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ABSTRACT  
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relative humidity and average temperature as these are the most significant factors associated with dengue 
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of dengue incidence in the city. With the inclusion of time-varying 
reproduction number and serial interval distribution of dengue, we 
projected that dengue incidence may reach up to 101 cases by June 16, 
2021, and without further actions, cases may rise up to 529 cases by 
August 29, 2021. Based on the average two-year period, such increase 
is attributed to relative humidity and average temperature as these are 
the most significant factors associated with dengue incidence based 
on the MLR analysis. The highest and mean maximum temperatures 
remain as key meteorological variables that influence dengue incidence 
in the city. As early as possible, local officials are recommended to 
uphold proper safety and health procedures in preventing the spread 
of dengue in Baguio City.

Keywords: Dengue Fever; Climatic Factors; Forecasting; Multiple 
Linear Regression; Baguio City.

INTRODUCTION

Dengue fever (or dengue) is a mosquito-borne viral infection 
commonly spread by female Aedes aegypti mosquitoes in tropical and 
subtropical regions, especially urban environments (Cogan, 2021). In 
Baguio City, where rainy seasons are felt on June to October and dry 
seasons on the rest of the months in a year, dengue is a common illness 
among locals, where reported spikes in local dengue cases in the area 
from January to May 2016 compared to other months from 2010 to 
2018 (Polonio, 2016). As a result, several protective measures and 
clean-up drives were conducted to destroy potential breeding sites of 
dengue-carrying mosquitoes and larvae.

Several notable researches were conducted to determine the effects 
of meteorological factors – humidity, precipitation, and temperature 
– to the growth of dengue incidence in a certain area. According to 
the study at Jakarta in Indonesia, the strong correlation between the 
population density of Aedes aegypti mosquitoes, temperature, and 
relative humidity indicated that the weather factors influence the 
growth and population of mosquitoes in the area (Sintorini, 2018). 
In another study in Thailand, the combination of humidity and 
temperature has become beneficial in the development, survival, 
length of the extrinsic incubation period, and competence of dengue-
carrying mosquitoes (Campbell et al., 2013).
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Similar studies were also conducted within the Philippines. In Metro 
Manila, a simple linear regression (SLR) analysis on the monthly 
climatic factors (temperature and rainfall) and dengue incidence data 
from 1996 to 2005 concluded that the dengue incidence is likely 
affected by changes in the amount of rainfall affecting mosquito 
populations as breeding grounds increase (Sia Su, 2008). Another 
correlation on the effect of climatic factors on laboratory-confirmed 
dengue and leptospirosis infections in the Philippines suggests 
that dengue fever and leptospirosis correlate with rainfall, relative 
humidity, and temperature (Sumi et al., 2016).

In another case study at Iligan City in Mindanao, researchers used 
multiple linear regression (MLR) analysis, Poisson regression, and 
random forest in developing a best-fitting model for dengue incidence 
in the area. Considering the monthly climatic factors - relative rainfall     
    maximum temperature    and average (relative humidity     
   - together with the monthly time period from   2008 to  
2017 (Olmoguez et al., 2019), results show that the MLR model, 
having 18% accuracy percentage and 67.14% error result, has the 
form

(1)

However, they further conclude that the Random Forest performed 
better with a 73% accuracy percentage and 33.58% error result.

Several researches also involve forecasting using regression methods. 
In Pakistan, Sabir et al. (2018) applied SLR analysis to forecast the 
possible cumulative incidence of dengue in 2017 and 2018, utilising 
the yearly period as the independent variable. On the other hand, a 
case study in China by Guo et al. (2017) applied multiple regression 
algorithms to develop a dengue forecast model in the area. 

