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ABSTRACT

Work in Artificial Intelligence often involves search algorithms. 
In many complicated problems, however, local search algorithms 
may fail to converge into global optimization and global search 
procedures are needed. In this paper, we investigate the Fourier 
Amplitude Sensitivity Test (FAST) as an example of a global 
sensitivity analysis tool for complex, non-linear dynamical 
systems. FAST was originally developed based on the Fourier 
series expansion of a model output and on the assumption that 
samples of model inputs are uniformly distributed in a high-
dimensional parameter space. In order to compute sensitivity 
indices, the parameter space needs to be searched utilizing an 
appropriate (space-filling) search curve. In FAST, search curves 
are defined through learning functions, selection of which will 
heavily affect the global searching capacity and computational 
efficiency. This paper explores the characterization of learning 
functions involved in FAST and derives the underlying dynamical 
relationships with chaos search, which can provide new learning 
algorithms. This contribution has proven the general link that 
exists between chaos search and FAST, which helps us exploit the 
ergodicity of chaos search in artificial intelligence applications.

Keywords: Fourier amplitude sensitivity test, global sensitivity analysis, 
chaos search, artificial intelligence.

INTRODUCTION

System models in artificial intelligence (AI) involve very complex and non-
linear dynamics, sometimes with the nature of chaos. In chaotic systems, it is 
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well-known that the learning trajectory can be simple or complex depending 
on initial conditions. Further, system models contain many parameters, whose 
influence on the output can be diverse and different reflecting the underlying 
complex mechanisms to learn. In order to learn the contribution of each 
model parameter to the variance of the output uncertainty, variance-based 
global sensitivity analysis techniques are used. Fourier Amplitude Sensitivity 
Test (FAST) is one of such methods, which provides an analysis of variance 
(ANOVA)-like decomposition of output variances (Cukier, Fortuin, Schuler, 
Petschek, & Schaibly, 1973). Based on these output variances, main effect 
(i.e., first-order sensitivity) and total effect indices can be efficiently computed. 
Since the ANOVA-like FAST decomposition is model independent, use of the 
method does not require that the structure of system models should be known.

FAST was initially developed for functional models whose input parameters 
were uniformly distributed. Cukier et al. and Schaibly and Shuler (1973) 
formulated the mathematical procedure to transform the sine curve based 
on the Fourier series expansion into the uniform distribution of model input. 
The procedure was afterwards upgraded in an effort to obtain the uniform 
distribution of the input parameters (Cukier, Levine, & Schuler, 1978). Based 
on the study given by Cukier et al. (1978), Collins and Avissar (1994) developed 
the transformation procedure for models with non-uniform distributions. In 
particular, Saltelli, Ratto Andres, Campolongo, Cariboni, Gatelli, Saitana 
and Tarantola et al. (1999) proposed a popular methodology known as the 
extended FAST, which attains true uniform distribution of input parameters.

In the practical implementation of FAST, it is important to select an appropriate 
learning function that governs the search curve from which samples are taken 
for model evaluations. For models with continuous distributions, generalized 
transformation procedures may be available. However, the transformation 
function is based on the pre-specified Probability Density Function (PDF) of 
the input parameters and it can cause errors when the PDF is not accurately 
known or only partially known. Such errors may render FAST to produce 
incorrect results in model uncertainty assessments, especially for complex 
non-linear systems. Hence, characterization of the learning function is needed. 
Fang Gertner, Shinkoreva, Wang and Anderson (2003) proposed a method to 
improve the generalized transformation procedure for learning. 

Recently, applications of non-linear dynamics have drawn attention to the global 
optimization arena, i.e., chaos optimization. In chaos optimization, a chaos 
search procedure is generally included using a chaotic sequence-generator 
based on the conventional Logistic map. However, the PDF of the chaotic 
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sequences derived from the Logistic map is a Chebyshev-type (U-shaped) 
one with very high density near the two ends of the sample interval (0,1), and 
low density at the middle region, indicating that the marginal distribution is 
not uniform. This type of sample distribution may limit the global-learning 
capacity and computational efficiency. Since the PDF of chaotic sequences 
based on the piecewise-linear Tent map (a set of tent-shaped lines) is uniform 
in (0,1), the Tent map is commonly used in chaos optimization (Yang, Cheng, 
Solitons & Fractals, 2007).

