Journal of ICT, 1(1), pp: 51-66
m

TRANSFORMATION FRAMEWORK FOR LEGACY
SOFTWARE MIGRATION

N. L Yusop, K. R. Ku-Mahamud, A. T. Othman

School of Information Technology,
Universiti Utara Malaysia, 06010 UUM Sintok, Kedah Darul Aman, Malaysia
email: noriadah@uum.edu.my, ruhana@uum.edu.my, abutalib@uum.edu.my

ABSTRACT

A legacy system is a system that is built using old technologies, but
it is still beneficial to an organization. However, today it is facing a
great challenge to meet the demands of current applications.
Organizations are coming under great pressure to decide on the fate
of the legacy system as they try to cope with the changing scenario.
Among the alternatives offered are: discarding the legacy system
and replacing it with a totally new system, allowing the system to
deteriorate until the organization is out of business, redeveloping the
system, or reengineering the system. Reengineering seems to offer
the best solution to the challenge. This paper focuses on
transformation, which is one of the reengineering technologies for
migrating a legacy system toward an evolvable system. A few
legacy software transformation approaches are discussed. A
framework for legacy software migration that combines the
strengths of each of the described approaches is proposed.

Key words : Program transformation, Software migration, Legacy system

1.0 INTRODUCTION

omputers and application software are ubiquitously used in many
organizations to help them in their daily business operations. Today’s

fast changing business and technological environments have become a
great challenge to most organizations as they strive to maintain their
competitive advantage. Application software in today’s environment, such as
electronic commerce and groupware, demands better productivity and quality of
services delivered by the system. According to Wu et al. (1997), the current
software may not be able to deliver the required services expected by the

51

Journal of ICT, 1(1), pp: 51-60
e e e

hosting organizations in today’s highly competitive business environment.
Businesses still run on obsolete hardware which is not only slow, but also
expensive to maintain. This state of affairs will sure lead to lower productivity.
In addition, the lack of documentation, and a general lack of understanding of
the internal workings of the system make tracing failures costly and time
consuming, thus causing maintenance to become more expensive. Furthermore,
the absence of clean interfaces hampers efforts to integrate the legacy system
with other “latest” systems. The problems posed by the systems, referred to as
legacy systems, have become roadblocks to the organization’s progress.

Bennet et al. (1999) define a legacy system as “any computerized information
system that has been in use for some time, that was built with older technologies
(perhaps using a different development approach), and most importantly
continues to deliver benefit to the organization”. Despite the problems that such
systems posed, their role should not be overlooked, for the systems have in the
past facilitated the operations of the hosting organization. To cope with new
challenges, the organization is offered with alternatives on what to do with the
legacy system. Among the alternatives are:

1. discard the legacy system and replace it with a totally new system
2. redevelop the legacy system
3. reengineer the legacy system

The first alternative is a devastating action since the system provides the main
functions needed most by the organization, and the organization may have
invested so much on the system. In addition, replacing the legacy system also
involves the expense of rediscovering the organization’s accumulated
knowledge about business rules and processes. Furthermore, it is too risky for
most organizations (Yourdon, 1989).

The second alternative, redevelopment, rewrites the legacy system from scratch
using a new hardware platform and modern architecture, tools, and databases
(Bisbal et. al, 1999). Tilley and Smith (1995) have noted that “legacy systems
embody substantial corporate knowledge that includes requirements, design
decisions, and business rules.” Legacy systems also have a considerable number
of assets that are viable for reuse. Redevelopment however, impedes the reuse
of the legacy assets, especially the source code. Lauder and Kent (2000) state
that, “the code is the only repository of domain expertise, and that expertise is
scattered throughout the code. This results in the lack of understanding of the
underlying system requirements, and a considerable resistance of the code to
safely reflect on-going business process change.” The domain expertise and the
corporate knowledge are difficult to recover after many years of operation,
evolution, and personnel change. Hence, if the two alternatives are undesirable,

52

Journal of ICT, 1(1), pp: 51-60
“

then we are left with the third option, reengineering. This approach seeks to
migrate a legacy system towards an evolvable system (Tilley and Smith, 1995).

This paper concentrates on how, one of the reengineering technology, that is the
transformation of legacy software, is used to migrate the legacy system towards
an evolvable system. Section 2 discusses reengineering from the software
perspective. Software transformation approaches and their strengths are
illustrated in Section 3. Combining the strengths of the approaches described in
Section 3, a framework for legacy software transformation is proposed in
Section 4. Concluding remarks follow in Section 5.

2.0 REENGINEERING

There are many definitions of software reengineering (hereafter, reengineering).
Among the most commonly cited is the definition by Chikofsky and Cross
(1990), which says “reengineering is the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent implementation of a
new form.” This definition entails that the original functionality of the subject
System remains.