In Baguio City, several other forecasting methods were also employed 
considering local dengue incidence data. Addawe et al. (2016) used 
Differential Evolution - Simulated Annealing (DESA) algorithm in 
acquiring the best-fitting forecasting models for young and adult 
populations. Another study by Magsakay et. al (2017) applied 
winsorization, square root, and logarithmic transformations to treat 
the outliers on age groups (ages 0 to 8 years old and 45 years old 
and above) who are not eligible for the dengue vaccine. Through 
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the Univariate Box-Jenkins (UBJ-ARIMA) time series model, they 
acquired the best-fitting forecasting models for each age group.

Another notable characteristic to consider is the time-dependent 
reproduction number     Compared to the basic reproduction number       
           incorporates the time-dependent variations in the transmission 
of diseases to the secondary cases from the corresponding primary 
case (Nishiura & Chowell, 2009). In the work of Nouvellet et al. 
(2017), they included the effect of      and the serial interval of some 
pathogens as factors to acquire an accurate forecast. As defined in Du 
et al. (2020), a serial interval is the time interval between the primary 
infected patient and its secondary infected patient. The corresponding 
probability density function is called the serial interval distribution w. 
With the influence of temperature, the serial interval of dengue is a 
combination of intrinsic incubation period (IIP), human-to-mosquito 
transmission period (HMTP), extrinsic incubation period (EIP), and 
mosquito-to-human transmission period (MHTP) (Siraj et al., 2017). 
To differentiate, IIP is the time difference between the patient’s 
date of infection and the date of symptom onset; HMTP is the time 
between the conclusion of IIP and the date when the susceptible 
mosquito becomes infected; EIP is the time from ingesting the virus 
by the susceptible mosquito until it becomes infected; and MHTP is 
the time between the infected mosquito transfers the virus to a new 
host (Cogan, 2021; Siraj et al., 2017). In the study of Aldstadt et al. 
(2012) in Thailand, they concluded that the serial interval for dengue 
infection is most likely 15-17 days with a significant excess risk of 
illness that persists for 32-34 days.

In our previous studies, we conducted SLR analysis in determining 
the climatological factors affecting the dengue incidence in Baguio 
City within the two – year average period (Marigmen et al., 2021). 
Results showed that humidity is the main factor affecting the dengue 
incidence, followed by precipitation. Despite relatively high adjusted 
R-squared values, their difference from a perfect adjusted R-squared 
value (adjusted R-squared value is 1) indicates that there are other 
possible factors that affect the growth of dengue incidence in the area.

In this paper, we extend our previous study by conducting an MLR 
analysis on the dengue incidence from 2011 to 2018 to determine the 
said possible variables. 
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With the increase of dengue cases in the area, we also aim to conduct 
a dengue forecast using the projections package in R, a statistical 
software. The package requires the dengue serial interval distribution 
and computed      value. Using the computed      values and the serial 
interval distribution, we then forecast the dengue incidence in 2019, 
starting from January until the corresponding outbreak period. Further 
discussions on the package and methods are documented as part of the 
Methodology.

On the other hand, some limitations are discussed in this paper. 
We only considered the available monthly climatic factors from 
2011 to 2018 in our MLR analysis. As for the forecast, due to the 
lack of published documents on the serial interval of dengue in the 
Philippines, we incorporated the findings of Aldstadt et al. (2012) in 
our analysis. In this paper, we are only using one forecasting method 
as part of our study.

Further discussions on the MLR analysis and forecasting are provided 
in the Theoretical Framework.

THEORETICAL FRAMEWORK

In this section, we discuss the theoretical framework behind forecasting 
and MLR analysis.
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in generating a branching process model and use it in our forecast (Nouvellet et al., 2017). In determining its 
accuracy to our available data, the renewal equation is applied to available historical data, where we estimate 
the trend of dengue incidence from previous years. Error analysis is also applied to determine the accuracy 
of the calculated estimates from the said data. Here, we apply the Root Mean Square Error (RMSE) to check 
the accuracy of the estimates. We emphasize here that the RMSE values must be low enough for the model 
to fit with the data. We also apply the Shapiro-Wilk W Test to check the normality of residuals. The residual 
is the difference between the estimated value from the equation and the actual value from the data. 
 
