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ABSTRACT

Sylvester matrix equations play a crucial role in control theory for
controller design. Bipolar Fully Fuzzy Sylvester Matrix Equations
(FFSME), incorporating both positive and negative components, are
employed in controller design to address uncertainties that may affect
a system’s performance and stability. However, there is not much
existing research on combining bipolar fuzzy numbers and FFSME,
and most of them mainly deal with positive coefficients. Thus, this
paper presents a method that enables solving the negative coefficient
of bipolar FFSME in the form of Left-Right (LR) triangular fuzzy
numbers using an Associated Bipolar Linear System (ABLS). To
obtain the ABLS, bipolar FFSME is transformed into a bipolar Fully
Fuzzy Linear System (FFLS) using the Kronecker product and Vec-
operator. Subsequently, the solution is derived through the inverse
method, and the equation of the ABLS is rearranged as a bipolar fuzzy
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matrix. Additionally, this paper provides two numerical examples to
illustrate the applicability of the constructed method.

Keywords: Fully Fuzzy Sylvester Matrix Equations, Bipolar Fuzzy
Numbers, Triangular Fuzzy Numbers, Negative Fuzzy Numbers.

INTRODUCTION

Bipolar analysis refers to the application of two distinct functions and
information in a given system. Zhang and Zhang (2004) provided
several examples of bipolar environments, such as good and bad,
friend and enemy, and cooperation and competition. While bipolar
is appropriate for representing two types of information in systems,
sometimes bipolar crisp numbers are insufficient for dealing with
uncertainty in a specific issue. Therefore, the fuzzy concept by Zadeh
(1965) was employed and first introduced by Zhang (1998) in bipolar
crisp numbers as bipolar fuzzy numbers. The membership functions
for bipolar fuzzy numbers are [0,1] and [-1,0], referring to two
different roles of the information as positive and negative parts of the
information, respectively. Based on Akram et al. (2019a) and Zhang
(1998), the studies are interpreted that the membership function
of (0,1] indicates the element of somewhat satisfies the property.
Meanwhile, the membership function of [-1,0) indicates the element
of somewhat satisfies the implicit counter-property. Accordingly,
bipolar fuzzy numbers can be considered an extension of classical
fuzzy numbers.

Bipolar triangular fuzzy numbers are also similar to classical fuzzy
numbers, which can be categorized into three forms: parametric
bipolar, Left-Right (LR) bipolar, and general bipolar. These forms
of bipolar fuzzy numbers can be applied in the bipolar Fuzzy Linear
System (FLS), AX = B, and bipolar Fully FLS (FFLS), AX = B.
Akram et al. (2019a) were among the first to develop classical FLS
methods for solving bipolar FLS with parametric form, employing
embedding techniques from the study of Asady et al. (2005) and
Friedman et al. (1998). Bipolar FFLS was solved in the same paper,
but a different method was used that applies the (-1,1)-cut expansion.
Subsequently, Akram et al. (2019b) used the method of simultaneous
equations to obtain the bipolar fuzzy solutions for both bipolar FLS
and bipolar FFLS. In Akram et al. (2020), the embedding method and
the bipolar fuzzy center method were employed for bipolar FLS.
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Based on Dubois and Prade (2008), it is concluded that bipolar analysis
has explicit benefits in many areas of information engineering,
including learning, inconsistency handling, knowledge representation,
question-answering systems, and especially control systems. Bipolar
control is important in designing control models, specifically
implemented in engineering and mathematical fields (Prajapati &
Singh, 2019; Trzaskalik et al., 2019). Additionally, the Sylvester
matrix equation is among the popular mathematical models that help
the controllers in describing stability analysis (Asar & Amirfakhrian,
2016). The general form of the Sylvester matrix equation is denoted as
AX + XB = C. However, researchers have improved the Sylvester matrix
equation by incorporating classical fuzzy systems into the equations:
Fuzzy Sylvester Matrix Equation (FSME), AX + XB = C,and FFSME,
AX+XB=C.

On the other hand, Guo (2011) investigated the analytical approach
of the embedding technique, which involved reducing FSME to
FLS using the Kronecker product and Vec-operator. Malkawi et al.
(2015) further improved the reduction of FSME to FLS in fully fuzzy
equations such that Fully Fuzzy Sylvester Matrix Equations (FFSME)
are reduced to FFLS using the Kronecker product, Vec-operator and
an associated linear system. In a preliminary study, Daud et al. (2016)
utilized the method proposed by Malkawi et al. (2015) to compare
FSME to FFSME. Following that, Daud et al. (2018) extended the
method to solve FFSME with arbitrary coefficients by modifying the
associated linear system described in Malkawi et al. (2015), given that
FFSME involves positive coefficients. Several years later, Elsayed
et al. (2020) and Elsayed et al. (2022) applied a similar method as
Malkawi et al. (2015) and Daud et al. (2018) to address FFSME with
positive negative coefficients and extended it to handle arbitrary
generalized FFSME for trapezoidal fuzzy numbers, respectively.
These studies have undoubtedly made significant contributions to
solving FFSME.