To the author’s knowledge, however, the general link between FAST and chaos 
search has not been explored so far. In this paper, a periodic sampling approach 
of FAST is interpreted and analysed within the technical framework of chaos 
search. In particular, it is shown for the first time that the performance (i.e., 
global-learning capacity and efficiency) of FAST is essentially equivalent to 
that of the chaos search procedures derived from the Logistic and Tent maps. 
This is based on the observation that sampled parameters by the FAST method 
proposed by Koda et al. (1979) and chaotic sequences from the Logistic map 
both follow the same Chebyshev distribution. Also, sampled parameters by 
the extended FAST and chaotic sequences from the Tent map both follow the 
uniform distribution.

This study intends to provide more flexibility in the practical implementation 
of FAST by way of expanding the class of search curves to chaotic maps. One 
of the major problems associated with the periodic sampling approach of the 
traditional FAST would be the non-ergodicity of the periodic search curves 
involved. For ergodic exploration or learning of the parameter space, a new 
random sampling method is proposed based on the chaotic sequences derived 
from the Tent map. The present result is encouraging in that FAST can be 
applied to problems where input parameters are modelled by chaotic variables 
and efficiently searched based on the Logistic and Tent maps. This paper can 
help us better understand the FAST methodology and provide a fundamental 
basis to exploit the unique properties (e.g., ergodicity, pseudo-randomness, 
irregularity, etc.) of chaos for further advancements of the method. 

REVIEW OF FOURIER AMPLITUDE SENSITIVITY TEST (FAST)

The principle of FAST is that a model can be expanded into a Fourier series. In 
FAST, combined with characteristic frequencies assigned to input parameters, 
Fourier coefficients are used to estimate the model output variances including 
partial variances due to higher order interaction effects. Then, similar to the 
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ANOVA decomposition, it becomes possible to decompose the total output 
variance into partial variances accounting for the contributions of individual 
input parameters. Based on this decomposition, various sensitivity indices can 
be estimated efficiently (Saltelli, 2008). An advantage of the classical FAST is 
that the evaluation of sensitivity indices can be carried out independently for 
each model factor using just one simulation because all the terms in the Fourier 
expansion are mutually orthogonal. Thus, the main computation involved is 
the simultaneous evaluation of the Fourier coefficients.

In FAST, the parameter space needs to be searched by utilizing an appropriate 
search curve which can move arbitrary close to any point in the input space, 
i.e. space-filling curve. Then, Fourier analysis can be performed along the 
search curve that traverses the entire parameter space. This is based on the 
ergodic theorem as detailed by Weyl (1938) which allows the calculation of 
high-dimensional integrals involved in the evaluation of Fourier coefficients 
through an equivalent one-dimensional integral with respect to a scalar search 
variable.

A search curve is defined through a set of parametric functions.

	                                                                                                             (1)

where ix  denotes the sample of the i-th input parameter, ig  is the learning 
function to be determined, iω  is the distinct, incommensurate characteristic 
frequency assigned to ix , and s denotes the scalar auxiliary variable whose 
range is determined for the sample size required for the Fourier analysis. A set 
of frequencies is said to be incommensurate if none of them may be obtained 
as a linear combination of the other frequencies with integer coefficients. If 
this is the case then the search curve will never repeat itself and fill the entire 
parameter space. The learning function ig  converts the multi-dimensional 
search in the original domain of input parameters into one-dimensional 
search in the common auxiliary variable s. As s varies, all input parameters 
vary simultaneously in their own range of variance at rates according to the 
characteristic frequencies assigned to them.

In the numerical implementation, however, an incommensurate set of 
characteristic frequencies cannot be used since it would require an evaluation 
of integrals over an infinite interval, which is not computationally feasible. 
Hence, an appropriate set of integer frequencies is used instead. Consequences 
of this technical treatment are that the search curve is no longer a space-
filling one, but becomes a periodic curve with period π2 , and an approximate 

kisgx iii ,,2,1)),(sin(  
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integration can be effectively performed. Conditions and criteria have been 
extensively studied for the proper selection of characteristic frequencies 
and the minimum sample size required for the analysis. Efforts have been 
also made to deal with the numerical errors associated with aliasing and 
interferences introduced by using integer frequencies. It is, however, beyond 
the scope of this contribution to describe all the technical details about the 
practical implementation of FAST, and the readers are referred to, e.g. [1-7].