Arnold (1993), defines software reengineering to be “any activity that (1)
improves one’s understanding of software, and (2) prepares or improves the
software itself usually for increased maintainability, reusability, or
evolvability.” This is very well supported by Tilley and Smith (1995), that
states “reengineering is the systematic transformation of an existing system into
a new form to realize quality improvements in operation, system capability,
functionality, performance, or evolvability at a lower cost, schedule, or risk to
the customer.”

The need to reengineer may be motivated by the desire to utilize more cost
effective hardware or software platforms, to reduce the cost of software
maintenance, to add significant new functionality, or several other plausible
reasons. To achieve these, Arnold (1993) highlights reengineering technologies
that revolve around three themes. These themes are improving software,
understanding software, and capturing, preserving, and extending knowledge
about software. Table 1, an extension of Arnold’s table on reengineering
technology, summarizes the technologies associated with each theme, as well as
the goal that each technology seeks to achieve for the respective themes.
Although there are a number of technologies associated with each theme, they
are interdependent.

53

Journal of ICT, 1(1), pp: 51-60
e ——— ————— — —————————————— ——————"=

Table 1: Reengineering technologies and their goals
(summarized from Arnold (1993))

The modification of software to
make it easier to understand or
easier to maintain

The creation of updated, correct
information about software from

code or other documentation

The modification of software to
make it more reusable

The changing of the module
structure of a system

The improvement of system data
To make software into business

The discovering parts of a system
should be reengineered

To make the connection between
related parts and multiple view
system

A technology for understanding
program properties such as
complexity

The generation of new
information about software,
usually in different views

Improving e Restructuring
software
e Redocumenting,
annotating, updating
documentation
* Reuse engineering
* Remodularization
e Data reengineering
e Business process
reengineering
e Maintainability analysis,
portfolio analysis,
economic analysis
Understanding ¢ Browsing
software
* Analysis, measuring
e Reverse engineering,
design recovery
Capturing, » Decomposition
preserving,
extending e Reverse engineering
knowledge
about software ° ObJect recovery
e Program understanding
e Knowledge bases &
transformation

The creation of objects and their
relationships out of a program

The generation of new
information about software,
usually in different views

To obtain objects form source
code

To gain better understanding of
software (manual/automated)

54

Journal of ICT, 1(1), pp: 51-60

—_——
3.0 SOFTWARE TRANSFORMATION

In general, the transformation approaches discussed here have assumed the
source code of the legacy software system as the main input of the
transformation process. Most of them apply the reverse engineering, design
recovery, restructuring, and re-documentation techniques. Following is the
discussion on three of the approaches. These are: (i) structural documentation
(Wong et. al., 1995); (ii) program transformation process (Gall and Klosch,
1994); and (iii) interface-reengineering process (Merlo et al., 1995). The first
two seek to transform the whole system, while the third concentrates on the
transformation of the user interface of the system.

®

Structural re-documentation (Wong et al., 1995)

Legacy software requires a different approach to software

documentation than has traditionally been the practice. The Structural re-

documentation approach proposed by Wong et al., (1995) at the

University of Victoria in Canada called the Rigi methodology, has been

successfully applied to a number of softwares with about 120,000 lines

of codes previously written in Cobol and C, and run on a Unix

environment. This methodology aims at producing updated

documentation from the legacy source code. It also applies the reverse

engineering technique in extracting required information from the source

code. The Rigi re-documentation process consists of:

(a) Rigireverse - an automatic parser that parse through source codes
and store the extracted artifacts in the repository.

(b) Rigiserver - a repository that contains the extracted artifacts in
graphical format.

(c) Rigiedit - an interactive, window-oriented graph editor to
manipulate program representations.

The general approach of the re-documentation process used in Rigi
methodology consists of two phases: structural re-documentation and
subsystem composition. Structural re-documentation is the process of
parsing through the source codes to extract artifacts and store them in the
repository. In this phase a flat resource-flow graph of the software is
produced. On the other hand, subsystem composition is a recursive
process of grouping building blocks such as data types, procedures, and
other components into composite subsystems, so as to generate multiple,
layered hierarchies for higher level abstractions of software structure.
This phase involves human pattern-recognition skill and features of
language-independent subsystem-composition techniques.

55

Journal of ICT, 1(1), pp: 51-60

m

(i)

(iii)

Program transformation process (Gall and Klosch, 1994)

This approach transforms procedural system to objects. The primary
input to the process is the procedural source code. In general, the
transformation approach tries to identify potential objects in the
procedural source code. It applies reverse engineering techniques for
transforming procedural to object-oriented systems. The approach also
makes use of intermediate system representations on different levels of
abstraction such as structure charts, dataflow diagrams, entity-
relationship diagram. There is also a need to split the procedural program
into different kinds of objects. In this respect, interface interpretation
between procedural and object-oriented parts is not necessary. During the
transformation process, semantic information is acquired. This
information is utilized during the syntactic source-to-source translation.