However, the combination of bipolar and FFSME still lacks extensive
research, and existing studies have primarily focused on positive
coefficients (Thape & Ahmad, 2021). Therefore, this study aims to
provide an algorithm for solving bipolar FFSME with negative fuzzy
numbers. The paper is organized as follows: related preliminaries
on the signs and arithmetic operations of bipolar fuzzy numbers are
provided in Section 2. Consequently, in Section 3, the construction of
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a method for solving bipolar FFSME is presented, followed by two
numerical examples in Section 4. Finally, Section 5 concludes this
study.

PRELIMINARIES

Definitions of signs and arithmetic operations for bipolar fuzzy
numbers are given.

Definition 1. (Zhang, 1998) Let X be a nonempty set. A bipolar fuzzy
set M in X is an object having the form

M= {(x,u,%(x),u%(x))l X € X}, (1)

where pfr: X = [0,1] and pufi: X > [—-1,0].

Definition 2. (Akram et al., 2021) A bipolar Triangular Fuzzy Number
(TFN) M is said to be a LR bipolar TFN of the form M = ((mP, af, BP),
(mV,a",pM)) g Where its membership function satisfies

{L (mP—x), iftx <mf,af >0,

W) = ! “ %)
lR (x_BT:P) ifx = mP,pP >0,

where™".is called the mean value, and a”, B, are called the LR spreads
of the positive component of M.

While
N_
(L(—maNx), ifx <mV,aV >0,
upy (x) =! y 3)
LR(—xZS ) ifx = m", N >0,

where m" is called the mean value, and @, BV, are called the LR spreads
of the negative component of M.
Definition 3. (Akram et al., 2021) A bipolar TFN i = ((mP,a”, ),
(m",a, pN ))LRis called symmetric LR bipolar TFN if and only if
aP = P and aV = V.
Definition 4. (Akram et al., 2021) The bipolar fuzzy number
M = ((m®,a®, BP), (m", OlN,,BN))LR can be classified as follows:

« M is a positive bipolar fuzzy number if m” — a” > 0 and

mN —aV > 0.
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M is a negative bipolar fuzzy number if ¥ + m? < 0 and gV
+mV <0.

M is a zero bipolar fuzzy number if m” = 0, mM =0, a” =0
a® =0,aV =0, =0,and gV = 0.

M is a near-zero bipolar fuzzy number if

mP—aP <0< pP+mP and

mNV —aV <0< pN+mh.

Definition 5. (Akram et al., 2021) Two bipolar fuzzy numbers
M = ((m",a®, "), (m",a", ")) .

and

N = ((n%,y?,8P), (nN,yN,dN))LR are equal if m” =n®, af =yP,

ﬁP :5P’mN =TlN, ()(N :]/N,ﬂN :5N.

Definition 6. (Akram et al., 2021) The arithmetic operations of two
bipolar TFN M = ((mp, a?, BP), (m", “N»ﬁN))LR and
N = ((n?,y?,87), (0", yN,SN))LR are as follows:

Addition:

M@ N =((m" +nP,a® +yP, B + 67),

(m’Y+nN,aN+yN,ﬁN+6N))LR. 4)
Opposite:

_1\7] — ((—mP,,BP, (XP), (_mN' ﬁN, aN))RL. (5)
Subtraction:

MO N =((mf —nP,al + 87,87 +yP),
m" —nV,aV + 5N, N +yN))LR. (6)

Multiplication:
If M >0and N > 0, then

M@ N = ((mPnf,mPy? + nPa®, mPsP + nfpP),
(mNnN,mNyN+nNaN,mN8N+nNﬁN))LR_ (7N

If M < 0and N > 0, then

MQN = ((mpnp,npap — mPS§P nPBP — mPyP),

N, N N N _ . NsN . NpN
(mn",n"a m s, n" B _mNyN))RLl (8)

If M < 0and N < 0, then
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MQ@N = ((mPnP,—nPBP —mP 8P, —nPaf —mPyP),
(mVnN, —nNgN — mN§N, —nNalV — NVN))RL- 9)

. Scalar multiplication:
Let 4 € R. Then

((AmP, 2a?,287), (AmN,/laN,lﬁN))LR, A=>0,

AQ M= (10)
((AmP,—2p%, —2al), AmN, -8V, —/laN))RL, 1<0.