We hereafter assume that all input parameters are statistically independent. 
In order to ensure that the parameter ix traverses its range in accordance with 
the PDF assigned to it, the learning function ig must satisfy the following 
differential equation [4, 12]:

         
1)())((1 2  ug

du
dugpu iii                                                     (2)

with 0)0( =ig , where )sin( su iω=  and )())(( iiii xpugp =  is the PDF. Then, it 
is possible to transform the input parameters with the PDF ip  into the one-
dimensional sample space with regard to the auxiliary variable s, and, for 
real applications, conventional grid-sampling techniques are used to estimate 
the Fourier coefficients. Consequently, in order to explore the dynamical 
characterization of learning functions or, equivalently, the search curves 
involved in FAST, Eq. (2) must be used to solve )(ugi .

LEARNING FUNCTIONS IN FOURIER AMPLITUDE 
SENSITIVITY TEST (FAST)

In the history of FAST development, the following function has been initially 
proposed, Cukier, Fortuin, Schuler, Petschek and Schaibly:

          ))sin((exp sxx iiii ων=                                                                  (3)

where ix  denotes the central value (best available estimate), and iν  is the 
bound at the end-point of the range of uncertainty for ix , that is specified as a 
part of the input data. Because of the exponential function involved in Eq. (3), 
the distribution is long-tailed and positively skewed, not uniform at all.

In an effort to obtain uniform distribution of the input parameters, Koda Mc 
Rae and Seinfeld proposed the following learning function,

          ))sin(1( sxx iiii ων+=                                                                   (4) 
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When iω ’s are positive integers and the common auxiliary variable is allowed 
to vary as ππ <<− s , Eq. (4) generates sampled input parameter for all ix  
according to an expected PDF. Further, taking into account the symmetry of 
the properties associated with the evaluation of the Fourier coefficients, we 
may restrict the range of periodic search curve from ),( ππ−  to )2/,2/( ππ− .

Without loss of generality and for notational simplicity, in the rest of the 
paper, we confine our arguments to the case where the domain of parameter 
uncertainty is given by the unit hypercube, 10 << ix . Then, typically with 

2/1=ix  and 1=iν , Eq. (4) is rewritten as:

          
)1(

2
1)())sin(1(

2
1

iiiii uugsx +==+= ω                                         (5)

By substituting Eq. (5) with Eq. (2), we can obtain the PDF associated with 
this learning function as:

       
)1(

1)(11)( 2

ii
ii

i
iii xx

ug
du
duxp














                              (6)

which is referred to as the Chebyshev distribution and shown in Fig. 1. In Fig. 
1, it is observed that the distribution is symmetric and nearly uniform around 
the middle region of the interval. Near the two ends of the sample interval 
(0,1) of the U-shaped function, however, the density is high and accordingly 
the sampled input parameter is highly represented while at the middle region 
it is poorly represented.

Saltelli et al. (1999) proposed another learning function:

          






 +==+= )arcsin(21

2
1)())(arcsin(sin1

2
1

iiiii uugsx
π

ω
π

              (7)

which is a set of straight lines oscillating periodically on (0,1)×(0,1) at the 
corresponding characteristic frequency iω . This method is known as the 
extended FAST and samples of model input parameters derived from Eq. (7) 
attain uniform distribution. We may note, assuming uniform distribution with 

1)( =ii xp , Eq. (2) collapses to:
 

         
1)(1 2  ii

i
i ug

du
du  ,                                                               (8)

and Eq. (7) is immediately obtained as a solution to Eq. (8). While 
classical FAST provides first-order sensitivities (or main effects) at a given 
computational cost (which is independent of the number of model factors), the 
extended FAST allows the calculation of the total effect indices, at a cost that 
is proportional to the number of model factors (Saltelli et al., 1999).
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For non-uniform distributions, Lu and Mohanty (2003) later showed that 
the periodic search function can be derived using the parameter’s inverse 
cumulative distribution function (ICDF: )(1 ⋅−F ), and the generic learning 
function is represented as:

      






 +=






 +== −− ))(arcsin(sin1

2
1)arcsin(1

2
1)( 11 sFuFugx iiiii ω

ππ
        (9)

Figure 1. Chebyshev distribution.

Hence, appropriate search functions for any stochastic variable with standard 
distribution can be obtained through Eq. (9).

CHAOS SEARCH AND FOURIER AMPLITUDE  
SENSITIVITY TEST (FAST)

In this section, the periodic sampling approach of FAST is interpreted and 
analysed within the technical framework of chaos search based on the Logistic 
and Tent maps. In particular, a new random sampling method is proposed for 
the implementation of chaos search based on the Tent map.