To elaborate, the Shapiro-Wilk W Test is defined as the ratio of two estimates of the variance of a normal 
distribution based on a random sample of n observations (Royston, 1995; Gonzalez – Estrada & Cosmes, 
2019). The residuals are normally distributed if the resulting p-value is greater than 0.05 (p-value > 0.05). 
Otherwise, the residuals are not normal. To attain the normality of residuals, we use the corresponding W 
statistic. Given the residuals i, the W statistic is defined as 
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where 𝜖𝜖 is the sample mean of the residuals, 𝒂𝒂𝑖𝑖 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) = 𝑚𝑚𝑇𝑇𝑣𝑣−1

(𝑚𝑚𝑇𝑇𝑣𝑣−1𝑣𝑣−1𝑚𝑚)1/2 and 𝒎𝒎 =
(𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑛𝑛) 𝑇𝑇 are the expected values of the order statistics of independent and identically distributed 
random variables sampled from the standard normal distribution, and 𝑣𝑣 is the covariance matrix of the order 
statistics (Razali & Yap, 2011). The 𝑊𝑊 statistic value lies between zero and one, and the larger the value 
indicates that the residuals are normally distributed. 
 
Once the conditions for RMSE and the Shapiro-Wilk W Test are satisfied, we proceed with dengue 
forecasting in Baguio City for 2019, starting from January until the end of the outbreak period. 
 
On the other hand, MLR is an extension of SLR where we consider more than one independent variable 𝑥𝑥𝑖𝑖 
and has the form  
 

𝑦𝑦 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + ⋯ + 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛                  (4) 
 

   
 
where 𝑎𝑎𝑖𝑖’s are the coefficients that need to determine and 𝑦𝑦 is the dependent variable (Pearson, 2018).  
 
As part of constructing best-fitting MLR models, we first conduct correlation analysis to determine the 
strength of relationship between two variables. In computing the correlation coefficient, we apply Pearson’s 
Product Moment Correlation Coefficient r (Walpole et al., 2012). Here, we consider r to be strong if its 
absolute value is at least 0.70 (Schober et al., 2018). We also use the correlation results to check for 
collinearity or having high correlation between two independent variables 𝑥𝑥𝑖𝑖’s to acquire a better fitting MLR 
model (Chatterjee & Simonoff, 2013). 
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To elaborate, the Shapiro-Wilk W Test is defined as the ratio of two 
estimates of the variance of a normal distribution based on a random 
sample of n observations (Royston, 1995; Gonzalez – Estrada & 
Cosmes, 2019). The residuals are normally distributed if the resulting 
p-value is greater than 0.05 (p-value > 0.05). Otherwise, the residuals 
are not normal. To attain the normality of residuals, we use the 
corresponding W statistic. Given the residuals i, the W statistic is 
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In constructing an MLR model, we consider the following assumptions 
as discussed in Kleinbaum et al. (1988): (a) Existence of the MLR 
model such that for a combination of values of the independent 
variables      the dependent variable y is a random variable with a 
probability distribution having a finite mean and variance; (b) The y 
observations must be statistically independent of one another; (c) The 
mean value of y for each specific combination of      is a linear function 
of     ; that is,

(5)

or
(6)

where    is the error component between the observed value     and the 
theoretical value                     Here,    must be normally distributed  
with a zero mean and variance      For an acceptable estimate of    we 
apply the residual  where

(7)

and          are estimates of            (d) Homoscedasticity or the variance of   
    must be the same for any fixed combination of          that is,

(8)

(e) The variable     is normally distributed for any fixed combination of 

To elaborate, we use the Least Square Method in solving      on each 
model. For the normality of the residual    we apply the Shapiro-
Wilk W Test. While for the homoscedasticity of the model, we apply 
White’s Test. White’s Test compares the estimated variances of 
regression coefficients under homoscedasticity with the ones under 
heteroscedasticity (Jeong & Lee, 1999). Similar to the Shapiro-Wilk 
W Test, the MLR model is homoscedastic if its p-value is greater than 
0.05. Otherwise, the model is heteroscedastic.

