
59

Journal of ICT, 9, pp: 59–85

G2WAY: A PAIRWISE TEST DATA GENERATION STRATEGY
WITH AUTOMATED EXECUTION SUPPORT

Kamal Zuhairi Zamli1, Mohammed Fadel Jamil Klaib, Mohammad
Issam Younis and Ong Hui Yeh

School of Electrical and Electronic Engineering
Universiti Sains Malaysia Engineering Campus

eekamal@eng.usm.my1

ABSTRACT

This paper discusses a new strategy, called G2Way, for pairwise
test data generation. Unlike existing strategies, G2Way
also supports (concurrent) automated execution integrated
within the strategy itself. Furthermore, empirical evidence
demonstrates that G2Way, in some cases, outperformed
existing strategies in terms of the number of generated test
data (as compared to that of AETG and its variations, IPO, SA,
GA, ACA, and All Pairs). Notwithstanding the differences in
the computing environment employed as well as the overhead
incurred to permit automated execution, the test generation
time is also within reasonable value.

Keywords:Way, Combinatorial Testing, Pairwise Testing.

INTRODUCTION

Modern society in today’s digital era depends heavily on computer
software in almost every aspect of daily life. In fact, whenever possible,
most hardware implementation is now being replaced by the software
counterpart. From the washing machine controllers, mobile phone
applications to the sophisticated airplane control systems, the growing
dependency on software can be attributed to a number of factors. Unlike
hardware, software does not wear out. Thus, the use of software can also
help to control maintenance costs. Additionally, software is also malleable
and can easily be changed and customized as the need arises.

Our dependencies on software often raise many issues as far as reliability is
concerned. Faulty software can cause severe data loss, crash the computer
and do other unexpected incidents that would squander the resource assets.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

60

For this reason, testing becomes immensely important. In order to ensure an
acceptable level of quality and reliability of a typical software product, it is
desirable to test every possible combination (Copeland, 2004) of input data
under various confi gurations (e.g. by also considering the running software
and hardware environments). Due to the combinatorial explosion problem,
consideration of all exhaustive testing is impossible. Resource constraints,
costing factors as well as strict time- to-market deadlines are amongst the
main factors that inhibit such consideration. Earlier work suggests that
pairwise sampling strategy (i.e. based on two-way parameter interaction)
can be effective (Klaib, Zamli, Isa, Younis & Abdullah, 2008). In fact, many
helpful pairwise sampling strategies have been developed in the literature.

Much useful advancement has been achieved in the last 10 years particularly
to facilitate the test planning process, that is, in terms of systematically
minimizing the test data to be considered for testing (i.e. based on the
pairwise parameter interactions). Despite such a signifi cant progress, the
integration and automation of the strategies from the planning process to
execution appears to be lacking. In current practice, the sampled test data
need to be manually extracted and converted to some acceptable format
before they can be executed (e.g. by a human tester, a code driver or a third
party execution tool). This lack of integration and automation between test
planning and execution can potentially burden the test engineers especially
if the module to be tested is signifi cantly large.

Apart from the integration and automation issues, strategizing to sample
and construcing minimum test set from the exhaustive test space is also a
NP complete problem (Tai & Lei, 2002; Shiba, Tsuchiya & Kikuno, 2004;
Lei & Tai, 1998). As such, it is often unlikely that an effi cient strategy exists
that can always generate an optimal test set (i.e. each interaction pair is
covered by only one test). Motivated by such challenges, we are currently
investigating a new strategy for pairwise testing, called G2Way. The G2Way
strategy, unlike other strategies, aims to automate and integrate test planning
and execution as well as support an effi cient generation of pairwise test
data. This paper describes the G2Way strategy (Klaib et al., 2008) as well
as compares its effectiveness against existing strategies including AETG
(Cohen, Dalal, Fredman & Patton, 1997) and AETGm (Cohen, Gibbons,
Mugridge & Coulbourn 2003), IPO (Lei & Tai, 1998), SA (Yan & Zhang,
2006), GA (Shiba et al., 2004), ACA (Shiba et al., 2004), and All Pairs
(Bach, 2009). Empirical evidence demonstrates that G2Way, in some cases,
outperformed other strategies in terms of the number of generated test data.
Additionally, notwithstanding the differences in the computing environment

ht
tp

://
jic

t.u
um

.e
du

.m
y/

61

Journal of ICT, 9, pp: 59–85

employed as well as the overhead incurred to permit integration between test
planning and execution, the test generation time is also within reasonable
time.

