Journal of ICT, | (1), pp: 1-18

TUNING RANDOM EARLY DETECTION ROUTER
MECHANISM FOR TCP-FRIENDLINESS

S. Hassan

School of Information Technology,
Universiti Utara Malaysia, 06010 UUM Sintok, Kedah Darul Aman, Malaysia
e-mail: suhaidi@uum.edu.my

ABSTRACT

The Internet Engineering Task Force (IETF) has strongly
recommended the use of the Random Early Detection (RED)
active queue management mechanism in network routers
(gateways) for controlling Internet congestion. In this article, we
describe our experiences with RED parameters from our study
on how the TCP-friendliness property of a rate-based congestion
control protocol is affected by different parameterizations of
RED. We explore a range of optimal RED parameter values for
ensuring the TCP-friendliness of competing network
connections. Our experimental results show that different RED
parameterization does affect the TCP-friendliness of rate-based
control protocol. We also argue that an appropriate tuning of
RED gateway can significantly improve the TCP-friendliness of
rate-based congestion control protocol.

Key words: Congestion control protocols, Networks, Random early detection,
TCP-friendliness

1.0 INTRODUCTION

new set of multimedia applications is emerging to satisfy the growing
demands of Internet users. Nowadays, applications such as real-time

and streaming audio and video not only become more typified in the
Internet but also account for significantly increasing portions of the Internet
traffic. These applications produce traffic that must coexist and share Internet
resources with the majority of traffic comprising TCP flows. In addition, they

Journal of ICT, 1(1), pp: 1-18

require real-time performance guarantees such as bounded delay and minimum
bandwidth. Therefore, supporting these traffic over heterogencous multi-
protocol networks such as the Internet is not a trivial task.

Most of these multimedia applications are non-TCP-based; they are usually not
built with adequate congestion control, mainly for simplicity reason. These
applications produce traffic that is considered unresponsive with respect to
congestion control mechanisms deployed in the network. Widespread
deployment of these traffic in the Internet threatens fairness to competing TCP
traffic and may lead to possible congestion collapse (Floyd and Fall, 1999).
Congestion collapse is a situation where although the network links are heavily
utilised, very little useful work is being done, and packets transmitted will
simply be discarded before reaching their final destinations (Clark et al., 1998).

One possible approach to overcome the unfairness problem is by employing
rate-based congestion control mechanisms within such applications, making
them adaptive to network conditions. Since the dominant portion of today's
Internet traffic is TCP-based, such congestion control mechanisms must be
TCP-friendly. These TCP-friendly applications must send their data at a rate no
higher than that of a TCP connection operating along the same path (Mahdavi
and Floyd, 1997), and thus obtaining approximately the same average
bandwidth over the duration of connection as the TCP traffic. For this purpose,
several unicast TCP-friendly rate-based control protocols have been proposed
such as in Loss-Delay Algorithm (LDA) (Sisalem and Schulzrinne, 1998),
Dynamic Rate Shaping (DRS) (Jacobs and Eleftheriadis, 1998), Rate
Adaptation Protocol (RAP) (Rejaie et al., 1999), and TCP Emulation at
Receiver (TEAR) (Rhee et al., 2000). In these works, the adjustment of the
transmission rate largely relies on the indication of packet loss in the network
during congestion.

During this congestion period, packets are dropped by the network routers in the
effort to reduce the congestion level. The higher loss rate can negatively affect
the TCP-friendliness property of the rate-based sources. The cooperation from
congestion avoidance mechanisms such as Random Early Detection (RED)
(Floyd and Jacobson, 1993) at the network routers are needed to support and
improve TCP-friendliness.

In this work, we study how TCP-friendliness of a rate-based control protocol is
affected by different parameterizations of RED. We also explore the range of
optimal RED parameter values for ensuring the TCP-friendliness of competing
connections. We choose TCP-Friendly Rate Control (TFRC) protocol (Floyd et
al., 2000) for this purpose. Our motivations for conducting this work are
threefold: (1) The high global demands for avoiding congestion collapse in the

Journal of ICT, 1(1), pp: 1-18

-—

Internet by employing TCP-friendliness rate-based control protocols, (2) the
popularity of RED implementations in network routers, including commercial
routers such as Cisco routers (e.g., Cisco, 1999), and (3) the lack of current
work on investigating RED parameter tuning and its effects on TCP-
friendliness.