Remark 1. (Akram et al., 2021) The solution of LR bipolar TFN M =
((mP, af, Py, (m", aN,BN))LR will have a strong LR bipolar fuzzy
solution, if af,a™ > 0, and B¥, BN > 0. Otherwise, the solution will
be weak LR bipolar fuzzy solution.

METHOD FOR SOLVING BIPOLAR FFSME

The solution of bipolar FFSME is considered an extension of classical
FFSME. In solving bipolar FFSME, an Associated Bipolar Linear
System (ABLS) is constructed by establishing the Kronecker product,
Vec-operator, and reduction of bipolar FFSME to bipolar FFLS.

Definition 7. Let Ae mXm and B € n x n .Then, the Kronecker
sum of A and B, denoted A®B,isnm x nm matrix (U,®4) + (BQU,,).
Note that, A®B # B®A.

Definition 8. Let A = (aF, aV);; j.and B = (bP bV ) be two bipolar
fuzzy matrices, where A € m X m, and B € n x n, respectlvely The
Kronecker product of A and B is represented as

[(dp:dN)n@E @, a");,®B - (@,a")1,® E]
A®B = (dP:aN)u@E (dp»dN)22®§ - (a@fa )Zn |
@, @)®B (@,0")®B - (@, a) @B

Definition 9. A Vec-operator generates a column vector from a bipolar
fuzzy matrix K by stacking the column vectors of

K

= [((mﬁ, allcan ﬁlf)' (mﬁ' allcvt ﬁllcv))l v ((mﬁ' CZ]I:, 'Blf)’ (mllg' allg'ﬂllcv))n]’
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as

[((mz,a;:,ﬁ,f), (mﬁ.aﬁ’.ﬁfcv))ll

(Ot a0 b ) |

Vec[K] =

Definition 10. The unitary bipolar fuzzy matrix is a square fuzzy

matrix defined as U,, = (ﬂi j)nxn:

((0,0,0),(0,0,0)), i},

uij =
((1,0,0),(1,0,0)), i=.

In matrix form, U,, = (ﬁi j)an is represented as follows:

[((1,0,0),(1,0,0)) ((0,0,0),(0,0,0)) - ((0,0,0),(0,0,0))]
ﬁ=|((o,o,0),.(0,o,0)) ((1,0,0),.(1,0,0)) ((0,0,0),'(0,0,0))|_

l((0,0,0);(0,0,0)) ((0,0,0),'(0,0,0)) ((1,0,0),'(1,0,0))J

Theorem 1. Let AX + XB = C be a bipolar FFSME and SX = C be a
bipolar FFLS. Then, AX + XB = C and SX = C are equivalent.

Proof. Suppose AX + XB = C is a bipolar FFSME. By applying the
Kronecker product, Vec-operator, and unitary bipolar fuzzy matrix as
stated in Definitions 8, 9, and 10, respectively, we now have

Vec|AX + XB] = Vec|(],

[(U®4) + (BT®0)|Vec[X] = Vec[C]. (1)

Therefore, Equation (11) can be represented as bipolar FFLS,

SX =2¢, (12)
where [(T®A) + (BT®U)] is represented as 5, Vec[X] is represented
as X, and Vec[C~ ] is represented as C.

Conversely, suppose SX = C is a bipolar FFLS using Vec-operator as

Vec[SX] = Vec|[C]. (13)
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Then, by expanding the coefficient S as A@®B into Equation (13),
which is based on Kronecker sum as stated in Definition 7, we now
have

Vec|(A®B)X] = vec|C]. (14)
In addition, A®B is (TQA) + (BTQ®U) is referred to as

Vec[AX] = [(U®4)|Vec[X], (15)
and

Vec[XB] = [(BT®U)|Vec[X]. (16)
Therefore, Equations (15) and (16) may be represented as bipolar
FFSME given by

[(T®A) + (BT®T)|Vec[X] = Vec|C],

Vec[AX + XB] = Vec[C], (17)

AX+XB=_C.