RESEARCH METHODOLOGY

The research methodology is divided into three parts as follows:

1. Survey of the state-of-the-art: A survey of the state-of-the-art
regarding the pairwise test data implementation is conducted in
order to fi nd the suitable implementation methods. Based on the
survey, the implemented strategy, G2Way, will be developed in
an effort to enhance the existing strategies with automation and
execution support.

2. Design and Implementation: Here, G2Way will be designed,
implemented, and fi nally tested for correctness.

3. Evaluation: In order to validate the integration of the test planning
and test execution, case study evaluations are conducted to showcase
the effectiveness of the G2Way strategy as far as the art-of-the-
practice is concerned.

Related Work

As discussed earlier, the focus of the current pairwise strategies has been
on test planning. As such, to the best of our knowledge, no signifi cant work
has been reported on integrating and automating the pairwise strategies for
both test planning and execution.

Considering the approaches adopted by the existing strategies, they can be
categorized into two categories (Lei, Kacker, Kuhn, Okun & Lawrence,
2007), that is, algebraic approaches and computational approaches.

Algebraic approaches construct test sets using pre-defi ned rules or
mathematical functions (Lei et al., 2007). Thus, the computations involved
in algebraic approaches are typically lightweight, and in some cases,
algebraic approaches can produce the most optimal test sets. However,
the applicability of algebraic approaches is often restricted to small
confi gurations (Lei et al., 2007), (Yan & Zhang, 2006). Orthogonal arrays
(OA) (Hartman & Raskin, July 2004; Hedayat, Sloane & Stufken, 1999)
and covering arrays (CA) are typical examples of the strategies based on

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

62

algebraic approach. Some variations of the algebraic approach also exploit
recursion in order to permit the construction of larger test sets from smaller
ones (Williams & Probert, 1996).

Unlike algebraic approaches, computational approaches often rely on the
generation of the all-pair combinations. Based on all-pair combinations,
the computational approaches iteratively search the combinations’ space
to generate the required test case until all pairs have been covered. In this
manner, computational approaches can ideally be applicable even in large
system confi guration. However, in the case where the number of pairs to
be considered is signifi cantly large, adopting computational approaches
can be expensive due to the need to consider explicit enumeration from all
the combination space.

Adopting the computational approaches as the main basis, an Automatic
Effi cient Test Generator (or AETG (Cohen et al., 1997; Cohen, Dalal, Kajla
& Patton, 1994), and its variant (AETGm) (Cohen et al., 2003), employ
a greedy algorithm to construct the test case, that is, each test covers as
many uncovered combinations as possible. Because AETG uses random
search algorithm, the generated test case is highly non-deterministic (i.e.
the same input parameter model may lead to different test suites (Grindal et
al., 2005)). Other variants to AETG that use stochastic greedy algorithms
are: GA (Generic Algorithm) and ACA (Ant Colony Algorithm) (Shiba
et al., 2004). In some cases, they give optimal solutions than the original
AETG although they share the common characteristic as far as being non-
deterministic in nature.

In Parameter Order (IPO) strategy (Lei & Tai, 1998) builds a pairwise
test set for the fi rst two parameters. Then, IPO strategy extends the test
set to cover the fi rst three parameters, and continues to extend the test set
until it builds a pairwise test set for all the parameters. In this manner,
IPO generates the test case with greedy algorithms similar to AETG.
Nevertheless, apart from being deterministic in nature, covering one
parameter at a time allows the IPO strategy to achieve a lower order of
complexity than AETG.

Based on computational approach, Schroeder and Korel (2000) developed
a rather unique combinatorial strategy based on the input and output
relationship. If one or more parameters are known to have an insignifi cant
effect on the system (i.e. don’t care), then the strategy randomly selects
the appropriate replacement of the don’t care value in order to perform

ht
tp

://
jic

t.u
um

.e
du

.m
y/

63

Journal of ICT, 9, pp: 59–85

the reduction. Although useful for systems with known input-output
relationships, no reduction is possible if all the parameters have the same
importance.

