Journal of ICT, 1(1), pp: 17-29

EXTENDING THE DECOMPOSITION ALGORITHM
FOR SUPPORT VECTOR MACHINES TRAINING

N. M. Zaki*, S. Deris*, K. K. Chin**

*Faculty of Computer Science & Information System,
University Technology Malaysia, Johor , Malaysia
nazar@siswa.utm.my

**Engineering Department, Cambridge University,
Trumpington Street, Cambridge, UK.

ABSTRACT

The Support Vector Machine (SVM) is fourd to be a capable
learning machine. It has the ability to handle difficult pattern
recognition tasks such as speech recognition, and has demonstrated
reasonable performance. The formulation in a SVM is elegant in
that it is simplified to a convex Quadratic Programming (QP)
problem. Theoretically the training is guarantezd to converge to a
global optimal. The training of SVM is not as straightforward as it
seems. Numerical problems will cause the treining to give non-
optimal decision boundaries. Using a conventional optimizer to
train SVM is not the ideal solution. One can design a dedicated
optimizer that will take full advantage of the specific nature of the
QP problem in SVM training. The decomposition algorithm
developed by Osuna et al. (1997a) reduces the training cost to an
acceptable level. In this paper we have analyzed and developed an
extension to Osuna’s method in order to achieve better
performance. The modified method can be used to solve the
training of practical SVMs, in which the training might not
otherwise converge.

Key words: Support vector machines, Decompositiorn, Pattern recognition, and
Learning

17

Journal of ICT, 1(1), pp: 17-29

L —

1.0 INTRODUCTION

few thousand LOC is very challenging in terms of memory requirements

and computation costs. In practical pattern classification problems, the
number of training data points can exceed 50,000. The training duration for
large training data sets must be reduced before Support Vectors Machines
(SVM) can be used to tackle practical problems. This problem is solved by
taking advantage of the fact that the expected number of support vectors is a
small fraction of the number of total training data points (Boser et al., 1992;
Osuna et al., 1997b). However, this approach fails when the number of support
vectors exceeds 3000. This can happen in the following cases:

: ; olving a Quadratic Programming (QP) problem with a size of more than a

. The amount of training data is very large, so the number of support
vectors is a very small fraction of the total training data size; it is still
too large for the above algorithm to handle.

. When data is highly un-separable, the generalization error will be high.
Since the ratio between the number of support vectors and the total
number of training data points is the upper bound of expected error
(Vapnik, 1995), we can expect that the number of support vectors will
increase for highly un-separable problems.

2.0 OVERVIEW OF OSUNA’S DECOMPOSITION ALGORITHM

In Osuna’s decomposition algorithm, it is proposed that the original QP is
replaced by a sequence of smaller sub-problems that does not require a small
number of support vectors (Osuna et al., 1997a). A set of variables in A is
partitioned into two sets Ag and Ay. Set B is called the working set, since
variables in this set are allowed to change while the variables in the set N are
fixed. These results are shown in the following sub-problems:

. 1
min(A) =-A 1+=[A, D, A, + N Dy A,
Ay 2 2.1

+ AC\'DNBAB +A7;\’DNA'A v1= ACV

18

Journal of ICT, 1(1), pp: 17-29

_——————————————————————

Subject to,
AYB.VB +A€VJ’N =0
A, -C1<0
-A, <0 2.2)

Since k(x,y)is symmetric, A%,Dy A, + A\ D,;A, can be replaced
by2A; G gy
where:

(Gn); :yizxjyjK(‘xi’yi) ieB (2.3)

JjeN
. : 1 .
With this replacement, and the fact that EATNDNNAN - A’ is constant, the

size of the sub-problems is independent of the number of variables in set N
regardless of whether the training data points corresponding to those variables
are support vectors or not. Hence, the number of support vectors will not affect
the performance of this algorithm.

The optimal solution for (2.1) can be achieved by introducing Lagrangian (L)
and it must satisfy the following Karush-Kuhn-Tucker (KKT) condition:

> L if A; =0
S(x)y, =¢<L if h,=C 2.4)
=L if 0<i; <C
where f(x,) is the decision function defined as
!
S =209, K(x,x,)+b, i, j=1,.,1 2.5)
=1

The decomposition algorithm is then defined as follows:

Arbitrarily choose [B| points from the training data set.
Solve the sub-problems defined by the variables in set B.

