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ABSTRACT

A basic disadvantage to the symmetric rank one (SR1) update is that the SR1
update may not preserve positive definiteness when starting with a positive
definite approximation. A simple remedy to this problem is to restart the up-
date with the initial approximation mostly the identity matrix whenever this
difficulty arises. However, numerical experience shows that restart with the
identity matrix is not a good choice. Instead of using the identity matrix we
used a positive multiple of the identity matrix. The used positive scaling factor
i$ the optimal solution of the measure defined by the problem — maximize the
determinant subject to a bound of 1 on the largest eigenvalue. This measure is
motivated by considering the volume of the symmetric difference of the two
ellipsoids, which arise from the current and updated quadratic models in quasi-
Newton methods. A replacement in the form of positive multiple of identity
matrix is provided for the SR1 when it is not positive definite. Our experi-
ments indicate that with such simple scale, the effectiveness of the SR1 method
is increased dramatically.

Keywords. Symmetric rank one, Volume of ellipsoid, Unconstrained optimi-
zation.

ABSTRAK

Kelemahan asas bagi pengemaskini pangkat satu yang simetri (SR1) ialah
pengemaskini SR1 tidak dapat mengekal ketentu positif bila bermula dengan
suatu hampiran tentu positif. Penanganan yang mudah terhadap masalah
tersebut ialah memula-semula pengemaskini dengan hampiran awal yang
biasanya merupakan matriks identiti apabila masalah tersebut timbul. Walau
bagaimanapun, pengalaman berangka menunjukkan bahawa bermula-semula
dengan matriks identiti bukanlah suatu pilihan yang baik. Gandaan positif



matriks identiti digunakan untuk menggantikan matriks identiti. Faktor
penskalaan yang digunakan itu merupakan penyelesaian optimum bagi ukuran
yang ditakrifkan oleh masalah-memaksimumkan penentu tertakluk kepada
pembatasan 1 atas nilaieigen terbesar. Ukuran tersebut dimotivasikan dengan
mempertimbangkan isipadu beza simetri bagi dua ellipsoid yang timbul dari
model kuadratik kemaskini dan semasa dalam kaedah kuasi-Newton. Jadi, suatu
penggantian dalam bentuk gandaan positif matriks identiti telah dibekalkan
untuk SR1 apabila ia tidak tentu positif. Ujikaji kami menunjukkan bahawa
dengan skala mudah seperti itu, kecekapan kaedah SR1 meningkat dengan
berkesan sekali.

Katakunci. Pangkat satu yang simetri, isipadu ellipsoid, pengoptimuman
tak berkekangan.

INTRODUCTION

This paper is concerned with quasi-Newton methods for finding a local
minimum of the unconstrained optimization problem,

min f{x) (1.1)

xeR”

It will be assumed that f(x) is at least twice continuously differentiable.
Algorithms for solving (1.1) are iterative and the basic framework of an
iteration of a secant method is:

Given currentiteration X, f'(x,) Vf(x,) or finite difference approxi-
mation, and or finite difference approximation, and B, € R""
symmetric (secant approximation toV? f (x,)select new iterate x, by a
line search method. Update B, to B, such that B, is symmetric and
satisfies the secant equation B, s = y, where 5, =x, ~xandy = Vf(x,)-

Vi (x).
In this paper, we consider the SR1 update for the Hessian approxima-

tion, - B - T
B, =B, + Ye = Bes)U. = Bese)
s, (y.—B.s,)

(1.2)
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and throughout if H = B7, the inverse update respected to SR1 is
given by
s,—H -H,y)"
H, =g, + 8 Hy ) “Hey)
ye(s.—H.y,)

(1.3)

For the background on these updates and others see Fletcher (1980),
Gill et al. (1981), and Dennis and Schnabel (1983).

The SR1 formula makes a symmetric rank one change to the previous
Hessian approximation B.Compared with other secant updates, the SR1
update is simpler and may require less computation per iteration when
unfactored forms of updates are used. (Factored updates are those in
which a decomposition of B is updated at each iteration.) The SR1 up-
date has a major drawback in that it does not guarantee positive defi-
niteness. However, it has some very strong convergence properties. Un-
der certain regularity conditions, the updates converge globally to the
true Hessian. Successful numerical tests— in a trust region framework
to avoid the possible loss of positive definiteness — has resulted in a
renewed interest in the SR1 update, see e.g., Khalfan (1989). Another
method of avoiding the loss of positive definiteness of the SR1 is to size
the current update, see IP and Todd (1988). The resulting updates are
called the optimal conditioned sized SR1 updates.

The primary motivation for this paper is to find another method of avoid-
ing the loss of positive definiteness of the SR1. In the next section, we
present a simple restart procedure for the SR1 method using standard
line search to avoid the loss of positive definiteness of the SR1.