2.0 BACKGROUND
2.1 Random Early Detection (RED)

Random Early Detection (RED) (Floyd and Jacobson, 1993) was proposed as
an active queue management mechanism implemented in network routers. The
main purpose of RED is to address network congestion in a proactive rather
than reactive manner. In doing so, RED controls its average queue size by
indicating the sources to slow down their transmission rates. RED randomly
drops packets prior to the period of high congestion. By doing this, RED
indirectly tells the sources to reduce their transmission rates.

RED randomly drops or marks arriving packets when the average queue length
exceeds the minimum preset threshold values. The drop probability increases
with increasing average queue length up to a maximum dropping probability.
When the average queue length reaches the maximum preset threshold maxg, all
the arriving packets are dropped.

The behaviour of RED is controlled by these important parameters;

e miny— minimum threshold value, the queue length at which the RED
queue begins to drop/mark all arriving packets

e maxy— maximum threshold value, the queue length at which the RED
queue drops/marks all arriving packets

e W(Q)- the weighting factor used in the calculation of the exponential
weighted queue average

e max,— the maximum packet dropping probability

The effect of RED mechanism is that the sources learn of the congestion before
the network buffer is full and get the chance to slow down before facing
multiple successive packet losses. In addition, faster connections will have
higher number of packets dropped because of their packets arriving at a higher
rate than the slower connections. As a result, the faster connections are more
likely to slow down than the slower ones thus correcting the bias among the
connections.

Journal of ICT, 1(1), pp: 1-18

e —— e R e

Research on RED has been very active (May et al. 1999; Christiansen et al.,
2000; Hassan and Kara, 2000b), and several variations of RED have been
proposed. RED has also been implemented in commercial routers such as in
Cisco routers (Cisco, 1999).

2.2 TCP-Friendly Rate-based Control Protocol

As most real-time streaming multimedia applications are based upon User
Datagram Protocol (UDP), which does not employ congestion control
mechanisms, they might seize most of the shared bottleneck bandwidth, thus
starving the TCP connection. This problem appears because of the UDP traffic
not responding to congestion signals which cause TCP flows to back off. The
UDP traffic continues to dominate the bandwidth which negatively affects the
throughput of the other 'good' network citizen. This is a classic example of
TCP-unfriendliness (Floyd and Fall, 1999). To overcome this problem, it is
crucial for such applications to employ the TCP friendly congestion control
mechanisms.

In addition, since real-time streaming multimedia applications are rate-based, it
is more appropriate to utilise the rate-based congestion control mechanism at
the sender. In the rate-based congestion control scheme, the source does not use
congestion window (as in window-based TCP) to control the amount of data in
the network. Instead, the source directly adjusts its sending rate based on what
is appropriate for the applications. The rate-based source constantly monitors
overall packet loss in the network while sending data. Monitoring is normally
done by means of loss feedback sent by the receiver. The source then calculates
the rate and sends the data appropriately. Furthermore, in order to be TCP-
friendly the source's average sending rate must not be higher than that achieved
by a TCP connection along the same path. A simple model for estimation of the
steady state throughput of a long live TCP connection, in the absence of
timeouts, as proposed by Mahdavi and Floyd (Mahdavi and Floyd, 1997) is
given as:

*

R*

Th;oughput =

IS

)

where k is a constant in the range of 1.22 to 1.31, depending on the
acknowledgment type used, M is the maximum segment (packet) size, R is the
round trip time experienced by the connection and 1 Is the probability of loss
event (during the lifetime of the connection). This simple throughput estimation

Journal of ICT, 1(1), pp: 1-18
“

formula does assume that the retransmission timeout never happens and packet
loss occurs at random. The assumption does not correctly reflect the reality of
the current Internet. Retransmission timeout occurs as a result of network
congestion while packet loss may not appear at random. Padhye (Padhye, 2000)
suggests that the throughput estimation should take into account the
retransmission timeout and the current advertised window size which results in
the following throughput equation 2 below:

S
RJZTP + 3tkm"3?pp(1 + 32p2)

where M is the maximum segment (packet) size; R is the round trip time; p is
the probability of loss event, ty, is the Retransmission timeout and b is a
constant value of 2 (if delayed ACK is used, otherwise equals 1). TCP-
friendliness would result from the implementation of TCP-friendly control
protocols. In general there are many classes of such protocols. Some of these
protocols such as in Floyd et al. (Floyd et al., 2000) and Yang and Lam (Y ang
and Lam, 2000) explicitly use equation 2 to calculate the TCP-friendly rate
while others such as in Padhye et al., (Padhye et al., 1998) and in Rejaie et al.
(Rejaie et al., 1999) implicitly use the more general equation 1. Many of these
protocols are designed to work at the sender's side, while at least one protocol
(Rhee et al., 2000) is implemented at the receiver's side.