Thus, the theorem is proved.
In obtaining ABLS, consider § = ((mf,af, BF), (m¥,al,BY)) asa
bipolar fuzzy number, X = ((mfz ,al Py, (m¥, al, pY )) as a bipolar
fuzzy solution to be obtained, C= ((m,:’ aﬁ, ,35), (mzcv’ aév, ﬁév)) and
as a bipolar fuzzy vector. Then, LR bipolar FFLS can be represented as

SX=¢,

(g, af, ), (g, ag', B3)) @ (g, ey, 7). (my, a, BY)) = €

" (18)

(mf,m), (@f,a), (%, ) @ ((m&, m¥), (af,a), (BE,BY)) = C.

Subsequently, using arithmetic multiplication operations as defined in
Definition 6 on Equation (18), we now have
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(m§,mg) - (mg,my) = (mg, my),
(mg,m{) - (af,a) + (mg,m) - (af, af) = (af, al), (19)

This is followed by rearranging the bipolar linear system according to
similar coefficients and adding zero terms for non-similar coefficients,

which yields
(mg,md)+0+0  [0ny,m] [(m,mg)
(a5, ) + (mg,mg) + 0| (ax,ax) | =| (g, ac) | (20)

Legr, gy + 0+ mE,mIL gz gy ] Lege, gy |

Accordingly, the bipolar linear system in Equation (20) can be
represented in a block matrix as follows:

(mg :mév ) 0 (mx:mx (mc'

AR ol

L (g2, B 0 (mfm Jl(ﬁx,ﬁfcv)J (Bc,ﬁév)
@1)

and matrix notation as
SX =C. (22)

Definition 11. Let SX = C be an ABLS of bipolar FFLS, $X = C,
where

(mf,mY) 0 ] [(mx. ] [(mé’,m’!)
I(as: N (mﬁ,m@’) 0 Ir X= I(ax'ax)I C=|(“f:aév) I:
L (g2, 5% 0 (mfm)l L gz, p | L gz, |

with (mF, mY) is the mean value and (af,a®), (BF, BY) are the LR
spread values of bipolar fuzzy numbers in the coefficient S.
Meanwhile, (mE, m¥), (af,al), and (BE,BY) are mean, left, and
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right values of bipolar fuzzy solution in X, respectively. Then,
(mE,ml), (af,al), and (B, BY) are mean, left, and right values of
bipolar fuzzy vectors in coefficient C.

Correspondingly, details of the construction for bipolar FFSME is
presented in the following steps.

Step 1. Reducing bipolar FFSME to bipolar FFLS.

Based on Theorem 1, bipolar FFSME is reduced to bipolar FFLS as
SX=C, (23)

where the X is the bipolar fuzzy solution to be obtained.

Step 2. Converting bipolar FFLS to a bipolar linear system using
ABLS.

Let ,S~ = ((m.l':'agi 5?): (m.i‘v'a?]! SI_V))’X = ((mf;,a’f?,ﬁf).
ny,ay,Be)) and € = ((mE,al, B2), (mY, al, BY)) be presented as
bipolar FFLS in Equation (23). Then, applying ABLS and an inverse
method, the solution can be represented as

X =S"1c. (24)

Step 3. Rearranging the solution of ABLS as bipolar fuzzy numbers.
Consequently, the solution of ABLS in Step 2 can be rearranged as

X = (o, af, B1), (m¥, a2, BY)), |, (25)

where Equation (25) is considered as a bipolar fuzzy solution.

NUMERICAL EXAMPLES

The construction method of bipolar FFSME has presented two
examples as follows.

Example 1. Consider bipolar FFSME, AX + XB = C, where the
coefficients A and B is a matrix of 3 X 3 and 2 X 2, respectively.
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Besides, similar values on both positive and negative components of
coefficients are presented as follows:

((=554),(=554)) ((-4.23),(-423)) ((=7.23),(=7.23))
((-8,7,2),(-8,72)) ((-63,6),(-636)) ((—6,25),(-6,25))|X
((-832),(-832)) ((-432),(-432) ((-762),(-7,62))
_[((=524),(-5,24)) ((-32,2),(-3,22))
((-84,8),(-848)) ((-7,3,2),(-732))
I((191,—269,—225),(191,—269,—225)) ((204,—231,-266), (204, —231,—266))

= [((201,-275,-239), (201, —275,-239)) ((233,—264,—313),(233,—-264,—313))|,
((200,—234,—254),(200,—234,-254)) ((223,-201,-303), (223,-201,—303))

(26)

where the solution X can be represented as

[( mx' ax'ﬁaf) (mx:ax 'ﬂalcv))ll ((mx' ax'ﬁaf) (mx'ax 'ﬁalcv))lzl
|( mx'ax'ﬁx (mx:ax:ﬁalcv))21 ((mx'ax:ﬁpf) (mx:ax'ﬁalcv))zz

|((mE, ok, BE), (m¥, ad, B)),,  ((mf,af,BD), (mx,ax.ﬁ,c”))ng 27)