RESTART PROCEDUREFOR SR1 UPDATE

In this section, we present an algorithm using SR1 update and a restart
procedure for unconstrained minimization.

Algorithm 2.1. Quasi-Newton SR1 method with Restart (NSSR1)
Step 0. Given an initial point x;, an initial positive matrix H, = I, set
&k=0.
Step 1. If the convergence criterion

”Vf(xk )|| < & xmaxl|l, xk||)

is achieved, the stop.
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Step 2. Compute a quasi-Newton direction
Py =—H, Vf(xy) (2.2)
where H, is given by (1.3).

Step 3. If p, Vf(x,)>0, (H . is not positive definite) set H, = ] and
subsequently

Py =—Vf (xk ). Else retain (2.2).

Step 4. Using a backtracking line search, find an acceptable steplength
A% such that the Wolfe’s (1969) condition

fx+4,p,) < f(xk)‘*'alkvf(xk)TPk (2.3)

and
Vi (x, +/1kpk)Tpk = O"Vf(xk)TPk (2.4)

is satisfied. ¢, =1 isalways tried first ¢ = 10™and @'= 0.9).
Step5.5etx,,, = x,+ A, p,.
Setp 6. Compute the next inverse Hessian approximation H e’
Step 7. Set £ = £ + 7, and go to Step 1.

TOMS 500 unconstrained optimization code (Shanno and Phua, 1980)
is modified to fit with Algorithm 2.1 (NSSR1) where BFGS update in
the code is replaced by SR1 update and a restart procedure is provided.
The stopping tolerance, & used was 10°. The restart procedure provides
a replacement for the non-positive definite H, with the identity matrix.
The problems tested are: Penalty function I, II, Rosenbrook function,
Powell function, Wood function, Beale function (Moré et al., 1981) and
Trigonometric function (Conn et al., 1988). The results are given in
Table 1.

In the table, » denotes the number of variables, n, the number of itera-
tions, 7, the number of function evaluations and 7. .. the number of
restart. For all methods the number of gradient evaluations equals the
number of function evaluations. The algorithm also stopped when the
number of function evaluation exceeds 999 and the symbol “EX™ is used.
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Table 1

Results for NSSR1 Algorithm

# ”/ P restart
Penalty I
n=4 85 169 15
n=20 55 99 9
7 =100 79 159 17
n = 400 68 60 8
Penalty IT
n=1% 21 43 1
n=20 EX EX EX
7 =100 EX EX B
7= 400 EX EX EX
Trigonometric
n=4 16 25 7
n=20 57 101 21
7= 100 60 85 28
7= 400 68 93 33
Rosenbrook
n=4 60 101 13
n=20 EX EX EX
»=100 EX EX EX
7= 400 EX EX EX
Powell
n=4 34 49 7
n=20 EX EX EX
n=100 EX EX EX
n= 400 EX EX EX
Wood
n=4 110 234 22
n=20 EX EX EX
»=100 EX EX EX
7 =400 EX EX EX
Beale
n=4 15 25 2
n=20 13 19 7
»=100 12 22 0
7 =400 13 23 7
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The numerical results in Table 1 show that restarting with the identity
may be very unsuitable. The SR1 update may not preserve positive defi-
niteness at the next iteration even if the current does, i.e., when H is
positive definiteand s} Y, > 0. The algorithm will keep on restarting
with little or no progress until the maximum number of function evalu-
ation allowed is exceeded. Therefore, restart with the identity matrix is
clearly not a good choice. Instead, we consider the cheap choice of re-
placing the identity as a positive multiple of the identity matrix. In the
following section, a positive scale is derived.

SCALING THE IDENTITY
Preliminaries
In the following, we will use the notation that

a=y'Hy,b=y"s, c=s"Bs. 31

Throughout the section we deal with the space of real symmetric 7 x 7
matrices, n > 2, equipped with the trace inner product, (4, B), =
trace (4B) and the induced Frobenius norm, | |A4] | .= (A4,4)"2 We
assume the curvature condition 4 = y7s > 0 and that the current Hes-
sian approximation B, is positive definite.

The primary motivation for this paper is to find the ‘best’ new update
B,, i.e. this update should satisfy the secant equation while preserving
the most information from the current update B. With this aim in mind,
we first show that minimizing the volume of the symmetric difference
between the two ellipsoids corresponding to B,, and B . is a valid meas-
ure for preserving the most information. This hard problem is not solved
but rather relaxed in several ways. This leads to the measures that yield
SR1updates. Adding the restriction that the ellipsoid for B, contains (or
is contained in) the normalized ellipsoid for B » yields the measure

o(A4) = _AA) (3.2)
det(A4)""
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where det denotes determinant and A is chosen to be scaled updates
H”?B*H!”?and B/*H B '? respectively. A, is the largest eigenvalue of
A

The optimal updates for this measure are the optimal conditioned, sized,
SR1 updates. The sizing factor for the ellipsoids corresponding to B is
useful for us to derive our scaling factor. In the next sub-section, we
present several results due to Wolkowicz (1993) on volumes of ellip-
soid, which lead to the measure G .