Throughput =

@)

2.3 TCP-Friendly Rate Control (TFRC) Protocol

TFRC (Floyd et al,, 2000) is a rate-based end-to-end congestion control
protocol, which is designed for unicast playback of Internet streaming
applications. It was developed at AT&T Center for Internet Research at the
University of California in Berkeley. TFRC is a sender-based scheme that
works by continuously adjusting the source's sending rate based on equation (1).
TFRC protocol is still under development and its simulator code extension was
made available in the ns simulator (ns, 1999) version 2.1b6 or later.

TFRC is a source and loss-based rate control protocol. Packet losses are
identified by the gaps in the sequence number of the transmitted packet at the
receiver module. The sender adjusts its transmission rate based on the loss event
rate calculation and round-trip time (RTT). The receiver sends feedback at
regular intervals to the sender which then adjusts the rate accordingly, based on
this feedback. When the receiver notices the lost event, it immediately notifies

Journal of ICT, 1(1), pp: 1-18

the sender and the sender adjusts its sending rate. The adjustment of the sending
rate to achieve TCP-friendliness is based on the TCP-friendly equation
described in Padhye (Padhye, 2000).

TFRC uses the Average Loss Interval method (Widmer, 2000) to calculate loss
event rate. This calculation is made by the receiver and is sent to the sender for
rate adjustment. Correct calculation of the loss event rate is vital for the
operation of TFRC. Also, The exponential weighted moving average (EWMA)
filter is used to obtain a smooth and stable RTT estimates from the RTT sample.

The sender uses the slow start technique at the beginning of the transmission
phase during which it tries to double its sending rate at every RTT until it
reaches the fair share of bandwidth. When the receiver detects the second lost
packet, it instantly notifies the sender to quit the slow start mode. The first lost
packet is insignificant and thus ignored by the receiver.

3.0 EXPERIMENTAL DESIGN
3.1 Description of Experiments and Rationale

The main objective of this work is to study how the TCP-friendliness of the
TFRC protocol is affected by a different parameterization of RED and to
explore the range of optimal RED parameter values for ensuring the TCP-
friendliness of competing connections. Specifically we investigate how the
throughput of the flows are affected as a result of using different RED
parameters when TFRC sources compete with their TCP counterparts in
different network scenarios. In doing this, we measure the throughput of each
TFRC and TCP flows respectively and calculate the average bottleneck
bandwidth share of each flow based on their average throughput. We determine
the degree of friendliness (i.e., fairness) of the TFRC protocol by comparing
their average bandwidth share against that of the TCP flows.

Simply stated, the friendliness ratio, F, can be expressed as:

Journal of ICT, 1(1), pp: 1-18

ke
P

i=1

Frz'zc‘:—'t&'—
Tt]’;t

i=1

ke

€)

where T, is the average throughput of the TCP-friendly flows, T, is the
throughput of the TCP flows while k. and k, are the total number of monitored
TCP-friendly and TCP connections, respectively. In addition, using the value of
F,, we use the method proposed in Hassan and Kara (Hassan and Kara, 2000a;
Hassan et al., 2001) to characterize the friendliness matrix. Since F; is always
inversely proportional to the percentage bandwidth share obtained by the TCP
flow, we can use this percentage as an indicator for our purpose.