In more recent strategies based on computational approaches are IRPS
(Younis, Zamli & Isa, 2008) and All Pairs (Bach, 2009). Like IPO, IRPS
is deterministic in nature. Unlike IPO and other computational strategies,
IRPS focuses on effi cient data structure for storing and searching pairs.
In this manner, IRPS appears to be the only strategy that is capable of
supporting higher order interactions of parameters.

Similar to IRPS and IPO, All Pairs strategy (i.e. downloadable tool) appears
to share the same property as far as producing deterministic test cases is
concerned although little is known about the actual strategies employed
due to limited availability of references (Bach, 2009).

As far as other non-greedy strategies are concerned, some approaches
opted to adopt heuristic search techniques such as hill-climbing and
simulated annealing (SA) (Yan & Zhang, 2006). Briefl y, hill-climbing and
simulated annealing strategies start from some known test set. Then, a
series of transformations were iteratively applied (starting from the known
test set) to cover all the pairwise combinations (Yan & Zhang, 2006).
Unlike AETG, IPO, IRPS and All Pairs strategy, which build a test set
from scratch, heuristic search techniques can predict the known test set in
advance. However, there is no guarantee that the test sets produced are the
most optimum.

The G2Way Strategy

The overall view of the G2Way strategy (Klaib et al., 2008) can be seen in
Figure 1. Here, the base test data is fi rst specifi ed using a special markup
language.

Tthe markup language is based on our earlier work described in (Zamli et
al., 2007). Figure 2 illustrates a snapshot of a specifi cation of the base input
test data expressed using the markup language (i.e. keywords are shown in
bold). Apart from capturing the input test data, the markup language also
allows the defi nition of the values, data types, and access scopes as well
as the methods/functions that need to be tested. As will be seen later, it is
this information that will be used by the executor algorithm to execute the
test data, that is, by automatically generating a code driver to automate the
actual testing process.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

64

 Figure 1. Overview of the G2Way Strategy

Then, upon the execution of the G2Way strategy, the parser algorithm will
load the parameter and values to be used by the pair generation algorithm
(discussed later). Exploiting the result generated by the pair generation
algorithm, the backtracking algorithm generates the pairwise test sets.
Finally, upon completion, the backtracking algorithm forwards the results
to the executor algorithm for execution. Noted here is the fact that the
executor algorithm can also independently load the pairwise test sets for
execution through the parser algorithm.

Having given a high level picture on how the G2Way strategy works, the
next section highlights all the algorithms involved.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

65

Journal of ICT, 9, pp: 59–85

@FaultFile
///
 Common Header Defi nition
///
className : CollAccept
methodName : testAcceptance
specifi er: public
paramTypes : 5
returnType: void
parameter : partypes[0]=Double.TYPE
parameter : partypes[1]=Double.TYPE
parameter : partypes[2]=Double.TYPE
parameter : partypes[3]=Double.TYPE
parameter : partypes[4]=Double.TYPE
///
 Body - Test case 0
///
arglist:arglist[0]=new Double(49)
arglist:arglist[1]=new Double(49)
arglist:arglist[2]=new Double(49)
arglist:arglist[3]=new Double(49)
arglist:arglist[4]=new Double(49)
///
 Body - Test case 1
///
arglist:arglist[0]=new Double(74)
arglist:arglist[1]=new Double(74)
 ……………

 Figure 2. Snapshot of the Test Data Specifi cation

(i) The Parser Algorithm

As the name suggests, the parser algorithm (see Figure 3) parses the
module under test (specifi ed in the fault fi le) to capture the necessary
keywords and values to be used for pairwise generation and execution
(e.g. the className, methodName, paramNo, paramTypes, and return
type). Additionally, the parser algorithm also loads the parameters and
values into the parameter and value sets.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

66

Algorithm Parser (fault_fi le:File)

1: begin

2: load fault_fi le

3: let p = {} as empty set, where p represents the

defi ned parameters

4: let n∑ = {} as empty set, where n∑ represents the

parameter values

5: while not EOF (fault_fi le)