Volume as a Measure for Least Change

In this sub-section we derive a measure of least change. This measure
arises from relaxation of the problem: approximate a given ellipsoid by
another ellipsoid, from within a given set, by minimizing the volume of
their symmetric difference. This measure involves the singular values
of the product of two semi positive definite (s.p.d) matrices. Further
relaxation results in more tractable measures involve eigenvalues.

Least change secant methods attempt to find an update B, that satisfies
the secant equation while simultaneously preserving as much informa-
tion as possible from the current Hessian approximation B . If we as-
sume that the gradient vector V/{(x,) can be a random direction (of norm
1 say), then we can consider that B, is preserving the information from
B, when the search directions H, V/f(x,) and H, Vf(x,) are close. Thus
B, is a least change update of B if the ellipsoids formed from the im-
ages of the unit ball under H, and H_are closed. Let us now use the
volume as a measure of closeness for ellipsoids. It would be best if we
could find the update H, so that the volume of the symmetric differ-
ence (set union minus intersection) of the updated and current ellip-
soids is minimized. With this aim in mind, we first consider two ‘opti-
mal’ updated ellipsoids. The first ellipsoid minimizes the volume over
all ellipsoid, while the second one maximize the volume over all ellip-
soids contained within the current ellipsoid.

Support that B is s.p.d Denote the ellipsoid for B of radius o by
E,(B)={xe®R": ”Bx” <a}={xeR":x"B’x<a’};(.3)

Denote the ellipsoid corresponding to the square root of B by

E,(B"*)={xeR":x"Bx <a’}. (3.4)
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Note that the image of the ball under His H, (E,(1)=E,_ (B). The volume
of this ellipsoid is the determinant of H times the volume of E_ (),ie.

n

a
det(B)

vol(E,(B)) = vol(E, (1)) -

Given B fixed and, since

A4 (B) = max |Bx|,

xeE, (I)

the ellipsoid of minimal volume containing E_ () is E_ (B) with a =
A, (B). The -th root of the volume of this ellipsoid leads to our measure

det(B)""

The measure G has several interesting properties.

Proposition 3.1. If x(B) = -jj_gi_;. (the £, condition number)

n

where A, and A are the largest and smallest eigenvalues respectively,
the o (B) satisfies

1. 1<0(B)<nx(B)<4nc"(B)
2. o(aB)=o(B)forall a > 0;

3.0 is a pseudoconvex function on the set of s.p.d. matrices and thus
any stationary point is a global minimizer.

Proof. See Wolkowicz (1993).

The inequalities in 1. of the Proposition show that G acts as condition
number in the sense that it provides bounds on the amplification fac-
tors for relative error. Moreover, since the G bounds x from below and
above, minimizing one would be a compromise for minimizing the other.
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The o- Optimal Update

We now show that the best s.p.d. updates for the measure & are sized,
optimally conditioned, SR1 updates in IP and Todd (1988). Thus these
updates provide ellipsoids of minimum (maximum) volume contain-

ing (contained in) the current normalized ellipsoid. We again assume
that 4> 0 and B iss.p.d.

Theorem 3.1. Let

c ¢t ¢
§i z_i{?__}lu (35)

b a

Then the SR1 update of% B, .

H, =6H, +w" /(v"y),where v=5~6H,y, 6§ =6_, (3.6)

is the unique solution of
minc (HB))
s.t. B,s =y, B, is s.p.d.

Moreover, 1/8 = A, (HB,) is multiplicity z- 1 and the other eigenvalue
of HB, is An (HB,)=1/3,.

Proof. The Theorem and its proof can be found in Wolkowicz (1993).
Corollary 3.1. Let

a a* a

3 1/2
e (3.7)
Then the SR1 update oflA H,
o
B = 3BC +90" /(PTs), where v = y — 5Bcs, 6=6, (3.8)
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is the unique solution of
minoc (HB,)
st Bs=yB, isspd.

Moreover, 1/5 = A(B.H,) is of multiplicity # - 1 and equals 3, in
(3.5); the other eigenvalue of BH, is 1/ &, and equals J_the recipro-
cal from (3.5); the largest and smallest eigenvalues of H B, and the opti-
mal value of the measure, from Theorem 3.1 and the Corollary, all have
the same respective values.

Proof. The proof follows by interchanging the roles of H and B. It can
be seen that the optimal values are the same for both problems by using
the fact that largest 7-1 eigenvalues are equal at the optimum in Theo-
rem 3.1 while the smallest # - 1 eigenvalues are equal in the Corollary

and «(B) = x(B?).