In addition to the aforementioned conditions, we also conduct 
additional error analysis on every MLR model. Here, we check the 
residual standard error, the multiple and adjusted R-squared, the F 
statistic and its p-value, and the p-value of each coefficient. Note that 
the coefficient is significant in the model if its corresponding p-value 
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(e) The variable 𝑦𝑦 is normally distributed for any fixed combination of 𝑥𝑥𝑖𝑖’s.  
 
To elaborate, we use the Least Square Method in solving 𝛽̂𝛽𝑖𝑖’s on each model. For the normality of the residual 
𝜖𝜖̂, we apply the Shapiro-Wilk W Test. While for the homoscedasticity of the model, we apply White’s Test. 
White’s Test compares the estimated variances of regression coefficients under homoscedasticity with the 
ones under heteroscedasticity (Jeong & Lee, 1999). Similar to the Shapiro-Wilk W Test, the MLR model is 
homoscedastic if its p-value is greater than 0.05. Otherwise, the model is heteroscedastic. 
 
In addition to the aforementioned conditions, we also conduct additional error analysis on every MLR model. 
Here, we check the residual standard error, the multiple and adjusted R-squared, the F statistic and its p-
value, and the p-value of each coefficient. Note that the coefficient is significant in the model if its 
corresponding p-value is less than 0.05. Since the multiple R-squared value ignores the issue of overfitting, 
we instead consider the adjusted R-squared value as it considers the issue of overfitting in the MLR model 
(Pearson, 2018). 
 
The details and procedures for the application of these methods will be discussed in the methodology. 
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is less than 0.05. Since the multiple R-squared value ignores the issue 
of overfitting, we instead consider the adjusted R-squared value as it 
considers the issue of overfitting in the MLR model (Pearson, 2018).

The details and procedures for the application of these methods will 
be discussed in the methodology.

METHODOLOGY

For this paper, we use the daily dengue incidence data and the 
monthly climatic factors from 2011 - 2018 acquired from Baguio City 
Health Service Office and the Regional Department of Science and 
Technology - Philippine Atmospheric Geophysical and Astronomical 
Services Administration (DOST-PAGASA), respectively. We use the 
daily incidence data in conducting our forecast, whereas we use the 
monthly incidence data and the monthly climatic factors in conducting 
MLR analysis. For easier computation, we utilize various packages 
and functions from the statistical software R (Verzani, 2014).

Given the daily dengue incidence data from 2011 - 2018, we first 
determine the outbreak periods in Baguio City.  The months having 
the highest monthly tallies of daily incidence in each year serve as the 
outbreak periods in the city.

Next, we determine the       values for each month until the outbreak 
period of each year. In computing    we incorporate the EpiEstim 
package, a tool used to quantify transmissibility throughout an 
epidemic from the analysis of time series of incidence (Cori et al., 
2013; Cori, 2020). From the package, we use the estimate_R function 
to calculate the     given the time series of incidence and the serial 
interval distribution. As mentioned earlier, we use the mean and 
median values of 16 days and 1.64 days, respectively (Siraj et al., 
2017) for our serial interval distribution.

Once the outbreak periods and      are determined, we proceed with 
model fitting using the renewal equation. For convenience, we use the 
projections package in R (Jombart & Nouvellet, 2021). Within the 
package, we incorporate the project function to acquire the estimated 
model. In checking the model’s normality of residuals, we apply the 
shapiro.test function to calculate the     statistic and the resulting 
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Aside from time in months, we consider three monthly climatic factors, namely relative humidity (RelHum) 
(unitless variable written in decimal form), precipitation (Prec) (measured in mm), and temperature 
(measured in oC), as the independent variables for our MLR model. We also emphasize that the temperature 
data has seven types, namely total maximum (TotalMaxTemp), mean maximum (MeanMaxTemp), total 
minimum (TotalMinTemp), mean minimum (MeanMinTemp), average (AveTemp), highest (HighTemp), 
and lowest (LowTemp). Note that the average temperature is computed as the average between the mean 
maximum and the mean minimum temperatures. Furthermore, each variable has ninety-six data points and 
are independent with one another. To avoid the issue of generating MLR models consisting mainly of 
different monthly temperature types, we restrict our MLR model to have one temperature type as the 
independent variable. 
 