Replace any A,,i € B, with any A, j € N that violate the condition in

W N -

(2.4). It is also possible to sort A ; according to the degree of violation,

and select the highest degree of violation first.
4. Repeat step 2 until the values of & satisfy the KKT condition in (2.4).

19

Journal of ICT, 1(1), pp: 17-29

A |

In this decomposition algorithm, it is assumed that the QP sub-problem at each
iteration will converge. The consequence of this limitation is that the
decomposition algorithm does not always converge to the global optimal
solution in a finite number of iterations. The non-convergence of the QP
algorithm manifests itself in two ways:

. The solver fails to change the values of the variables in set B. This
happens when the solver finds that the cost function increases in all
search directions before it reaches the saddle point. The solver will then
assume wrongly that this is the saddle point on the cost surface. It then
terminates without changing the values of variables in set B. Once the
solver is stuck, it is very likely that all subsequent iterations will be stuck
too. The training will now lock into an infinite loop. The decomposition

algorithm will call the QP solver repeatedly until the classifier is
converged.

. Due to the finite precision of computations, the optimal solution cannot
be reached as the solution is hopping around the theoretical optimal
solution at every iteration.

In the original implementation by Joachims (1997), the selection of A ; fromset

N 1s randomized after every fixed number of iterations. This helps to reduce the
possibility of non-converging SVM training. Despite the presence of this
random element, non-convergence of SVM training still occurs, especially
when the number of training data points exceeds 300. To improve the
robustness of this training algorithm, more sophisticated mechanisms have to be
implemented to avoid and/or detect these non-converging situations and stops
the training.

3.0 EXPERIMENT

It is easy to detect when the training gets trapped, i.e. when the variables remain
unchanged. The total change in all A values can be computed as shown in
equation (3.1) below. The training can then be stopped when it remains below
an arbitrarily small threshold value for more than a chosen number of iterations.
But this might stop the training prematurely, especially with a large number of
training data and a large |B|. To avoid this, the following steps are taken

whenever d(A") is smaller than an arbitrarily small threshold:

20

Journal of ICT, 1(1), pp: 17-29

e
M“

1. Form a set of variables M that includes all A in /V that violate the condition
in (2.4).
2. Select a set of A from set M to form a set A, where |4| << |B|. Solve the

sub-problems where A is the working set and all other variables are fixed.
Re-compute d(A") and remove all . in set A from set M.

4. If d(A') is still below an arbitrarily small threshold and the set M is not
empty, start from step 2 again.

l
d(A) =Y |n -4 | (3.1)

Since there is no simple solution to avoid the second non-converging situation,
the next step is to define a robust mechanism to decide when to stop SVM
training. The training must not be stopped prematurely and must stop as soon as
possible when convergence to the global optimal is not possible. There is no
way one can know whether a particular training will converge. Setting a
maximum number of iterations is the simplest solution, but the following
checks work well in the experiments of this project:

. d(A") is less than an a priori threshold, and an a priori percent of the

members in set B for time ¢ is also in set B for time ¢-/ (i.e. if the value for
A does not change, and a very similar set of A is selected for the next sub-
problem).

. The current situation (i.e. number of mis-classified data, number of
support vectors and largest classification error) of the training does not
change more than an a priori percentage.

The training will be stopped if the above situation occurs, more than a pre-
selected number of times. This is an ad hoc solution and there are many user-
defined parameters, but it gives better control over SVM training and it works
well in experiments performed.

3.1 Incremental Training of the Support Vector Machine

The computation cost for the training of SVMs can be further reduced by
applying an incremental training scheme. The algorithm is defined as follows:

1. Divide the training data into segments. The segment size is decided

heuristically. The SVM is initialized with an empty support vector set.
2. Select a segment and retrain the SVM using these data.

21

Journal of ICT, 1(1), pp: 17-29

m“

3. Discard all the data in the selected segment, except the support vectors.
4. Repeat step 2 and 3 until no segments are left.