Table 1: Characterizing TCP-friendliness

Less than 20 >400 | Very Poor
20-29 2.34 - 4.00 | Poor
30-39 1.51-2.33 | Unsatisfactory
40 - 49 1.04 - 1.50 | Satisfactory
~50 0.97<1.00 | Excellent
<1.03

51-59 0.69 - 0.96 | Satisfactory

S 1 60-69 0.44 - 0.68 | Unsatisfactory
70-179 0.25-0.43 | Poor
More than 80 <0.25 Very Poor

Table 1 shows the proposed characterization scheme. From the table, F;, = 1.00
is considered as the excellent value to indicate that the bottleneck bandwidth is
fairly shared among the competing TCP and TFRC flows. In this case both TCP
and TFRC flows obtain approximately 50% of the bottleneck bandwidth. As

Journal of ICT, 1(1), pp: 1-18

f———_—_—_——

TCP bandwidth decreases below this point, the TFRC flows obtain more
bandwidth resulting in unfriendliness on behalf of the TFRC flows towards that
of the TCP. This situation could continue until TFRC flows monopolize almost
all the available bandwidths. The value F; > 4.00 is regarded as very poor or
very TCP-unfriendly. Similarly, as the TCP flows obtain more bandwidth
beyond this optimum 50-50 point, the value of F, decreases linearly to a point
where TCP flows dominate all the available bandwidths. The value F; < 0.25 is
considered as very poor or very unfair towards TCP-friendly flows.

3.2 Scope of Experiments

Our performance investigation of RED dynamics involves testing the simulated
network scenario with varying RED parameters. We limit our scope of
investigation to those related only to the experiments by varying the value of the
following parameters:

(a) Buffer size

(b) Maximum dropping probability (max;)

(c) Size of dropping interval (maxy - ming,)

(d) Queue weighting factor

We use TCP Sack (Floyd and Fall, 1996) as our choice of TCP
implementations. TCP Sack is designed to overcome the problem of poor
performance when multiple packets are lost from one window of data. It allows
the TCP sender to intelligently transmit only those segments that have been lost.
In addition, it decouples the determination of which segment to transmit from
the decision about when it is safe to resend a packet. The work in Hassan and
Kara (Hassan and Kara, 2000) explores the desirable performance results of
TFRC when competing with TCP Sack in terms of TCP-friendliness.

3.3 Simulation Scenario

We use the simulator ns-2 (ns, 1999) from the VINT project at U.C.
Berkeley/LBNL to perform our simulation experiments. The simulator is event-
driven and runs in a non-real-time fashion. In ns-2, the user defines arbitrary
network topologies that are composed of nodes, routers, links and shared media.
A rich set of protocol objects can then be attached to nodes, usually as agents.
For this simulation, we use TCP Sack, as well as the simulated TFRC protocol.
Correspondingly, the user may choose between various types of applications. In
this simulation, we use the FTP application for the TCP agent and application
using a constant bit rate (CBR) traffic pattern, which uses the UDP transport
protocol. We configure the routers using Random Early Detection (RED)
policies using parameters described in Section 3.4. Packet losses are simulated
by packet drops at overflowed router buffer.

Journal of ICT, (1), pp: 1-18

Fig. 1: Simulation Topology

Figure 1 illustrates the simulated scenario used in this simulation. We use 2 sets
of (nt+1) competing sources, where 0<n<l. One set of these sources act as
TFRC rate-based sources transmitting TFRC traffic into the network, and
another set running as TCP agents with TCP Sack. The TFRC source TFs,
sends data to (and receives acknowledgments from) the receiver/sink agent
TFr,. Similarly, TCP source TCPs, sends data to (and receives
acknowledgments from) TCPr, receiver agent.

3.4 Simulation Parameters

A fair evaluation can only be achieved with careful selection of simulation
parameters. We have used similar parameter values for all the flows wherever
possible. The intermediate routers are connected by a bottleneck link with
bandwidth set to 1.5 Mbps and link delay of 20 ms. The traffic from all sources
are sharing this bottleneck bandwidth. The TCP flows are FTP sessions and
have unlimited data to send. Side links connecting to the bottleneck link have
bandwidth of 10 Mbps with 6ms delay factor. The routers have a single output
queue for each attached link, and uses RED active queue management. All
simulations were run considerably long enough (about 100ms) until they
achieved steady state behaviour.

We use two sets of test cases called Base and Buf250. Base case represent
standard RED configuration with relatively small buffer size of 50 packets and
initial minimum-maximum threshold range of 5-10. On the other hand, Buf250
represent RED configuration with large buffer size of 250 packets and initial
minimum-maximum threshold range of 20-50. Table 2 summarizes important
simulation parameters used in these experiments.