Chaos search based on the Logistic map and FAST

As an emerging new tool for global optimization, chaos search may be the 
latest development in the chaos optimization arena (Yang, Li & Cheng, 2007). 
In chaos search, the Logistic map is the most commonly used generator 
of chaotic sequences since it is the simplest learning function that exhibits 
sensitive dependence on initial conditions, which is a typical characteristic 
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of chaos. The trajectory of the resulting chaotic sequences constitutes the 
search curve that traverses the entire space of interest ergodically, similar to 
the space-filling curve used in FAST. 

The Logistic map, as a prototype of a one-dimensional map with chaos, is 
given by

         )1(1 nnn yyy −=+ µ                                                                       (10)

where ny  is the chaotic variable, µ  is the control parameter, and n denotes 
the iteration step. We suppose )1,0(0 ∈y  and 40 ≤< µ . Period doubling and 
saddle-node bifurcations are the abundant patterns occurring as the control 
parameter µ  increases towards 4. The bifurcation diagram of Eq. (10) is 
shown in Fig. 2. 

At the Ulam point, i.e. when 4=µ , the system typically behaves chaotically in 
an unpredictable pattern. Hence, in the subsequent development, we consider 
the following one-dimensional non-linear system,

         )1(4)(1 nnnn yyyfy −==+                                                            (11)

where f is the continuous function defined by

        )1(4)( yyyf −= .                                                                         (12)

Figure 2. Bifurcation diagram of the logistic map.
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For this case, Eq. (11) has the closed-form solution of the type:

          )(sin2
nn Ry = ,                                                                           (13) 

with 02 RR n
n =  and L,2,1,0=n  (i.e. period doubling).

Based on the duality argument, it is possible to find the invariant probability 
density function of the Logistic map )(ypy  as follows (May, 1976):

         )1(1)( yyypy −= π                                                                  (14)

which is again the Chebyshev distribution shown in Fig. 1. For a chaotic 
dynamical system with absolutely continuous distributions, the invariant PDF 
may generally be available and it describes the “steady state” of the chaotic 
map (Hall & Wolff, 1988). It should be noticed that the invariant PDF of the 
Logistic map, Eq. (14), is identically equal to Eq. (6). Thus, the PDF of the 
sampled input parameters of the FAST method proposed by Koda et al. (1979) 
and the invariant PDF of chaotic sequences from the Logistic map follow 
the same Chebyshev distribution, which suggests that there exists a strong 
technical link between the two methods.

Using Eqs. (12) and (14), the Lyapunov exponent λ  can be calculated as:

         
02log

)1(
)21(4log)()(log

1

0

1

0



  yy

dyydyypyf
dy
d

y 
         (15)

Lyapunov exponents can be viewed as generalizations of eigen values that 
are well-defined for chaotic dynamics. Positive values indicate directions 
of average local exponential expansion in a sense that the system evolution 
has a sensitive dependence on initial conditions and neighbouring learning 
trajectories separate exponentially fast, which is the signature of chaoticity. 
Hence, Eq. (15) implies that the chaotic variables with the nature of pseudo-
randomness can be derived from the Logistic map.

In an analogy to FAST, along with the Logistic map as an ergodic (i.e., space-
filling) search curve, we suppose that the chaotic sequences }{ ny  derived 
from Eq. (10) are used to model input parameters. Then, according to the 
arguments developed above, one may conclude that the performance (i.e., 
global-learning capacity and efficiency) of chaos search based on the Logistic 
map is essentially equivalent to that of the FAST method based on Eq. (5). 
Indeed, with the same PDF as sampled sequences, basic search characteristics 
of the two methods would be identical since the distribution of the sampled 
sequences is expressed as Eq. (6), namely, Chebyshev function.
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Chaos search based on the Tent map by the random sampling method

In order to expand the class of search curves involved in FAST, we propose 
the following learning function h based on the Logistic map,

         
)arcsin(2)( yyhx

π
==                                                              (16)

where y is the chaotic variable derived from Eqs. (11) and (12). From Eq. (16), 
y can be immediately recovered as

         






== − xxhy

2
sin)( 21 π                                                                (17) 

where 1−h  denotes the inverse function of h. Note that the functional form of 
Eq. (17) is similar to the closed-form solution of the Logistic map given in 
Eq. (13).