For an efficient statistical analysis, we utilize the lm function and the summary function to calculate the 𝛽̂𝛽𝑖𝑖’s 
and the residuals of each MLR model, and to calculate the necessary parts of our error analysis. The normality 
of residuals will be checked through the use of shapiro.test function, and the homoscedasticity will be 
determined through the use of the bptest function from the lmtest package in calculating the resulting p-value 
(Zeileis & Hothorn, 2002). 
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analysis. We also include an Exploratory Data Analysis (EDA) in 
MLR to explain the distribution and possible association of variables 
in our data frame. The accompanying results from EDA will be used 
in constructing our MLR model.

Forecasting

Figure 1 shows the monthly dengue incidence in Baguio City from 
2011 – 2018. It can be observed that most of the monthly cases 
are recorded highest from July to September every year. Thus, we 
consider the third quarter of the year – the months of July, August, and 
September – as the dengue outbreak period in Baguio City.

Figure 1

Monthly total dengue incidence in Baguio City from 2011 – 2018

Next, we calculate the latest     value for 2018. Figure 2 shows the 
result. It can be observed that the mean      value for the last week 
of 2018 is 1.71 having a 95% confidence interval of [0.63,3.32] 
and a standard deviation (SD) of 0.70. The mean      value implies 
that dengue incidence may still increase by almost 1.71 times in the 
succeeding weeks.
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Figure 2

Epidemic curve, estimated       and explored SI distribution of dengue 
incidence for 2018

Using the projections package in estimating the monthly dengue 
incidence for 2011 to 2018, Table 1 summarizes the results. All 
months, except for June and July, show high accuracy such that their 
absolute mean residuals range from 0–3 cases. On the other hand, the 
average mean residual for June shows that the estimated incidence 
is 9 cases larger compared to actual data. In addition, the average 
mean residual for July shows that the estimated incidence is around 
16 cases larger compared to actual data. Meanwhile, normality p – 
values of February, April, June, July, August, and September show 
that the mean residual of the majority of the months are normally 
distributed. In addition, RMSE values are mostly low, indicating that 
the estimation on the dengue incidence in 2019 is accurate.
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Using the projections package in estimating the monthly dengue incidence for 2011 to 2018, Table 1 
summarizes the results. All months, except for June and July, show high accuracy such that their absolute 
mean residuals range from 0–3 cases. On the other hand, the average mean residual for June shows that the 
estimated incidence is 9 cases larger compared to actual data. In addition, the average mean residual for July 
shows that the estimated incidence is around 16 cases larger compared to actual data. Meanwhile, normality 
p – values of February, April, June, July, August, and September show that the mean residual of the majority 
of the months are normally distributed. In addition, RMSE values are mostly low, indicating that the 
estimation on the dengue incidence in 2019 is accurate. 
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We incorporate the residual values as part of our 2019 forecasting. 
Table 2 tabulates the forecasting results for January to September 
2019. 

Table 2

Forecasted dengue incidence in Baguio City for January – September 
2019.