Journal of ICT, I(1), pp: 1-18
—.__——-—————ﬁ
4.0 PERFORMANCE RESULTS
We have conducted a substantial number of experiments to evaluate the effects
of different RED parameterization on TCP-friendliness of the TFRC protocol.
The following subsections present our results for these different experiments.

All the results, where appropriate, are obtained using the level of confidence of
95%.

Table 2: Simulation Parameters

Packet size 1000 bytes

Bottleneck bandwidth 1.5 Mbps
Bottleneck delay 20 ms
Sidelink bandwidth 10 Mbps
ACK size 40 bytes
TCP timer granularity 100 ms
Simulation length 100 sec
RED max, 1/10
RED g-weight 1 0.002

4.1 Buffer Size

In this set of experiments we study the effects of varying the RED buffer size on
the friendliness of TFRC. We use the default Base case to represent a relatively
small buffer size of 50 packets with the minimum and maximum threshold
range of 5-10. We compare the results against the default case of Buf250 where
a large buffer of 250 packets and the minimum-maximum threshold range of
20-50. All other RED variables are kept unchanged.

Table 3 presents the results of these experiments. The asterisk symbol used in
the last column is to indicate the preferred result-the more the number of
asterisks, the better the results are. In this case, Buf250 produces better results.
The bigger buffer does help to improve the bandwidth share of the competing
connections, although the TCP connections achieve higher throughputs.

Figures 2 and 3 show the friendliness ratio over the number of competing
nodes. With small buffer size, the fluctuation in the friendliness ratio is
considerably apparent. This is due to the fluctuation in the amount of bandwidth
share obtained by both TCP and TFRC connections because of the small space
in the buffer that lead to more frequent packet drops. This in turn causes TCP

10

Journal of ICT, 1(1), pp: 1-18

and TFRC sources to adjust their congestion window size and transmission rate
respectively. With bigger buffer size, such effect is reduced due to the ability of
RED to distribute packet losses over a bigger range of buffer space.

Table 3: Effects of RED Buffer Size on the Friendliness of TFRC

0.82+0.16 0.66
250 10.91+0.20 0.71 1.10 *x

4.2 Maximum Dropping Probability

In the following experiments, we vary the size of the maximum dropping
probability max,, and we compare the performance with the small and large
RED buffer. We use the default Base and Buf250 cases with varying values of
max,. All other parameters are set to the default setting. Tables 4 and 5 present
the results of the experiments.

Bese Cese (Small Butter)

Friendiness Ralio

(RS R R |

60
Total Nodes

Figure 2: TCP-Friendliness with Small RED Buffer Size

Base Case (Small Buffer)
T T

Friendiness Raio

U G W T T Y S T W |

1
o 20 40 60 80 100

Figure 3: TCP-Friendliness with Large RED Buffer Size

11

Journal of ICT, I(1), pp: 1-18

e EEE———————— — — — —— — — — ——— /— —— — —— — ——————————

Table 4: Effects of Varying max, of the Base Case
RED on TCP Friendliness

1/100]0.85 + 0.38 [0.47 [1.23 [**
1710 [0.82+0.16 [0.66 [0.97 [***
1 087+049 (039 [1.36 [*

Table 5: Effects of Varying max, of the Buf250 Case
RED on TCP Friendliness

[1/100 [3.02 +2.20 [0.83 [5.22
1710 [091£0.19 (071 110 ==
T [1.07x014 093 (122 |=

In the Base case with smaller buffer size, varying max, does not produce
significant difference in the results. All the results show that TCP connections
achieve more throughputs, which implies that the connections obtained higher
bandwidth share than that of their TFRC counterpart. It is clear that the result
with max, =1/10 represents the best result for this experiment. This is in
agreement with the max, value suggested in Floyd and Jacobson (Floyd and
Jacobson, 1993).

Furthermore, the results obtained for the case of Buf250 are quite interesting.
TFRC exhibits relatively extreme unfairness towards TCP connections when
max, is set to 1/100. One possible explanation for this phenomenon is that the
value of max, = 1/100 is considerably too small for this queue size. Because of
that, the average queue size keeps reaching maximum thresholds and RED starts
dropping all the arriving packets until the average queue size decreases below
maxy, again. This process repeats and fluctuations occur, with loss probability
alternating between max, and one. Such fluctuation in loss rate is detrimental
for TCP connections since TCP is slower in recovering from loss compared to
TFRC. During this oscillation period, TFRC connections obtain more bandwith
share, hence better throughput. It is also clear from Table 5 that max, = 1/10 is
the best for ensuring TCP friendliness of TFRC. Again, this is in agreement
with the value suggested in Floyd and Jacobson (Floyd and Jacobson, 1993).