This scheme is similar to the chucking method described by Boser et al. (1992)
except that in the chucking method, any data point dropped from the chunk can
be reselected. In this scheme, once a segment is selected it will not be selected
again. Hence any discarded data will not be reselected, and there is a possibility
that the final classifier might not classify these data correctly.

3.2 Complexity and Scalability of the Training Algorithm

The complexity of a QP solver is very much dependent on the training data.
There is no known method to define the complexity analytically. All three
solvers used in this project are iterative and the complexity of each iteration is
O(N’) on average.

1. LOQO: At each iteration, the computation cost is dominated by solving a
Symmetric Quasi-definite System of size 3N + 1 (Vanderbei, 1994a). In
LOQO, a modified Cholesky factorisation (Vanderbei, 1996b) (an
algorithm of (O(N’)) is used to solve this system.

2. MATLAB QP: Computing the search direction at each iteration is the
dominating cost factor. This operation involves multiplication and
inversion of matrices of size N, which has complexity of O(N°).

3. DONLP2: At every iteration, an equality constraint QP sub-problem is

solved. The size of this sub-problem is N + E + A (Spellucci, 1996),
where A is the number of inequality constraints in the working set, and E
is the number of equality constraints for the QP problem. The worst case
value for A is the number of inequality constraints for the QP problem (all
the inequality constraints are selected), which is 2N in this case (the QP
problem in SVM training has 2N bound constraints). Hence the worst
case size of the QP sub-problems is 3N + 1 (the QP problem in SVM
training has only one equality constraint). The equality constraint QP sub-
problem is solved by solving a linear system of the same size, which is an
operation with a complexity of O(N°).

4.0 RESULT AND DISCUSSION

The decomposition algorithm described in this paper is used to train the
classifiers in the Gordon Peterson and Harold Barney vowels database (Peterson
and Barmmey 1952). Peterson and Barney describe a detailed investigation of
sustained American English vowels. The results are shown in Table 1. As

22

Journal of ICT, I(1), pp: 17-29
\“

expected, the number of iterations to achieve convergence increases as the sub-
problem size decreases. But if the sub-problem size is small, the time taken for
each iteration is very short. Hence, a small sub-problem size will speed up the
training considerably. There is a lower bound on the sub-problem size to ensure
fast convergence of the SVM training. When the sub-problem size is more than
half of the total training data, the training duration will be longer than when no
decomposition is applied (the training will take several iterations to converge
and the duration for each iteration is close to the duration of one single training
iteration without the decomposition algorithm).

It 1s not surprising that the classifiers trained by different sub-problem sizes
have significantly different decision boundaries. Fig. 1 - 3 show the decision
boundaries for different sub-problem sizes for class 2-to-rest. In general, as the
sub-problem size approaches the total amount of training data, the boundaries
also tend to be more similar compared to those of the classifiers trained without
the decomposition algorithm.

class 2-1o-resl {data sel 3 with sub-QP size = 30

-
o
(e 8 Y w4+ class
oege o 0 +¢lass SW
2c0f.a g o o o -olass
PP - dass By
L] T
g a ; B
g 18 IR -
3 LA
T O, o o
g 16 SR LN £
L'E It "..._A’-
T umf ety
~ o f KN
. o
120065 u’?:" ~} a banﬁ.. >
' , . - p_# ﬂﬂ a 2
1000 PH e RO P
Oy, gl @ o 2 e
sl "’:B ﬂ--‘ﬁ'
o : 1 s 1
Go’zcc rc'm 800

18 Formant Frequency

Fig.1: Decision boundary of data set 3, class 2 (sub-QPsize = 30)

23

Journal of ICT, 1(1), pp: 17-29

class 2-to-rest (data sat 3 with sub-QP sizo = 80y

]
B
20001 6 & +class
43 0 +class SV
] a -class
> P -class SY
by 9 o
5 S
T a4 g o
= mp O g
B o B g
3 n
K o @
| F wg,
a 0 ogpg o
2Ry, §
o
ﬁnh Ho
.