Step 1: Reducing bipolar FFSME to bipolar FFLS using Kronecker
product and Vec-operator.
The positive part of bipolar fuzzy numbers, §

(-10,78) (-4,23) (-723) (-848)  (0,0,0) (0,0,0) 7
(-872) (-11,510) (=625  (0,00) (-848)  (0,0,0)
(-832) (-432) (-1286) (0,0,0) (0,000 (—8,4,8)
(-3,3,2) (0,0,0) (0,000 (-1286) (-423) (-7.23) |
(0,0,0) (-3,3,2) (0,000 (-872) (-1368) (—6,2,5)
(0,0,0) (0,0,0) (=332 (-832) (-432) (-1494)
The negative part of bipolar fuzzy numbers, §
[(-1078) (=423) (-723) (-848)  (0,0,0) (0,0,0) 7
| (-872) (-11510) (-625) (0,00 (-848)  (0,00) |
| (-832) (-432) (-1286) (0,0,0) (0,00) (-8438) |
[ (=3,3,2) (0,0,0) (0,000 (=1286) (-423) (=723) ]
(0,0,0) (-3,3,2) 0,000 (-87,2) (-13,68) (—6,2,5) j
(0,0,0) (0,0,0) (-332) (-832) (-432) (—1494)
Then,
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[((m, az, B0, (my, &z, B)) [((191. ~269,-225), (191,269, —225))]
((mf, ez, D), (Y, &, B)),, ((201,-275,-239), (201, —275,—239))

(n,af, BO), (Y, e, BY)),, ((200,~234,-254), (200, —234, —254))|

= c'—|

((mf, a2, B2, (m¥, e, p)) |~ |((204,-231,-266), (204,-231,-266)) |’
((m£,af, BE), (mY, ok, p1)),, [((233,—264,~313), (233, -264,~313)) |
((m2, b, 1), (!, B1))., [((223,-201,-303), (223, -201,-303))]

Step 2: Converting bipolar FFLS to the bipolar linear system using
ABLS.

Given coefficient S can be collected as

(mf,m)

((-10),(-10)) (0. (-1) (7. (=7D) ((=8).(-8))  ((0),(®) (0, (@) 7
(=8),(-8)) ((-1D),(-1D) ((-6),(=6))  ((0),(®)) ((-8)(-8))  ((0),(0))
(=8),(=8) (=0, (—8) ((-12),(-=12)) ((0),(0)) (0,0) (-8, (-9)
((=3).(=3)  ((0),(®) (0, (@) ((-12),(-12)) (9. -) (D.D) |
((0,0) (33)  ((0,)  ((-8)(-8) ((—13),(-13)) ((—6),(-6))
(€0), () (0,)  (=30E=3) (8).(=8) ((-9.(-9) ((-14), (—19)/

(af,a)

(M. () (@.2) (@.@) (@®.@®) (0,0) ((0),0O))

(D, D) (G)LB) ((6).) ((0,0) (@.@D) ((0,0)

(3.03) (B3).®3) (®.3) ((0,00) ((0,.0O) (@ WD)

(3.3) ((0,0) ((0,0) (®.’3) (@) (@)

((0),(®) (3.3) ((0,0©@) ((D.D) ((6)(©) ((.(2)

[((0),(0)) ((0,(0) (3.3) (B.B) (BB) (9. )

(Bs. B

(®.®) (@.3) (B.®) (®.®) ((0,0) ((0,0)]
(@,@) (10,10) (6G).®) ((0.0) ((@),®) ((0),(0)
(@.@) (@.@) ((©.®) (0,0) (0, 0) (@8, ®)
(@.@) ((@,@) ((0,0) (@©).6) (@.3) (B)3)|
(@) (@.@) () (@.@) (@) ((6))
(0,@) (@.0@) (@.@) (@) (@) (@BW)

where ABLS is defined asSX = C.
Then, coefficients X and C are stated as
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P, mY ), ] [ ((191),(191)) ]
(mE,mM),, ((201), (201))
(m%,mY)3; ((200), (200))
(mf, m¥)1, ((204), (209))
(mgmg)zz ((233),(233))
(Mz, mx)3, ((223), (223))
(afc"aalcv)u ((_225)'(_225))
(@, a),, ((-239),(-239))
X = (af;,a;cv)m C = ((_254’)' (_254))
(af, a1z | ((—266),(-266)) |
(ag,ag)n ((~313),(-313))
(ax, @332 ((—303), (~303))
B2, 851 ((=269),(-269)
(BE BV ((=275),(=275))
(Bx, B 31 ((=234),(-234))
Bx B )12 ((=231),(-231))
(B2, B2z ((—264), (—264))
L (B, BY)32 | [ ((~201), (—201))]

Next, the solution of bipolar linear system X is obtained using the
inverse method.