12

Journal of ICT, 1(1), pp: 1-18
“

43 Queue Weighting Factor

Next, we examine the effects of varying the queue weighting factor of RED
queue. Again, we use the default Base and Buf250 cases with varying value of
queue weighting factor w(q). Similarly, we keep other parameters to the default
value. Tables 6 and 7 exhibit the results of these experiments. We intentionally
make comparison using only two values of w(q). The value w(q) of 0.002 is to
represent the small queue weighting factor while value w(q) of 0.02 represents a
larger value of the factor. In both cases, the results clearly indicate that smaller
weighting factor of 0.002 does help in improving the TCP-friendliness. The
smaller weighting factor value makes RED queue more accommodative toward
larger bursts, thus detecting and reacting more slowly to congestion.

Table 6: Effects of Varying W(Q) of the Base Case
RED on TCP Friendliness

o

002 [1.08+040 [0.68 [148 |
0002 [082+0.16 066 (097 [**

Table 7: Effects of Varying W(Q) of the Buf250 Case
RED on TCP Friendliness

0.81+0.17 10.64 0.98
0.002 0.91+0.20]0.71 1.10 **

This results in better throughput for both connections. On the other hand, a
larger weighting factor makes RED queue less accomodative towards the
burstiness of TCP traffic, making RED more responsive to congestion. Hence
more packets are dropped making TFRC gaining larger bandwidth share which
in turn results in better throughput.

4.4 Size of Dropping Interval

In our final set of experiments, we explore the effects of varying the size of
dropping interval (maxy, - ming) on TCP friendliness. We use three different
dropping intervals i.e., small, medium and large for both test cases and keep the
other variables unchanged. We carefully selected the size of the interval in such
a way that the maximum threshold maxg is at least twice the minimum
threshold miny, as recommended in Floyd and Jacobson (Floyd and Jacobson,
1993).

13

Journal of ICT, I(1), pp: 1-18

/—

Tables 8 and 9 present the results for both test cases. In both test cases, we
notice that the RED queue with smaller dropping interval does help to improve
TCP-friendliness. We also notice that in the Base case, the bigger the interval,
the more dominant the TCP connections become whereas in the Buf250 case,
with larger dropping intervals the TFRC becomes more dominant. In other
words, with the increasing size of the dropping interval, the RED queue does
not facilitate the overall fairness for the competing connections. We will
investigate this nature further in our future work.

Table 8: Effects of Varying Dropping Intervals of the Base
Case RED on TCP Friendliness

5-10 0.82+0.16 0.66 0.97
5-20 0.55+0.16 0.39 0.71 *x
5-30 0.53+0.12 0.41 0.65 *

Table 9: Effects of Varying Dropping Intervals of the Buf250
Case RED on TCP Friendliness

20-50 0.91 +£0.20 0.71 1.10 *oak
20-100 1.10+0.15 0.96 1.25 *x
20-150 1.19+0.11 1.09 1.30 *

5.0 DISCUSSIONS

In this article, we discussed how TCP-friendliness of rate-based control protocol
is affected by RED parameter tuning. Our results demonstrate that the
friendliness of such protocol could be improved by appropriate tuning of the
RED_ parameters. However, obtaining the optimum configuration. is a
challenging task since there exist many parameters that must be taken into
consideration in addition to the sensitiveness of those parameters that affect
RED performance. Investigations on right RED parameter settings, like ours,
are more heuristic in nature. Despite this, we believe that our chosen parameters
are adequate for ensuring TCP-friendliness of competing connections.