6: begin

7: read value

8: if keyword in value = {className or methodName or

paramN o or paramType or returnType or parameter}

9: begin

9: parse value

11: assign value to className or methodName or

paramNo or paramType or returnType or parameter

12: end

10: if keyword in value = {arglist[i]...arglist[paramNo]}

where i<=0<=paramNo

11: begin

12: parse value

13: assign i to the p set

14: assign value to n∑ set

15: end

16: end

17: end

 Figure 3. Parser Algorithm

(ii) Pair Generation Algorithm

The pair generation algorithm works as follows. Firstly, the algorithm
fi nds the loop edge for the 2-way interaction (i.e. based on the number
of defi ned parameters, p). Then, the algorithm performs index searches
through a loop from 0 to (2p -1). Here, for each index, the algorithm
converts the number to binary format. Now, if the number of binary ones

ht
tp

://
jic

t.u
um

.e
du

.m
y/

67

Journal of ICT, 9, pp: 59–85

in the index is equal to 2 (i.e. pairwise interaction), then that index is put in
the index set. As an illustration, consider an example of a system having 3
parameters (P2, P1, P0), each of which has (1, 3, 2) values respectively. In
this case, based on the number of parameters, the loop edge is 7 (i.e. 23 -1).
The index searches loop found 3 indexes having two ones, that is (3,5,6)
respectively (see Table 1).

Table 1

Index Search

Index 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

Table 2

Row Index

Row Index b5 b4 b3 b2 b1 b0

0 3 1 1 1 1 1 1

1 5 0 0 0 0 1 1

2 6 0 0 0 1 1 1

Going back to the pair generation algorithm, a row of possible pairwise
values combination for each parameter can be now generated by
recombining all the pair values for each parameter. (see Table 2) Here,
each index will contain a number of pairs (equals to the multiplication
of values defi ned in each shared parameter). For our example, the fi rst
index will have 3x2 pairs, the second index will have 2x1 pairs, and the
third index will have 1x3 pairs. Hence, the total pairs are 11. To ensure
effi cient implementation (i.e. reducing time and space requirements), the
pair generation algorithm exploits row indexes to facilitate the storing
and searching of pairs, a technique similar to IPOG (Lei et al., 2007).
Here, row indexes are used to store the indexes of the pairs, which in turn
are a structure of bits. Using our example, row index 0 (corresponds to
(P0,P1) pairs) stores 6 pairs which are indicated as bits b0 to b5. Similarly,
row index 1 stores 2 pairs and row index 2 stores 3 pairs. Based on the
aforementioned discussion, the detail of the algorithm for pair generation
is summarized in Figure 4.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

68

Algorithm Pair_Generation ()
1: begin
2: let Sp ={} as empty set, where Sp represents the
 pair set
3: let n∑ = {n0......nm} where n∑ represents the
 values defi ned for each parameter, m = max no of
 parameters
4: let p = {p0 ..pj}, where p represents the sorted set
 of sets of values defi ned for each parameter
5: for index=0 to 2 m - 1
6: begin
7: let b = binary number
 b = convert index to binary
8: if (the no of ‘1’s in b = 2)
9: begin
10: calculate number of possible combinations
 (PCi)between the partial sets of values
11: for the shared parameters
12: begin
13: multiply {nx x ny} values from n∑
14: set the bits group (equal to PCi) in
 the index row to 1
15: end
16: end
17: end
18: end

 Figure 4. Pair Generation Algorithm

(iii) Backtracking Algorithm

The backtracking algorithm iteratively traverses the pairwise sets in order
to combine pairs with common parameter values in order to complete a
test suite (hence, the algorithm is called backtracking). To ensure correct
test set (i.e. each pair is covered at least once), pairs are combined if and
only if the combination covers the most uncovered pairs. In the case where
some pairs cannot be combined (i.e. due to the fact that the values are not
uniform), the backtracking algorithm falls back to the fi rst defi ned values.
In this manner, the pairs can still be covered. Finally, once, the pairs are
covered, they are deleted from the pairwise sets. Hence, the algorithm
ensures that all the pairs are covered when the pairwise set is empty.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

69

Journal of ICT, 9, pp: 59–85

Based on the above discussion and using the pair generation algorithm, the
backtracking algorithm can be summarized in Figure 5.