[y, my)11] [/((=5), =5)\]
(mg, mi)21 (((_5)' (_5))\'
(mg, mi)a; ((_7)' (_7))
(mz, mi) 12 ((—9)» (_9))
(m,g, m% )22 ((-8),(-8))
(M, My )32 ((_7)' (_7))
(af, @)1 (@, @)
(ax, a)z1 ((3)’ (3))

X = (af,a¥)3 _ ((6)’ (6))
(af, a1, ((7); (7))
(a,g , a% )22 ((6),(6))
(e, ax )32 ((5),(5))
B2, B (®.3)
(B2, B )21 ((2)’ (2))
(BE, B3 ((5).()
(B2, B )1z ((6),(6))
BE, B )22 (), ()

LB, B2 1| @.3)/) |

(28)
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Step 3: Rearranging the solution of ABLS as a bipolar fuzzy number.

((-523),(-523)) ((-97,6),(-9,7,6))
X =1((-532),(-532) ((-865),(=865)| (29
((=7,6,5),(=7,65) ((-=7,53),(-753))
The graphical representation of Example 1 is provided in Figure 1. The
bipolar fuzzy number, ¥, is shown in a blue dotted line, ¥,, in a green
dotted line, X3, in a red dotted line, ¥, in a yellow dotted line, X,, in
a purple dotted line and X3, in a grey dotted line. The values are
rearranged as X in Equation (29), and the illustration in Figure 1
represents a strong bipolar fuzzy solution based on Remark 1.

Figure 1

Bipolar Fuzzy Solution of Example 1

B ar Fi ution X
- - = Frye =52 30=52 3N
P ’\ = AN Xy = (-2,2,3),(-2,2,3))
s 5 N \ ]
‘% NN - f1=(-5321-53.2)
PR NNt -
(SN
/7 \
P // // o VNN N X31= (-7,6,5).(-7,6,5)
P {\____;..h,..\_',
~ N ; ]
N ‘rl ot 1= (-9,7,6),-9,7.6)
SN \ fre w7/
~ N NN ¥ 7y
N oW (/ /. | = = = in=(-8,65),-86,5)
SN N 4 I |
NN gy /
N AN \/ | = = = ¥=0-753.-753)

Verification of Solution

The solution is verified by substituting solution X in Equation (29) into
bipolar FFSME in Equation (26) with the multiplication operations in
Equation (9).

((94,—114,-113), (94,—114,-113))  ((126,—152,—169), (126, —152,—169))

AX =|((112,—141,-134), (112,-141,-134)) ((162,—197,—223),(162,—197,—223))]| ,
((109,-101,-142),(109,-101,-142)) ((153,—137,—208), (153, —137,—208)) L
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XB

((97,-155,-112),(97,—155,-112)) ((78,—79,—97),(78,—79,—97))
= [((89,—134,-105),(89,—-134,-105)) ((71,-67,—90),(71,—67,-90))

((91,—133,-112),(91,-133,-112)) ((70,—64,—95), (70, —64,—95))
AX + XB

((191,-269,-225),(191, —269, —225)) ((204, —231, —266), (204, —231, —266))

=[((201,—-275,-239), (201, -275,-239)) ((233,—264,—313),(233,-264,—313))| =C.
((200,—234,-254), (200, —234,—254)) ((223,—201,—303), (223, —201,—303)) AL

(30)

Example 2. Consider bipolar FFSME, AX + XB = C, where the
coefficients A and B is a matrix of 3 X 3 and 2 X 2, respectively.
Besides, different values on both positive and negative components of
coefficients are presented as follows:

((-86,2),(-8,7,2)) ((-3,23),(-63,6)) ((-7,64),(-62,5))|X

((-553),(-832) ((-643),(-43.2)) ((-94.8),(-7,62))

7 [((—8,2,9), (-524) ((-43.4),(-322))
((-524),(-848)) ((-74.2),(~732))

((235,-253,-210), (191, -269,-225)) ((218,—227,—237),(204,—231,—266))