Date January February March April May June July August September
1 1 3 5 9 13 48 127 304 317
2 2 4 5 8 15 52 147 304 302
3 2 4 5 8 17 57 169 309 289
4 2 5 5 8 19 62 193 324 285
5 2 5 5 7 20 67 216 346 289
6 1 4 5 7 21 69 234 372 298
7 1 4 4 7 20 72 251 399 313
8 1 4 4 7 19 72 262 422 329
9 1 4 4 7 19 71 269 441 343

10 2 5 4 7 19 71 275 459 359
11 2 5 4 7 19 70 278 470 371
12 2 5 5 7 19 70 281 479 379
13 2 6 5 7 19 72 285 483 383
14 2 6 5 7 20 76 287 479 377
15 2 6 5 8 21 86 283 461 356
16 2 6 5 11 22 101 272 430 321
17 3 5 5 13 24 120 262 396 281
18 4 5 5 15 26 139 266 374 250
19 4 5 5 15 28 153 281 367 229
20 4 5 4 15 31 166 306 375 220
21 4 5 4 15 32 176 335 394 220
22 3 5 4 14 33 184 363 418 225
23 3 5 4 14 33 189 387 444 234
24 3 5 4 14 32 191 405 469 244
25 4 5 4 13 32 192 419 490 255
26 4 6 4 13 31 192 428 506 263
27 4 6 4 13 31 192 435 521 271
28 5 6 4 14 31 195 439 527 274
29 5 4 15 32 204 443 529 275
30 5 4 16 34 220 442 519 267
31 6 4 35 436 503

Using the calculated     values and the mean and standard deviation 
of the serial interval distribution, it is projected that dengue cases 
may increase up to 529 incidences in a day, as reflected from August 

 [11] 
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Using the calculated 𝑅𝑅𝑡𝑡 values and the mean and standard deviation of the serial interval distribution, it is 
projected that dengue cases may increase up to 529 incidences in a day, as reflected from August 29, 2021. 
It is also observed that dengue incidence is projected to dramatically increase starting from mid-June 2019 
as dengue-carrying mosquitoes may start to infect at least 100 individuals in a day. Such values imply that a 
possible dengue outbreak may resurface in the city. 
  
In a report by Agoot (2019), dengue cases in Baguio City show a downward trend as there are 210 reported 
cases from January 1 – July 13, 2019 compared to the same period last 2018. This resulted from the continued 
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29, 2021. It is also observed that dengue incidence is projected to 
dramatically increase starting from mid-June 2019 as dengue-carrying 
mosquitoes may start to infect at least 100 individuals in a day. Such 
values imply that a possible dengue outbreak may resurface in the 
city.
 
In a report by Agoot (2019), dengue cases in Baguio City show a 
downward trend as there are 210 reported cases from January 1 – 
July 13, 2019 compared to the same period last 2018. This resulted 
from the continued efforts of the locals in preventing the spread of 
the disease within their locality, and is further intensified with the 
cooperation of the local government in promoting and preventing the 
spread of dengue.

Once new data is available, the forecasting will be updated based 
from the newly – calculated      values.

To fully understand the possible influences that further affect the 
current dengue incidence, we proceed with MLR analysis.

Multiple Linear Regression Analysis

Figure 3 shows the average yearly trend of dengue incidence and 
meteorological factors in Baguio City from 2011 to 2018. In Figure 
3a, the trends show that precipitation has an inverse influence on 
the incidence. Observe that in 2016, the incidence reached its peak 
despite low precipitation. It can be seen from Figures 3b and 3c that 
Baguio City experiences high temperatures relative to other years, 
more evidently in terms of Total Minimum and Total Maximum. 
This has been noted in Polonio (2016) that the hot temperature gives 
an advantage to the lifespan and reproduction of dengue-carrying 
mosquitoes.

 [12] 
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In Figure 3d, relative humidity follows a generally increasing pattern in Baguio City for every two years. 
We use this pattern to analyze the influences of the period and the environmental factors on the incidence. 
As a result, we modify our monthly data into a two-year average monthly, resulting in twenty-four data 
points for each variable. Figure 4 shows the resulting two-year average monthly trend of dengue incidence 
and meteorological factors in Baguio City from 2011 to 2018. 
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In Figures 4a and 4c, trends show that high incidence is recorded on the 8th and 20th months, both in 
August, in a two-year period along with precipitation and relative humidity. Furthermore, in Figures 4a and 
4b, average temperature, mean maximum temperature, highest temperature, and total maximum 
temperature show a decline in those months. We use this information as we construct our MLR models. 
For the normality distribution, Figure 5 shows the boxplot for each data.  
 