. L A
200 300 400 600 700 800

200
1st Foimant Frequency

Fig. 2: Decision boundary of data set 3, class 2 (sub-QP size = 80)

Table 1: The results of SVM training with different sub-problem size

30 62.16 62.8 £8.75% 59

50 0097.24 43 51.88% 52.7
30 129.80 18.2 39.56% 42.89
160 831.96 12.4 56.56% 44.79
240 1959.50 7 56.88% 46.39
320 897.12 1 60.94% 48.6

The results in Table 1 show that the accuracy of the classifiers trained by the
decomposition algorithm is lower compared to those trained without the
decomposition algorithm. All the solutions that correspond to results in Table 1
are sub-optimal solutions; none of them can be proved to be the optimal
solution. Table 2 shows the accuracy of classifiers trained on 5 sets of random
data (each with 160 data points) with different sub-problem sizes. From these
results, it is clear that none of the sub-problem sizes consistently give better
results than the rest.

24

Journal of ICT, 1(1), pp:17-29
M“

class 2~to~rest data set 3 with sub-OP size = 240)

T

+ class
+ class SV
- clasz

- class 5V

voos

2nd Formant Fequency
2 = B
g 3 3

&
=3

& 1 " L s
200 300 400 800 600 700 800
1st Formant Frequency

Fig. 3: Decision boundary of data set 3, class 2 (sub-QP size = 240)

Table 2: The results of SVM training with different sub-problem
size on 5 random sets of 160 points training data

“81z€ : R
30 69.38% | 62.50% | 65.00% | 74.37% | 55.00%
50 69.38% | 63.13% | 65.00% | 74.37% | 55.00%
80 69.38% | 63.13% | 65.62% | 74.37% | 55.00%
160 70.63% | 61.87% | 65.62% | 74.37% | 55.00%

The number of iterations required to solve a QP problem is not known for any
of the solvers above, it very much depends on the data (i.e. the surface of the
cost function and the constraints). From experimental observations, the number
of iterations is of O(N)(LOQO definitely converges with much less iterations
compared to DONLP2 and MATLAB QP). Hence, the complexity of solving
the QP problem in the SVM training can be approximated as O(N*). When the
number of training data points exceeds a few hundreds, the computation cost for
the SVM training will be unacceptable. The training duration for larger training
data sets can be estimated as in Table 3.

25

Journal of ICT, 1(1), pp: 17-29

Table 3: The estimated training duration of SVM with
large training data set

640 4 hour

1280 64 hour
2560 1024 hour
5120 16384 hour
10240 262144 hour

It is clear that without a decomposition algorithm, a SVM can never be used as
a practical classifier (the training cost is too high to be practical). The
complexity of the decomposition algorithm in Section 3.2 is defined as follows:
. N 1s the total number of training data points

D is the number of dimensions for each data point

Q is the size of the working set (i.e. |B|)

S 1s the number of support vectors

gp (Q) is the complexity of the QP sub-problem (qp(Q)) is estimated to be
Q"

. From the above definition, the complexity of each iteration of the
decomposition algorithm is O(QND + N°D -+ Q).

The number of iterations is also assumed to be linearly related to N and
inversely to Q. As Q increases, the number of iterations required to solve the
QP problem will decrease (see Table 1). Hence, the number of iterations is of
the order of O(N/Q). The approximate complexity of the SVM training with the
decomposition algorithm is O(N’D + N°D/Q + NQ?). From these analyses, it is
clear that the complexity of the algorithm grows linearly with respect to the
dimension of the training data. The computation cost can be significant if N is
very large.

The choice of Q is very important in order to obtain fast convergence. Results in
Table 1 suggest that a smaller Q will converge faster. From the complexity
analysis, it is clear that when N and D are large, the cost for each iteration will
be high, and a smaller Q requires more iteration, and therefore, converges more
slowly. Fig. 4 and 5 show that, for every N and D value, there is an optimal Q
setting.