We can now give our optimal scaling factor under the measure & for
SR1 update:

Theorem3.2. Let 4=73"y é=s"s and

A a2 A
~ 3.9
5=_c__{£2___‘i_}1/2 ( )
b b a
Then the SR1 update of,
(3.10)

H, =é~'1+va/(va),v=s—5y,

is the unique solution of

mino (B,)
s.t. B,s=y, B, isspd.

Proof. The Theorem is equivalent to Theorem 3.1 with H =1, whichis
the case after restarting the SR1 update.

In fact, Dennis and Wolkowicz (1990) and Wolkowicz (1993) had shown
that the 0- optimal updates in Sub-Section 3.3 is actually k- optimal as

well and have a common spectral property. The k- measure is used by
Shanno and Phua (1978) to derive the optimal scaling factor for the BFGS
update.
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SCALED SR1UPDATE

We now present a description of the scaled SR1 (SSR1) algorithm that
ensures the positive definiteness of SR1 update.

Algorithm 4.1. Algorithm SSR1

Step 0. Given an initial point x;, an initial positive matrix H, = I, set

k=0.

Step 1. If the convergence criterion

”Vf (x, )” <ex max(l, xk”) (4.1)

is achieved, then stop.

Step 2. Compute a quasi-Newton direction

Step 3.

Step 4.

Step 5.
Step 6.

Step 7.

P, =—H,/Vf(x,), where H, is given by (1.3). “.2)

If pVf(x,)>0H k is not positive definite) ork =1 set
H, =61

T T 2 T
Sp-15a (S415¢1) _ SkaSka }1/2 (4.3)
k-1

T
ykT—lsk-—l (yz—xsk—l )? YiaYia
and subsequently

Py = =6,V (x,) Else retain (4.2)

Using a backtracking line search, find an acceptable steplength,
A, such that the Wolfe’s condition (2.3)-(2.4) is satisfied. (A =1
is always tried first, & = 10*and a'=0.9 ).

Set Xy, =X, + A, p.

Compute the next inverse Hessian approximation H,

Set £ = £+1,and goto Step 1.
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Algorithm SSR1 differs from NSSR1 in that the algorithm always start/
restart with 5 I instead of I

Our tests were made in double-precision arithmetic, for which the unit
roundoff is approximately 105, We compared the SSR1 algorithm with
the NSSR1 algorithm described as Algorithm 2.1. The initial Hessian
approximation was always the identity matrix, and after one iteration
was completed, the method updated5 [ instead of I, where 5 defined
by (4.3) with £ =1 for SSR1 algorithm. The results are reported in Table
2.

Table 2
Comparison of SSR1 with NSSR1
SSR1 NSSR1
7, d f P estars 7, 7 ' -

Penalty I
n=4 39 57 4 85 169 15
n=20 47 80 4 55 99 9
7 =100 53 78 7 79 159 11
7 = 400 60 82 3 68 60 8
Penalty II
n=4 27 30 2 21 43 1
n=20 212 | 325 28 BX EX | Ex
#=100 450 | 553 17 | B¢ B | B¢
7 = 400 EX EBEX EX EX EX EX
Trigonometric
n=4 14 21 1 16 25 1
n=20 61 88 9 57 101 21

=100 56 84 15 60 85 28
n= 400 75 117 21 68 93 33
Rosenbrook
V=4 39 84 8 60 101 13
n=20 82 132 18 EX EX EX
7=100 43 63 2 EX EX EX
n = 400 62 89 11 EX EBX EX
Powell
n=4 27 30 0 34 49 1
n=20 27 30 0 EX EX EX

=100 31 35 2 EX EX EX
7 =400 33 40 3 EX EX EX
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(continued)

Wood

n=4 26 35 0 110 234 22
n=20 35 52 3 EX EX EX
7=100 30 48 2 EX EX EX
7= 400 61 84 13 EX EX | EX
Beale

n=4 16 21 1 15 25 2
n=20 18 27 2 13 19 1
7= 100 19 22 1 12 22 0
7= 400 14 18 0 13 23 1

The results indicate that the SSR1 method is more effective than the
NSSR1 in solving the given problems. We see that the SSR1 method
generally requires fewer iteration and function calls than the method of
NSSR1. The lack of convergence of the NSSR1 to the correct minimizer
in many of these problems within a given limit of function calls can be
observed in Table 1. This problem does not exist for the SSR1 method.

CONCLUSIONS

We have derived the SSR1 algorithm by choosing &, instead I when
started /restarted. Compared with the NSSR1, SR1 update requires less
iterations and function calls than NSSR1 update. Moreover, we see that
most of the problems can be solved by SSR1 under a certain number of
function calls but not for NSSR1. Therefore, we conclude that by a sim-
ple scale on SR1 method, it can improve the SR1 method dramatically.
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