It is well-known that the Logistic map and the Tent map can be transformed 
into each other, and there is a relationship of topological conjugation between 
them. Using Eq. (16) in Eqs. (11) and (12), we can formally transform the 
Logistic map to the Tent map as follows:

Figure 3. Piecewise-linear functions with corresponding search frequency.
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         )(1
1 nn xhfhx −

+ = oo                                                                    (18)

where nx  (with )1,0(0 ∈x ) denotes the chaotic variable at the n-th iteration, 
and:

         



<<−
≤<

=−

)12/1()1(2
)2/10(2

)(1

xx
xx

xhfh oo                                       (19)

which is the piecewise-linear (tent-shaped) function. Then, in an analogy to 
FAST, along with the Tent map as the ergodic search function, chaotic sequences 

}{ nx  derived from Eq. (18) may be utilized to model input parameters.

It may be noticed that Eqs. (18) and (19) can be obtained directly from the 
period doubling property of the chaotic sequences based on  the Logistic map 
as:

         














=














= ++ nnn xxx 2

2
sinarcsin2

2
sinarcsin2

11
π

π
π

π
                  (20)

Further, the invariant PDF of the Tent map )(xpx  can be calculated as follows:

         
                               					        (21)

In deriving Eq. (21), we have used the relationship that holds for the density 
transformation between the invariant PDFs of the Tent and Logistic maps, i.e.,

dyypdxxp yx )()(   . Note that Eq. (21) can be easily obtained through direct 
differentiation of Eq. (17) as 

         
                      						         (22)

where )(ypy  is the invariant PDF of the Logistic map given in Eq. (14). 
Hence, the invariant PDF of the Tent map is proven to be a uniform function, 
which is also the case for the PDF associated with the extended FAST.

It is well-known that the Tent map can be extended to a class of piecewise-
linear functions including a set of straight lines oscillating periodically on 
(0,1)×(0,1) at a search frequency iω . For integer frequencies, plots of the 
piecewise-linear function (i.e., learning function) and the corresponding 
search frequency are given in Fig. 3. Note that the Tent map is shown in Fig. 
3 with the unit characteristic frequency, i.e., 1=ω . In the subsequent analysis, 
we take into consideration the search frequencies }{ iω  that shall be assigned 
to input parameters, and propose a new chaos search procedure based on the 
Tent map by the random sampling method.

1)())(()()( 11   xh
dx
dxhp

dx
dyypxp yyx  

)(
1)1(

2
cos

2
sin

yp
yyxx

dx
dy

y















 


  
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A set of N random points uniformly distributed over ),( ππ−∈s can be obtained 
based on the Tent map as },,2,1|)2({ Nnxs nn L=−= ππ , where }{ nx  denotes 
the chaotic sequences such as those derived from Eqs. (18) and (19). Further, 
for ergodic exploration of the parameter space with the search frequency set 

}{ iω , Eq. (9) may be used as the generic learning function which generates 
random samples in the parameter space based on the random points }{ ns  as 
follows:

         
NnsFx ni

n
i ,,2,1,))(arcsin(sin1

2
11)( L=






 += − ω

π
                      (23)

where )(n
ix  denotes the n-th sample of the i-th input parameter and 1−F  is the 

parameter’s ICDF used in Eq. (9). Then the model is run N times on sampled 
values for each parameter generated through Eq. (23). 

Different from the traditional FAST, the proposed random sampling method 
is based on ns  which is derived from the chaotic sequences based on the 
Tent map. Since the model output becomes a periodic function of }{ ns  with 
strong signals at the search frequencies }{ iω , partial variances contributed 
from different parameters can be  estimated by computing Fourier coefficients 
at the fundamental frequencies }{ iω  and their higher harmonics.

Below, the numerical recipe of the chaos search based on the Tent map by the 
random sampling method is outlined:

1.	 Define an appropriate set of search frequencies }{ iω  and build the 
search function through Eq. (23).

2.	 Generate random points ns  based on the Tent map, e.g., using Eqs. (18) 
and (19) with 11 =ω .

3.	 Generate corresponding random samples for input parameters using Eq. (23).
4.	 Run the model based on the sampled parameters and evaluate Fourier 

coefficients.
5.	 Calculate the partial variances and the corresponding sensitivity indices.