=|((221, —248,-244), (201, -275,-239)) ((213,-230,—256), (233, —264,—-313))|,

((257,-373,—241), (200, —234,—254)) (253,339, —252), (223,—201,-303))| (31)

[((—9,6,4), (-554) ((-83,6),(-423)) ((-221),(-7.23))

where the solution X can be represented as

[((mx'axrﬁf) (mxxax'ﬁalcv))ll ((mx:ax:ﬁx) (mxvax :ﬁ)lcv))lz]
((mx'ax:ﬁf) (mx'ax'ﬁalcv))u ((mx:ax'ﬁ;,) (mx'ax:ﬁalcv))zz
l((mx,ax,ﬁi’) mY,al,BY)),, ((mf af,B), (mx,ax,ﬁiv))nJ (32)

Step 1: Reducing bipolar FFSME to bipolar FFLS using Kronecker
product and Vec-operator.

The positive part of bipolar fuzzy numbers, S.

(-17,813) (-8,3,6) (-2,2,1) (=5,2,4) (0,0,0) (0,0,0)
(-8,62) (-11,412) (-7,64) (0,0,0) (=52,4) (0,0,0)
(=5,53) (-64,3) (=17,6,17) (0,0,0) (0,0,0) (-52,4)

(-434) (0,0,0) (0,0,0) (-16,10,6) (-8,3,6) (-2,21)
(0,0,0) (-434) (0,0,0) (-86,2) (10,65 (-7,64)
(0,0,0) (0,0,0) (—4,3,4) (=5,5,3) (—6,4,3) (—16,8,10)J
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Step 2: Converting bipolar FFLS to the bipolar linear system using
ABLS.

Given coefficient S can be collected as
(m&,mY)

((-17),(-10)) ((-8),(-4) (-2).(-7) ((-5).(-8))  ((0), () ((,@) 1
((=8),(=8)) ((-11),(-11) (7. (=6))  ((0).(®) ((-5).(-8))  ((0),(®) |
] (5).E8) (6. (=) ((-17),(-12))  ((0),(®)) (0,@) (-5.¢-9) |
1 (ED.E3) 0 (0.0) ((0,0) ((-16),(-12)) ((-8).(-49)) ((-2).(-7) |
(0,@) (9.-3) (0,0) ((-8),(-8) ((-10),(-13)) ((-7).(-6)) |
((0), (@) ((0,@)  (=9,(=3)) (=5),(=8)) ((=6), (=) ((-16),(-14))]

—_——

(af,al)

[(®,(M) (3).@) (@.@) (@.®) ((0,0) ((0),©)]
(©.M) (1.®) (6).@) (0, 0) (@.®) ((0),(0))|
(.3) (BO.®) (©.®) (0 0) ((0,0) (@ %)
(3.3) ((0),0) (©,0) (10,®) (@3 @) (@ @)
((©,) (3)3) (0,©@) (©).M) ((6),(6) ((6),(2))J
[((0), (@) ((0,0) (B.®) (G).3) (B.3) (®,.9)

8L, BY)

[((13),®)  ((6).(3) ((D.B) (@.®) ((0,00) ((0),0)]
(@,@) (12,10) (@®.3) (©0) (@®.8) (0, 0) I
@).@) (3.@) (D.®) (0,©) (0),0) (4),®) ]|
(@) (@) (@) (©.6) (©.6) (@)]
((0,@®) (®®@) (@O (@@ (G.®) (@ ®)

[ ((0),)  ((0,0) (@®.@) (B)@) (3@) ((10),¢W)

where ABLS is defined as SX = C.

Then, coefficients X and C are stated as
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[(mg, mi) 1)
(Mm%, my)z
(m%,mY)3,
(m%,mY)1,
(m%,mY)z,
(m%,m)s,

(af, aY)11
(ay,ay)z
(af, ay)3
(@f, a2 |
(af, )z
(af, a3z

(B, B2
(B, B )21
(B, B )31
(B, By )12
(B, B2z
L (%, B3z

[ ((235),(191)) ]
((221),(201))
((257),(200))
((218),(204))
((213),(233))
((253),(223))

((-210), (—225))

((—244),(-239))

((—241),(-254))

((-256),(-313))
((—252),(-303))
((=253),(-269))
((—248),(-275))
((=373),(-234))
((—227),(-231))
((=230),(—264))

((-237),(-266))|

[((=339), (—201))]

Next, the solution of bipolar linear system X is obtained using the

inverse method.