26

Journal of ICT, 1(1), pp: 17-29

———————————

2 x10° Complaxity of SV fralning with des cmnposition algodithm

18P} - ..

yeb| —™ O=120

14p
7
Szt
7
L
g
s IF
i
Soak

06k

04

0.2+

oy
o TS
o ol Tl ki - N N .))
o 500 1000 1500 2000 2500 3000 3500
Number of training data

Fig. 4: The complexity of the SVM algorithm with different Q settings

x 10 Complexity of SYI training with decamposition algorithm
2 T T T T y u T
— N=1000
tep | == N=3000 E
L
16F L i
'
\
L p Ki
14 \ ,
@) a
212 v S
€ \ ’
a \ o
.g.. 1 ‘_ 4 e
. R4
z N, -7
g 0eH \.\ e -
~ ~a ,a"‘d.
0.6H - - J
optimum Q = 80
044 /
0.2 oplimum Q= &0 T
0 L n n L L . L
0 20 40 GO 80 100 120 140 160

Q: the size of the QP sub-problem

Fig. 5: The minimum Q value training with the decomposition for
different training data sizes

Fig. 6 shows the comparison between the complexity of the standard SVM
training, and that of the SVM training with the decomposition algorithm. The
decomposition reduces the complexity significantly, and hence, allows SVM to
be trained with a reasonable computation cost.

27

Journal of ICT, 1(1), pp: 17-29

T R R R R T R R O R R R R R R R R RRORRRRROOOOOOh_II_=».~.,

10 Complexity of 5% raining
i
v
=%
------ C=50
5

: —-—— Q=80

Q=120
1k ¥ ¥ nodescomposition

Humber al operations

n

—p—

.....
g
IS

AP TTeP Co X ,
u B 100 159 A0 % A0 309
Humber of training data

Fig. 6: Complexity of SVM training algorithms with
and without decomposition algorithm

5.0 CONCLUSION AND FURTHER RESEARCH WORK

Support Vector Machines has the ability to handle difficult speech recognition
tasks, and they give reasonable performance. The formulation of a SVM is
elegant in that it is simplified to a convex QP problem. Theoretically, the
training is guaranteed to converge to a global optimal. This ability to select the
training data that defines the classification boundaries could have many
applications other than in pattern classification. The training of a SVM is not as
straightforward as it seems. Numerical problems will cause the training to give
non-optimal decision boundaries. Using a conventional optimizer to train a
SVM is not the ideal solution. One can design a dedicated optimizer that will
take full advantage of the specific nature of the QP problem in SVM training.
The decomposition algorithm developed by Osuna et al. (1997a) reduces the
training cost to an acceptable level. In this paper we have analyzed and
developed an extension to Osuna’s method in order to achieve better
performance. The method can be used to solve the training of practical SVMs,
in which the training might not otherwise converge. For further improvement in
the performance of the decomposition algorithm, one can consider incorporating
information from the optimizer, i.e., use the knowledge about the current
situation of the global QP problem to select the member in the working set. This
could help to speed up convergence.

Journal of ICT, 1(1), pp: 17-29
\“

REFERENCES

Boser, B. E., Guyon, I. M., and Vapnik, V. (1992). A training algorithm for
optimum margin classifiers. In Fifth Annual Workshop on Computational
Learning Theory. Pittsburgh, ACM.

Peterson, G. and Barney, H. (1952). Control methods used in a study of vowels.
Journal of the Acoustical Society of America, vol. 24, pp. 175-184.

Joachims, T. (1997). Svm ligh: Implementation of the decomposition training
algorithm. Bell Lab. Lucent Technologies.

Osuna, E., Freund, R., and Girosi, F. (1997a). An improved training algorithm
for support vector machines. In Proc. of IEEE NNSP’97. Amelia Island:
FL, 24-26.

Osuna, E., Freund, R., and Girosi, F. (1997b). Support vector machines,
Training and applications. Technical report memo 1602, MIT Al Lab.
CBCL.

Spellucei, P. (1996). A sqp method for general nonlinear programs using only
equality constrained sub-problems. Technical report, Dept. of
Mathematics, Technical University at Darmstadt.

Vanderbei, R. J. (1994a). Logo: An interior point code for quadratic
programming, Technical report, Program in Statistics & Operations

Research. Princeton University.

Vanderbei, R. J. (1994b). Symmetric quasi-definite matrices. SIAM J.
Optimization, 5 (1)100-113.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York:
Springer Verlag

29