Throughout our investigation with RED, we assume that RED only performs
the normal dropping operation in handling the congestion. In other words, we

14

Journal of ICT, I(1), pp: 1-18

e R R —=—

do not consider exploiting RED's Explicit Congestion Notification (ECN)
feature, using which the routers would provide the indication of the congestion
to the end nodes. If ECN were used, RED would set a Congestion Experience
(CE) bit in a packet's header as an indication of congestion, instead of dropping
the packet. The use of CE bit would allow the receiver (s) to receive the packet,
avoiding the potential for excessive delays due to the retransmission after
packet losses. The deployment of RED with ECN feature requires an ECN-
capable environment in which the sources, routers and receivers must be able to
handle the ECN-capable and non ECN-capable traffic. In our studies however,
the sources and receivers are not ECN-capable, thus prohibiting the use of
RED's ECN feature. Furthermore, in today's Internet reality, ECN has not yet
been widely deployed.

The TCP traffic used in our study is long-lived in nature, produced by the FTP
application. FTP sessions typically have larger congestion windows, have
consequently, higher probability of getting multiple losses within a roundtrip
time, and thus are inherently bursty. The use of RED benefits these long-lived
FTP sessions because of RED's ability to absorb the burstiness of the FTP
traffic. Our choice for the long-lived type of traffic was to make it comparable
and fair to the competing TCP-friendly traffic, which is also long-lived in
nature. In addition, the majority of the packets and bytes in the Internet belong
to long-lived flows. Nevertheless, apart from long-lived traffic, there is also
short-lived traffic in the Internet nowadays. Short-lived traffic is typically
produced by Web sessions. In our work, we neither considered a TCP traffic
mix of long-lived and short-lived nor used short-lived TCP traffic alone when
competing with the TCP-friendly traffic. With short-lived TCP traffic, RED
may behave differently since this type of traffic is less bursty in nature, thus
affecting the friendliness characteristics. In this work, we do not consider short-
lived TCP applications in our evaluation in order to avoid undesirable results,
since RED theoretically behaves differently with the short-lived traffic.
However, if there were no such constraint on the experimental design, it would
" be beneficial to consider such traffic in the future study on RED performance
and its effects on TCP-friendliness. Recently, Christiansen et al. (Christiansen et
al., 2000) conducted a study on the effects of RED on the performance of web
browsing. Recall that the Web traffic is short-lived in nature. The novel aspect
of their work being the user-centric measure of performance-response time for
HTTP request-response pairs. They presented the empirical evaluation of RED
performance across a range of parameter settings and offered loads. Among
their findings is that RED can be carefully tuned to yield performance superior
to FIFO under the offered HTTP traffic load of 90% and 100%. They concluded
that for links carrying only HTTP traffic, RED queue management appears to
provide no clear advantage over DropTail for end-user response time. However,
this work differs from ours in that it does not consider the issue of TCP-

15

Journal of ICT, 1(1), pp: 1-18

friendliness of the competing traffic. Also, the work focusses on short-lived
traffic and their performances were evaluated over a network testbed.

6.0 CONCLUSIONS

In this paper, we study how TCP-friendliness of a rate-based control protocol is
affected by the different parameterization of RED. In all the experiments,
results show that TFRC protocol in general exhibits a satisfactory level of TCP-
friendliness. However, the friendliness can be further improved by appropriate
tuning of the RED parameters.

We also explore the range of optimal RED parameter values for ensuring the
TCP-friendliness of competing connections. Our results reveal that a bigger
buffer size with relatively small dropping interval can improve the friendliness
in general, provided that the maximum dropping probability and the queue
weighting factor parameters are set according to the value suggested in Floyd
and Jacobson (Floyd and Jacobson, 1993). The results also show that a smaller
range of dropping interval does help in improving the friendliness.

In conclusion, the use of different RED parameters does affect the overall
friendliness of TFRC. Although appropriate tuning of RED parameters will help
in improving the friendliness, obtaining the optimum configuration is not an
easy task to perform since there exist many variables that must be taken into
consideration.

ACKNOWLEDGMENTS

We wish to thank Dr. Karim Djemame for his assistance in interpreting the
statistical results, as well as Jim Jackson, Riri Fitri Sari and Somnuk
Puangpronpitag for their useful discussions and contributions during the
preparation of this article.

REFERENCES
Christiansen, C., Jeffay, K., Ott., & Smith, S. (2000). Tuning RED for Web
Traffic. In Proceedings of ACM SIGCOMM2000, 139-150. Stockholm,

Sweden: ACM.

Cisco Connection Online. (1999). Weighted Random Early Detection (WRED).
10S Documentation. [On-line]. http://www.cisco.com.