[(mF, my)1q]
(mZ, mY)z
(mf,mY)s;
(m&,mY),,
(mg, m{)z,
(mz, mY)s,

(af, a)1q
(ar, a)z
(az, af)z1
(“5: aalcv)u
(055' “;’cv)zz
(a3, a¥)s;

(B, B
(B2, B2
(B, B )31
(B, Bz
(B2, B )22

- (ﬁJIc)JﬂJIcV)32 -

[/((=8), (=5)\ ]

((=6).(-5)
((-8),(-7)
(=7.(=9)
(=7.(-9)
((=9).(=7)
(®.@)
(3®.®3)
(@, ()
(3®.™)
((®.(6)
(@)
(@.®)
((2,()
(6),(®)
(3®.(6)
(@, ()
(M, (3)

(33)
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Step 3: Rearranging the solution of ABLS as a bipolar fuzzy number.

((-83,2),(-523)) ((=7,33),(-9,7,6))
X=(((-632),(-532) ((-754),(-86,5))]| (34)
((-84,6),(-7,6,5) ((—=9.2,7),(-7,53))

The graphical representation of Example 2 is provided in Figure 2 for
the positive part and Figure 3 for the negative part. The bipolar fuzzy
number, ¥, is depicted by a blue dotted line, ¥,; by a green dotted
line, ¥31 by a red dotted line, ¥, by a yellow dotted line, ¥,, by a
purple dotted line, and X3, by a grey dotted line. The values are
rearranged as X in Equation (34), and the illustrations in Figures 2 and
3 represent a strong bipolar fuzzy solution based on Remark 1.

Figure 2

The Positive Part of the Bipolar Fuzzy Solution of Example 2

o Positive Part of Bipolar Fuzzy SolutionX
) ! \I\\ s\ "" 1T = = = in=(-83.2
I / A vy onT ]
/ /f /\\\.\\ \ x1=(-6,3,2)
/ /, 4 Vo ]
,f//// /\ NN 1 = = = i3n=(-84.6)
NN 1
f’/ \ ~
/ D %12= (7.3.3)
b 14 \ N 1=l
/ X
/ ff / \ \ \\\. |
'y ‘ N { — — = in=(-154%
7 / \ VAN ] = ’
{ ) X |
;/(f !’f / ‘\ ' \\ \\; — — = &p=-927)

Figure 3

The Negative Part of the Bipolar Fuzzy Solution XX of Example 2

Negative Part of Bipolar Fu; itior
T T \ / 1l — e o FwE523)
% N\ \ 5. £80 ! '
R /1,7 . =
o \ // /2 1=(-53.2)
NN W i, 5
RO \\ 4 4 y SESTS RS
N U A
AR WL x12=(-9,7.6)
N AR ng 1! )
NN g\ 4t - — = in=(-86)5
A
N ENp P /
\ { / \) 7.5
TR v = = T An=Elol
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Verification of Solution

The solution is verified by substituting the solution b'¢ »Equation (34)
into bipolar FFSME, Equation (31) with the multiplication operations
in Equation (9).

= [((138,-130,-169), (112,—141,-134)) ((140,-156,-163), (162, -197,-223))

[ ((136,-122,-141),(94,-114,-113))  ((137,-152,-152),(126,—152,-169))
((148,-182,-165), (109, -101,-142)) ((158,—216,—-162),(153,—137,-208)) p,

= | ((83,-118,-75),(89,-134,-105))  ((73,-74,-93),(71,—67,-90))
|((109,-191,-76),(91,-133,-112))  ((95,-123,-90), (70,—64,-95))

[ ((99,-131,-69),(97,-155,-112))  ((81,-75,-85),(78,—79,-97)) }
RL

((221,-248,-244),(201,-275,-239)) ((213,-230,-256), (233, —264,—313))

((235,-253,-210),(191,-269,-225)) ((218,-227,-237),(204,—231,-266))
=C~‘
((257,-373,-241),(200,-234,-254)) ((253,-339,-252),(223,-201,-303)) oL

(33)
CONCLUSION

This paper managed to propose a method for solving negative fuzzy
numbers in bipolar FFSME, contributing to the existing body of
knowledge regarding the combination of bipolar and FFSME. Bipolar
FFSME with a negative number is defined by modifying the existing
methods: Kronecker product and Vec-operator, which are used to
transform bipolar FFSME to bipolar FFLS. Consequently, either a
strong or weak bipolar fuzzy solution based on Remark 1 employs
ABLS in bipolar FFLS and reorganizes it as a bipolar fuzzy matrix. In
the future, the application of bipolar FFSME in areas such as electric
circuits and complex fuzzy numbers, a + ib (Ahmad et al., 2022), will
be explored.
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