Interface-reengineering process (Merlo et al., 1995).

Before the reengineering process of user interface takes place, one must
understand how the old interface was conceived and implemented, and
what constraints the new interface must respect to remain compatible
with the rest of the system.

Merlo et al. (1995) introduces an approach that transforms a character-
based paradigm to one which is graphical object-based. The approach
adopts a restructuring technique in the process. Other than obtaining the
new interface, the process also produces interface specification in
abstract user interface description /anguage (AUIDL) that describes the
interface behavior. Interface representations that formally describe
complex interactions as direct, time-sensitive manipulation is also
produced. The new object-based interface will eventually be integrated
with the original legacy system to produce a system with new interface.

Table 2 illustrates the strengths of each of the discussed transformation
approaches. The strengths of the approaches may be combined in such a way
that a model for transforming a legacy system can be proposed.

56

Journal of ICT, 1(1), pp: 51-60
e e

Table 2: Strengths of transformation approaches

. has intermediate outcomes/assets that may be reuse
transformation m future development

process
2. transforms the whole software system including the
database

3. produces intermediate outcomes which are QO
language compatible

Structural 1. has repositories for intermediate documentation
redocumentation produced, thus can be reused

2. transforms the whole system

3. has intermediate documentations that are language-
and paradigm-independent

4. has outcomes which may be produced from different
levels of abstraction

Interface 1. transforms only the interface part of the system

reengineering

2. produces outcomes which are language- and
platform-independent

3. uses the original system for its functional parts

4.0 A FRAMEWORK FOR LEGACY SOFTWARE TRANSFORMATION

Program transformation process and interface-reengineering process are
targeted in producing OO language compatible outcomes, and they concentrate
more on the functional parts of the legacy software. In addition, the program
transformation process also transforms the data part which is originally stored
as a flat file. On the other hand, structural re-documentation technique produces
outcomes that are (language- or paradigm independent), and it concentrates on
the interface part of the software. Combining the three techniques seems to be a
promising approach towards getting a more comprehensive framework for

57

Journal of ICT, 1(1), pp: 51-60

D e e e s

transforming legacy software, a framework that reengineers the functional and
the interface parts separately, and eventually integrates them to create the
system. Figure 1 shows such a framework.

The proposed framework, which takes legacy code as the main input, is
composed of three main parts: the functional part, the user interface part, and
the integration part. The functional part is made up of two processes, namely
the structural re-documentation and the application modeling. This part is
actually a combination of Wong’s et al. (1995) structural re-documentation
approach, and part of Gall and Klosch’s program transformation process. As
mentioned earlier, the structural re-documentation aims at obtaining updated
documents from the legacy source code, which among others is the logical
software structure. Application modeling, on the other hand, consumes the
outcomes of the structural re-documentation to produce objects from the code
called the object-oriented application model (OOAM). These objects are
obtained through the reverse object-oriented application modeling (ROOAM)
process as described by Gall and Klosch (1994).

The user interface part adopts the approach proposed by Merlo et al. (1995). It
consists of a process called the interface reengineering. Interface reengineering
involves the understanding of interface code of the original system and the
extraction of the code fragments. These fragments are analyzed further to obtain
interface specification. In this case, abstraction and inference processes are
performed. The interface specification is represented using abstract user
interface description language (AUIDL). The abstraction and inference
processes also produce graphical specifications of the interface. The interface is
further improved through restructuring process, and finally produced the new
object-based interface. The products of the functional and user interface parts
are integrated to create the system.

We hope that the proposed framework for total transformation of the legacy
software 1s able to maintain the preference of the software engineering
community, that is to keep the functional and the interface part separated. This
feature will ease the subsequent maintenance activities. In addition, the
language-independent and paradigm-independent intermediate outcomes of the
transformation processes allows the resulting software to be developed using
any programming language on any paradigm. However, this framework is only
conceptual and its practicality is yet to be proven.

58

Journal of ICT, 1(1), pp: 51-60

Systam

*C0AM-CO Application Mkl

Fig. 1: A legacy software transformation framework

5.0 CONCLUSION

Software reengineering offers an approach to migrare a legacy system towards
an evolvable software. A framework of legacy software transformation
developed by combining the strengths of previous approaches has been
proposed. The proposed framework for legacy software transformation is meant
to be more comprehensive in the sense that it takes care not only of the
functional, interface and the data part of the system, but also the integration of
these parts to create a “new” system. In addition, the framework allows the
“transformer” to keep the functional part and the interface part separated to ease
the subsequent maintenance activities.