16

Journal of ICT, 1(1), pp: 1-18

;

Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., Floyd, S., Jacobson,
V., Minshall, G., Partridge, C., Peterson, L., Ramakrishnan, R., Shenker,
S., Wroclawski, J., & Zhang L. (1998). Recommendations on Queue
Management and Congestion Avoidance in the Internet. RFC2309.
Available http://www ietf.org.

Floyd, S., & Fall, K. (1996). Simulation-based Comparisons of Tahoe, Reno,
and SACK TCP. ACM Computer Communication Review, 26 (3): 5-21.

Floyd, S., & Fall, K. (1999). Promoting the Use of End-to-End Congestion
Control in the Internet. IEEE/ACM Transactions on Networking, 7 (4):
458-472.

Floyd, S., Handley, M., Padhye, J., & Widmer J. (2000). Equation-Based
Congestion Control for Unicast Applications. Tt echnical Report TR-00-
003, International Computer Science Institute, University of California,
Berkeley.

Floyd, S., & Jacobson, V. (1993). Random Early Detection Gateways for
Congestion Avoidance. IEEE/ACM Transactions on Networking, 1: 397-
413.

Hassan, S., & Kara, M. (2000a). Simulation-based Performance Comparison of
TCP-Friendly Congestion Control Protocols. In Proceedings of the 16th
Annual UK Performance Engineering Workshop (UKPEW 2000).
Durham, United Kingdom: UK Network Performance Engineering
Community. Pages 199-210.

Hassan, S., & Kara, M. (2000b). Effects of RED Dynamics on TCP-
Friendliness of Rate-based Control. In Proceedings of the IEEE Protocols
for Multimedia Systems Conference (PROMS2000), Cracow, Poland, 427-
434 1EEE.

Hassan, S., Kara, M., & Djemame, K. (2001). On Characterising TCP-
friendliness of the Rate-based Congestion Control Protocols, Research
Report Series RSS-2000.16, School of Computing, University of Leeds,
England.

Jacobs S., & Eleftheriadis, A. (1998). Streaming Video using TCP Flow Control
and Dynamic Rate Shaping. Journal of Visual Communication and Image
Representation, Special Issue on Image Technology for World-Wide-Web
Applications, 9 (3): 211-222.

17

Journal of ICT, 1(1), pp: 1-18

Mahdavi, J., & Floyd, S. (1997). TCP-Friendly Unicast Rate-Based Flow
Control. Technical note sent to the end 2end-interest mailing list.

May, M., Bolot, J., Diot, C., & Lyles B. (1999). Reasons Not to Deploy RED.
In Proceedings of the 7th. International Workshop on Quality of Service
(AWQ0S5'99), 260-262. London: IEEE/ACM.

Ns (Network Simulator). (1999). Available http://www.mash.cs.berkeley.edu/
ns/.

Padhye, J. (2000). Towards a Comprehensive Congestion Control Framework
Jfor Continuous Media Flows in Best E Networks. Ph.D. diss., University
of Massachusetts Amherst.

Padhye, J., Firoiu, V., Towsley, D., & Kurose, J. (1998). Modeling TCP
Throughput: A Simple Model and Its Empirical Validation. ACM
Computer Communication Review, 28: 303-314.

Rejaie, R., Handley, M., & Estrin, D. (1999). RAP: An End-to-end Rate-based
Congestion Control Mechanism for Realtime Streams in the Internet . In
Proceedings of IEEE Infocom'99, New York. IEEE.

Rhee, 1., Ozdemir, V., & Yi, Y. (2000).TEAR: TCP Emulation at Receivers -
Flow Control for Multimedia Streaming. Technical report, NCSU

Department of Computer Science, North Carolina State University,
Raleigh.

Sisalem, D., & Schulzrinne (1998). The Loss-Delay Adjustment Algorithm: A
TCP-friendly Adaptation Scheme. In Proceedings of International

Workshop on Network and Operating System Support for Digital Audio
and Video (NOSSDAV), Cambridge, England.

Yang, Y. R, & Lam, S. S. (2000). General AIMD Congestion Control.
Technical Report TR-2000-09, Department of Computer Science,

University of Texas at Austin.

Widmer, J. (2000). Equation-Based Congestion Control. Diploma Thesis,
University of Mannheim, Germany.

18