In Figures 5a – 5d, the data distributions are shown to be not normally distributed.  
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In Figures 4a and 4c, trends show that high incidence is recorded on 
the 8th and 20th months, both in August, in a two-year period along 
with precipitation and relative humidity. Furthermore, in Figures 4a 
and 4b, average temperature, mean maximum temperature, highest 
temperature, and total maximum temperature show a decline in those 
months. We use this information as we construct our MLR models. 
For the normality distribution, Figure 5 shows the boxplot for each 
data. 

In Figures 5a – 5d, the data distributions are shown to be not normally 
distributed. 

Figure 5

Two-year average monthly boxplots of dengue incidence and 
meteorological factors in Baguio City from 2011 to 2018

However, according to Li et al. (2012), it is more accurate to check 
the normality of the residuals or the conditional normality of the 
dependent variable rather than the dependent variable itself is normally 
distributed. Hence, despite the non-normality of the dependent 
variable, we can still proceed with our experiment on MLR models.

Table 3 shows the correlation coefficient matrix using Pearson’s 
correlation. Strong correlations are indicated in green cells. Cells with 
NA entries indicate that the corresponding correlation coefficient is 
not applicable in our study.

It can be observed that Relative Humidity and Precipitation have high 
correlation with Incidence. This means that one of the two climatic 
factors has a high influence on the incidence. However, by collinearity, 
Relative Humidity and Precipitation cannot be both independent 
variables in one model.

 [14] 
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Establishing the possible MLR models given the correlation table 
and applying the necessary error analysis, we acquire four models - 
Incidence vs. RelHum + AveTemp (Model 1), Incidence vs. RelHum 
+ HighTemp (Model 2), Incidence vs. RelHum + MeanMaxTemp 
(Model 3), Incidence vs. Prec + MeanMaxTemp (Model 4).

All models exhibit relatively high R-squared values and small 
p-values, indicating that they are highly correlated with dengue 
incidence. There are other models that have high R-squared values like 
Incidence vs. RelHum + TotalMaxTemp and Incidence vs. RelHum + 
MeanMaxTemp + Time, but the p-value of one of their coefficients 
are greater than 0.05, thus making it insignificant for the model.

Model 3 shows to be the best-fitting model as it exhibits the highest 
adjusted R-squared value, indicating that the model shows a very 
strong correlation with 83.83%. 

Table 4

Model estimation and error analysis of Model 1

Coefficients Estimate Standard Error p-value

RelHum 1893.91 184.55 1.23e-09

AveTemp -18.46 8.33 0.04

(Intercept) -1215.87 205.00 6.91e-06

Residual standard error: 33 on 21 degrees of freedom

Multiple R-squared: 0.83 Adjusted R-squared: 0.82

F statistic: 52.67 on 2 and 21 degrees of freedom p-value: 6.56e-09

Table 5

Model estimation and error analysis of Model 2

Coefficients Estimate Standard Error p-value

RelHum 1676.84 189.80 1.53e-09
HighTemp -19.22 8.38 0.03

(Intercept) -873.53 316.39 0.01

Residual standard error: 32.78 on 21 degrees of freedom
Multiple R-squared: 0.84 Adjusted R-squared: 0.82

F statistic: 53.53 on 2 and 21 degrees of freedom p-value: 5.70e-09
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Table 6

Model estimation and error analysis of Model 3

Coefficients Estimate Standard Error p-value
RelHum 1520.30 198.81 1.68e-09

MeanMaxTemp -21.61 7.56 0.01

(Intercept) -734.02 307.74 0.03
Residual standard error: 31.10 on 21 degrees of freedom