59

Journal of ICT, I(1), pp: 51-60

M_

REFERENCES

Amold, R.S. (1993). A road map guide to software reengineering technology. In
R.S. Amold (Ed.). Software reengineering. Tokyo: IEEE Computer
Society, 3-22.

Bennet, S., McRobb, S. and Farmer, R. (1999). Object-Oriented System
Analysis and Design Using UML. London: McGraw Hill.

Bisbal. J., Lawless, D., Wu, B. and Grimson, J. (1999) Legacy Information
Systems: Issues and Directions. IEEE Software, 16 (5), 103-111.

Chikofsky, E. and Cross, J.H. (1990). Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Software. 13 — 17.

Gall, H. and Klosch, R. (1994). Program Transformation to Enhance the Reuse
Potential of Procedural Software. Proceedings of ACM Symposium on
Applied Computing. pp. 99-104.

Lauder, A. and Kent, S. (2000). Legacy system anti-patterns and a pattern-
oriented migration response. In P. Henderson (Ed.). System engineering
for business process change. Kent: Springer-Verlag.

Merlo, E., Gagne, P.Y., Girard, J.F., Kontogiannis, K. and Panangaden, P.
(1995). Reengineering User Interface. IEEE Software. 65 —73.

Tilley, S.R. and Smith, D. (1995). Perspectives on Legacy System
Reengineering. (Draft version 3.0). Available from: http:// www.
Sei.cmu.edu/ Isysree.pdf. Accessed: 15 Sept 2001. Software Engineering
Institute, Carnegie Mellon University.

Wong, K., Tilley, S.R., Muller, H.A. and Storey, M.A.D. (1995). Structural
Redocumentation: A Case Study. [EEE Software. 47 — 54.

Wu, B., Lawless, D., Bisbal, J. and Richardson, R. (1997). The Butterfly
Methodology: A Gateway-Free Approach for Migrating Legacy
Information Systems. In Proceedings of the 3 IEEE Conference on
Engineering of Complex Computer Systems (ICECCS97),: IEEE
Computer Society. pp. 200 — 205.

Yourdon, E. (1989). RE-3: Reeingineering, Restructuring, Reverse Engineering,
Part 2. American Programmer, 2 (10), 3-10.

60

Information for Authors

Submission of Manuscript

L.

This journal will be published biannually. Authors must submit four
copies of the full paper (one original and three duplicate sets), to the
Chief Editor, Journal of ICT, School of Information Technology,
Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia, for
consideration.

All contributions will be evaluated by one or more independent
referee(s) on accuracy, originality, quality and relevance. A paper
may be accepted, returned for revision or declined.

Upon acceptance of the full paper, the author is required to submit a
copy of the manuscript in digital format to the Chief Editor which
must be created using Microsoft Word.

Papers should be original and must not be or have been submitted
simultaneously to any other journals. Authors are solely responsible
for factual accuracy of their papers.

A complimentary copy of the journal will be distributed to the
author whose paper(s) are published.

Style of Manuscript

L.

Manuscripts must be in English and prepared on A4 size white
paper with 3 cm, 2.5 cm, 2 cm, 1.5 cm margins from top, bottom,
left and right respectively.

Centred at top of the first page should bc the complete title of the
manuscript, author(s), affiliation(s), mailing and email address(es).
This is followed by abstracts under the heading ABSTRACT
(centrcd and bold), not exceeding 15 lincs, keywords under the
heading Key words: (not more than eight keywords) and followed
by the text. The text should be typed in double space, using a font
similar to the onc used in this text (Times, 10 points). Paragraphs
should be separated by double spacing.

Figures and photos should be labelled with “Fig.” and tables with
“Table” and should be numbered sequentially, for example, Fig. 1,
Fig. 2 and so on. The figure numbers and titles should be placed
below the figures, and the table numbers and ftitles should be placed
on top of the tables. The first letter of the title should be placed in
the middle of the page between the left and right margins. Tables,
illustrations and the corresponding text should be placed on the
same page as far as possible. Otherwise they may be placed on the
immediate following page. Its size should be smaller than the type
area.

Each manuscript should not exceed 20 pages including illustrations
and tables.

Sections and subsections should be numbered and titled as 1.0, 2.0,
etc. and 1.1, 1.2, 2.1, 2.2, 2.2.1, etc. Capital letters should be used
for the section titles. For subsections, the first letter of each word
should be m capital letter and followed by small letters.

The Editors reserve the right to edit/format the manuscript to
maintain a consistent style.

