Statistical Test p-value Pass rate
Frequency 0.827319 Pass
Block-frequency 0.817450 Pass
Cumulative sums (forward) 0.954010 Pass
Cumulative sums (reverse) 0.808165 Pass
Runs 0.071589 Pass
Longest runs of ones 0.942786 Pass
Rank 0.161278 Pass
FFT 0.417645 Pass
Linear complexity 0.619830 Pass
Serial 0.287165 Pass
Approximate entropy 0.612450 Pass
Lempel-Ziv Compression 0.387341 Pass
Overlapping templates 0.608741 Pass

 
0/1 Balancedness Test: Golomb (1982) stated that the noise-like sequence 
should look like an equality distribution. This means that the generated chaotic 
sequence should have equal distribution between 0 and 1 (i.e. equal number of 
1s and 0s). In order to judge the proposed approach by equality distribution, 
a number of tests were run on the 8-4-2-1 generator to produce sequences of 
different lengths. These lengths were estimated to be 65536 (based on wavelet 
subband of size 256x256), 16384 (based on wavelet subband of size 128x128), 
4096 (based on wavelet subband of size 64x64), and 1024 (based on wavelet 
subband of size 32x32). The results are depicted in Table 3 and Figure 4. 
These results show that the numbers are quite close to 50%.
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Table 3 

Equality Distribution within the Chaotic Sequence Generated by 8-4-2-1 
neural network

Sequence length Count of 1s Percentage
1024 515 50.29
4096 2055 50.17
16384 8206 50.08
65536 32775 50.01

Figure 4. Percentage distribution of 1s in the sequence.

Histogram Analysis: Generally, the histogram of an image depicts the pixel 
distribution density against the intensity level. Here, we use it to analyze the 
encrypted image pixel distribution. In order to test the proposed approach in 
this perspective, the 512x512 “Camera-man” image was encrypted using n=2 
with four most significant bit planes. After encrypting these bit planes, the 
process was run in reverse to construct the encrypted image and the histogram 
calculated. The results are shown in Figure 5, where x axis shows the gray 
level, while y axis shows the count at that gray level. It can be clearly seen 
that the histogram of the encrypted image is fairly uniform with the statistical 
properties of those of the white noise. To investigate it further, standard 
deviations were also calculated and were found to be 14.315 and 14.168 
respectively, which are lower than that reported in Bigdeli et al. (2012).
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Figure 5. Histogram analysis of proposed approach.

Correlation Coefficient: Generally, correlation coefficient is considered 
as a statistical parameter to measure the quality of an encryption process. 
Theoretically, the autocorrelation function from the generated sequence 
should be a noise-like impulse at the origin, and almost zero away from the 
origin. This also means that each sequence bit is decorrelated from the other. 
The correlation coefficient was calculated using the following equation (El 
Assad et al., 2008):

								             (9)

where cov (x, y) stands for the covariance between the two pixels x and y. 

To verify experimentally for the 8-4-2-1 generator, this function was plotted 
using Equations 1-5 in Figure 6, where x axis shows the gray level xi while 
y axis shows the autocorrelation function rx,y at that gray level. In this figure, 
good autocorrelation function can be seen clearly. The maximum value outside 
the origin is 0.00215. This smallest value outside the origin means that each bit 
generated is not correlated to the other. Thus, we can easily conclude that the 
resulting code bits are decorrelated. Table 4 shows the correlation coefficient 
rxy along the horizontal, vertical, and diagonal directions of batch of (xi, yi, for 

 

𝑟𝑟𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦)
√𝑑𝑑(𝑥𝑥) √𝑑𝑑(𝑦𝑦)

 ;   𝑑𝑑(𝑥𝑥) =  1
𝑁𝑁∑(𝑥𝑥𝑖𝑖 −

1
𝑁𝑁∑𝑥𝑥𝑥𝑥

𝑁𝑁

𝑖𝑖=1
)
2𝑁𝑁

𝑖𝑖=1
                                                                            (9)  
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i=1, 2, 3….N) pairs of gray values of the two adjacent pixels in five original 
and encrypted images. It is clear from Table 4 that the pixels in the encrypted 
images have been completely decorrelated due to encryption. Furthermore, 
statistical values like averages and standard deviations were calculated across 
five original and encrypted images. Looking at the averages column in the 
original and the encrypted images, it is clear that the correlation coefficient 
average for all the cases has dropped from nearly one (~0.9) to insignificant 
values in the range of 10-4. Likewise, very small values of standard deviation 
reflect the fact that variation in pixel decorrelation along horizontal, vertical 
and diagonal directions is very small (of the order of 10-4) in all cases.  

Figure 6. Correlation function of the sequence.

Table 4

Correlation Coefficients of the Original and Encrypted Images

Image Original Encrypted

Horizontal Vertical Diagonal Average Standard 
deviation

Horizontal Vertical Diagonal Average Standard 
deviation

Lena 0.9855 0.9881 0.9667 0.9801 0.009534 -0.00072 0.00053 0.00103 0.00028 0.00074

Barbara 0.9785 0.9574 0.9762 0.9707 0.009451 0.00082 -0.00102 0.00063 0.000143 0.00083

Yacht 0.9592 0.9499 0.9487 0.9526 0.004693 -0.000761 0.00052 -0.00049 -0.00024 0.00055

Woman 0.9584 0.9474 0.9462 0.9507 0.00549 0.000541 -0.00061 0.000385 0.000105 0.00051

House 0.9675 0.9486 0.9571 0.9577 0.007729 0.000613 0.00046 -0.00062 0.000151 0.00055

16 
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CONCLUSIONS

A JPEG2000 compatible block cipher is proposed in this paper with a two 
level encryption. In a single level encryption, random sequences are generated 
through random key generation by the 8-4-2-1 neural network, where hidden 
layers compute the output using repeated calculations in a cyclic manner to 
make it robust with increased complexity. During performance analysis, it was 
demonstrated that the key space for this level is more than 128. For the second 
level encryption, cellular neural network is used with additional 128-bit keys 
to generate sequences using the Runga-Kutta method. Thus, the net key size 
is above 256. Key management can be improved by hiding two keys in two 
secure physical locations, so that in case of a well-organized code-break in the 
Internet, the data will remain secure as it is less likely to recover multiple keys. 
Furthermore, using the 0/1balancedness, histogram and correlation analyses 
it was experimentally demonstrated that the proposed encryption is effective 
with robust performance.

The advantages of the proposed approach are multifold: firstly the encryption 
is the JPEG2000 format compliant; secondly the approach is flexible, such 
that based on the need, either a single level and/or a double encryption can be 
used. Furthermore, in order to accommodate a longer key, the neural network 
structure can be expanded to include another hidden layer or the cellular 
neural network can be adjusted to support a longer key; thirdly is that the 
watermark techniques can be easily embedded in the proposed scheme due to 
the availability of subbands and bit planes before encryption.  
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