Multiple R-squared: 0.85 Adjusted R-squared: 0.84

F statistic: 60.63 on 2 and 21 degrees of freedom p-value: 1.89e-09

Table 7

Model estimation and error analysis of Model 4

Coefficients Estimate Standard Error p-value

Prec 0.13 0.03 7.56e-05
MeanMaxTemp -19.22 10.50 0.05
(Intercept) -21.91 253.96 0.04
Residual standard error: 41.32 on 21 degrees of freedom
Multiple R-squared: 0.74 Adjusted R-squared: 0.71
F statistic: 29.80 on 2 and 21 degrees of freedom p-value: 7.37e-07

Next, we look at the normality of the residuals and the homoscedasticity 
of the four models. Table 8 summarizes the results.

Table 8

Normality of the residuals and homoscedasticity of the model

Model Mean of 
Residuals

Normality of residuals Homoscedasticity of the 
model

W 
statistic p-value Remark p-value Remark

Model 1 1.18e-15 0.98 0.82 Normal 0.87 Homoscedastic

Model 2 2.96e-15 0.97 0.68 Normal 0.17 Homoscedastic
Model 3 -2.52e-15 0.97 0.70 Normal 0.39 Homoscedastic
Model 4 5.18e-16 0.96 0.42 Normal 6.85e-04 Heteroscedastic
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Model 4 is heteroscedastic since its p-value is less than 0.05. This 
model does not qualify as a good model. Each of the three remaining 
has at least 81% accuracy based on their adjusted R-squared values. 
Each model has a significant correlation coefficient value of at 
least 0.90. Their respective W statistic is at least 0.970, satisfying 
the assumptions of normality of model residuals. Model 1 has the 
largest W statistic, normality p-value, and homoscedastic p-value 
among the three models. These p-values demonstrate that Model 1 is 
homoscedastic, with normally distributed residuals with a mean of 0.

From the three models, relative humidity is the most significant 
independent variable. Following the assumptions of MLR analysis, 
Model 1 is the best MLR model, implying that relative humidity and 
average temperature largely influence dengue incidence in Baguio 
City.

Despite that, Model 2 and Model 3 may still be utilized. Variables 
such as highest temperature and mean maximum temperature are 
considered significant alternatives to average temperature since 
according to Sintorini (2017) and Campbell, et al. (2013), the 
temperature influences the incidence regardless its type. Henceforth, 
these three models are relevant in describing the influence of dengue 
cases in Baguio City.

CONCLUSION

Dengue incidence in Baguio City continues to infect more individuals 
as possible breeding sites for dengue-carrying mosquitoes develop 
with time. These have been brought about by continuous fluctuation 
of climatic factors - precipitation, relative humidity, and temperature 
- in the area. Using MLR analysis, relative humidity and temperature, 
either average, highest, or mean maximum temperature, are shown to 
be significant factors in the occurrence of dengue cases in Baguio City 
within a two-year average timespan. In particular, relative humidity 
and average temperature are the variables that show the strongest 
influence on dengue incidence in Baguio City.

Without proper protocols in preventing the spread of dengue, it is 
forecasted that by June 16, 2019, dengue incidences are projected 
to reach 101 cases in a day. And if the current situation continues 
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without providing certain local actions, dengue incidence may rise 
to 529 cases by August 29, 2019. It is recommended to alert the local 
officials regarding this projection so that proper safety and health 
protocols must be established in the locality to prevent the further 
spread of the disease. Once we have acquired new data for 2019, the 
projection will be updated based on the newly – calculated      values.

Since we only consider weather-related factors, we recommend 
considering other possible factors such as geographic or population 
factors in the MLR model. Dengue cases and weather factors may 
be analyzed together as a time series to determine the trend in the 
area. We also recommend conducting other forecasting methods and 
regression algorithms to generate a more accurate dengue forecast in 
the area.
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