Chaos search based on the Tent map by the grid sampling method

Here, as an illustrative example, we derive a representative chaos search 
procedure based on the Tent map by using simple grid sampling techniques. 
Recall that an appropriate set of periodic piecewise-linear learning functions 
with the search frequency set }{ iω  may be built based on Eq. (7) (e.g. see 
Fig. 3). Then, applying a conventional grid sampling method for the common 
auxiliary variable ),( ππ−∈s , samples of the input parameters can be obtained 
based on the grid sample set },,2,1|{ Njs j L=  as follows (C. Xu & G. Gertner, 
2011):
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Njsx ji

j
i ,,2,1)),(arcsin(sin1

2
1)( L=+= ω

π
                              (24)

where, )( j
ix  denotes the j-th sample of the i-th input parameter, N is the sample 

size, and js  is given by:

         
Njj

NN
s j ,,2,1,)1(2

L=−−+= πππ                                         (25)

Further, randomization of Eq. (25) may be possible as:

         
Njj

N
ss j ,,2,1,)1(2

0 L=−−+= ππ ,                                       (26)

where )/,0(0 Ns π∈  is chosen randomly so that the grid samples }{ js  can 
ergodically explore ),( ππ−  as ∞→N . 

Based on the grid sampling methods described above, we can efficiently 
implement a representative procedure for chaos search based on the Tent map 
and its numerical recipe is outlined below:

1.	 Define an appropriate set of search frequencies }{ iω  and build the 
search function through Eq. (24).

2.	 Generate grid samples using Eq. (25) or Eq. (26).
3.	 Generate corresponding samples for input parameters using Eq. (24).
4.	 Run the model based on the sampled parameters and evaluate Fourier 

coefficients.
5.	 Calculate the partial variances and the corresponding sensitivity indices.  

If a common set of integer search frequency (i.e., characteristic frequency set) 
}{ iω , is used then the chaos search based on the Tent map by the grid sampling 

method coincides with the extended FAST procedure, namely, there is no 
technical difference between the two methods, and computational complexity 
and accuracy for the estimation of Fourier coefficients will be identical for 
both methods. Hence, it may be concluded that the relative performance 
of chaos search based on the Tent map and the extended FAST would be 
essentially equivalent at least for the present grid sampling implementation. 
For numerous test examples on the extended FAST, the readers are referred to 
Saltelli (1998) and Saltelli et al., (2008).    

Summary 

In chaos search, the invariant PDF of the Logistic map follows the Chebyshev 
distribution and that of the Tent map follows uniform distribution. Similar to 
the Monte Carlo importance sampling method which generates more sampled 



Journal of ICT, 11, pp: 1–16

14

points in the vicinity of major uncertainty location, chaos search based on 
the Logistic map may be useful for problems with non-uniform parameter 
distributions of the Chebyshev-type. Most often, however, the complex model 
structure and the location of the measured disturbances will not be available 
beforehand, and it is difficult to predict the exact parameter uncertainties of 
actual problems. Hence, it may be most practical to use chaos search based on 
the Tent map with uniform PDF, or equivalently, the extended FAST. 

A sample trajectory of chaotic variables derived from the Logistic or Tent map 
can move over the entire space of interest ergodically. The unique properties 
of chaotic variables are ergodicity, pseudo-randomness, and irregularity. The 
present study is the first attempt to exploit them in a practical implementation 
of FAST. One of the major problems associated with a periodic sampling 
approach of the traditional FAST would be the non-ergodicity of the periodic 
search curves involved. The present study can help us better understand the 
FAST methodology and provide a fundamental basis to exploit the ergodic 
property of chaos for further advancements of the method.

CONCLUSION

In this contribution, we have investigated the dynamical characterization of the 
learning functions involved in the Fourier Amplitude Sensitivity Test (FAST), 
and expanded the class of search curves to include the chaotic Logistic and 
Tent maps. A new random sampling approach is also proposed based on the 
chaotic sequences derived from the Tent map. In particular, it is shown for 
the first time that the performance of chaos search based on the Logistic map 
is essentially equivalent to that of the FAST method proposed by Koda et al. 
(1979). It is also demonstrated that a representative implementation of chaos 
search based on the Tent map by the grid sampling method coincides with the 
extended FAST procedure proposed by Saltelli et al. (1999). Thus, we have 
established the general link that exists between chaos search and FAST. 

We may note that the present formalism may be straightforwardly extended to 
problems where input parameters are modelled by chaotic variables derived 
from the chaotic maps of other types. It is expected that the trend towards 
increased use of FAST will continue, driven by the growing needs for more 
advanced global-sensitivity analysis tools which can learn from complex 
dynamical systems. The present approach based on chaos search has proven to 
be promising for further advancements of the learning algorithms exploiting 
the unique properties (e.g., ergodicity, pseudo-randomness, etc.) of chaos. 
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Since non-chaotic learning trajectories are usually asymptotic and too crude 
for complex problems, we expect that the chaos search will become more 
popular in AI applications.
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