Algorithm Backtracking (Sp: Set)
1: begin
2: let St ={} as empty set, where St represents the
 generated test cases set
3: for the fi rst two parameters
4: begin
5: create partial the test cases by selecting best
 values for higher parameters{P3….Pj}, that covers
 the maximum number of uncovered pairwise combinations
 in Sp
6: store generated test cases in St
7: remove covered pairs from Sp(by setting zero values
 to indicated bits).
8: end
9: while still found elements in Sp
10: begin
11: add a new element in the St set with empty fi elds
12: bring the fi rst uncovered combination, decompose
 and fi lls the initial value in the element set
13: for 2nd uncovered combination
14: begin
15: decompose uncovered combination
16: if (current pair element in Sp can be
 combined with other pair element)
17: begin
18: count number of uncovered combination
19: if (has most uncovered pairs)
20: fi ll it in the element set
21: end
22: if (the element set does not have matching pair)
23: select the fi rst element as default values to
 missing parameter
24: store it in St and remove the covered pairs from Sp
25: end
26: end
27: return St
28: end

 Figure 5. Backtracking Algorithm

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

70

(iv) Executor Algorithm

As discussed earlier, G2Way can serve both as a pairwise test planning
strategy and as a test execution and automation tool. In this case, only
when real data values are specifi ed in the test data specifi cation (i.e. in the
fault fi le) can G2Way support automated execution through its executor
algorithm. Here, the executor algorithm simply takes the name of the
defi ned class, methods, as well as its associated parameters and values,
and automatically generate a test driver to drive execution. In this manner,
concurrent execution is possible through the judicious use of threads. The
complete description of the executor algorithm is depicted in Figure 6.

Algorithm Executor(className,methodName,paramNo,param
Types,returnType,parameter:String; St:Set)

1: begin
2: for each test case, i, in St set
3: begin
4: create a public driver class
5: generate and compile the main method for the driver
class with specifi c call to the method under test
 by passing the ith test case from St
6: instantiate a driver object
7: if (thread<limit)
8: spawn and execute the thread for the created
driver object
9: capture the result and errors in log, if any
10: end
11: end

 Figure 6. Executor Algorithm

Evaluation

Our evaluation has four main goals. The fi rst goal is to demonstrate the
correctness of the strategy as well as to assess whether or not the generated
test cases are correct (i.e. each pair appears at least once). The second goal
is to assess the effectiveness of the G2Way strategy for pairwise test data
generation. The third goal is to demonstrate the applicability of G2Way
for test planning and execution. Finally, the fourth goal is to compare
the performance of G2Way against existing strategies particularly in
terms of the size and the time taken to produce these test sets. In the

ht
tp

://
jic

t.u
um

.e
du

.m
y/

71

Journal of ICT, 9, pp: 59–85

next sub-sections, we will present our complete evaluations based on the
aforementioned goals.

(i) Demonstration of Correctness

To demonstrate the correctness of the G2Way strategy, we select a web-
based confi guration example as a case study. The rationale for using this
example stemmed from the fact that historically the same data inputs have
been used by other researchers in the area (e.g. in [Colbourn, Cohen &
Turban, 2004]). By adopting the same data inputs, objective comparisons
may be made amongst different strategy implementation.

Overall, the web-based confi guration example consists of 4 parameters,
each of which has 3 values as seen in Table 3.

Table 3

Web-based System

P1 P2 P3 P4
Netscape Windows LAN Local
IE Macintosh PPP Networked
Firefox Linux ISDN Screen

Based on the web-based confi guration example above, the following test
set has been generated using G2Way. Here, G2Way produces 10 test data
(see Table 4).

Table 4

Suggested Test Set

T# P1 P2 P3 P4
1 Netscape Windows LAN Local
2 IE Windows PPP Networked
3 Firefox Windows ISDN Screen
4 Netscape Macintosh PPP Screen
5 IE Macintosh LAN Local
6 Firefox Macintosh LAN Networked
7 Netscape Linux ISDN Networked
8 IE Linux LAN Screen
9 Firefox Linux PPP Local
10 IE Macintosh ISDN Local

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

72

In order to investigate whether or not all the pairs are covered, it is
necessary to tabulate all the pairs. In this case, the pairwise interactions
of parameters are between (P1,P2), (P1,P3), (P1,P4), (P2,P3), (P2,P4) and
(P3,P4). Based on these interactions, the expected total pairs will be 54
(i.e. 9 pairs/interactions x 6 interactions).

As discussed earlier, we will focus on demonstrating the correctness of the
G2Way strategy by analysing the resulting test case set. Here, we aim to
show that G2Way gives effi cient results, that is, all pairs of combinations
are covered at least once. Table 5 lists all the pairs along with the test cases
generated by the G2Way strategy that covers them (denoted as T#).

Table 5

Pairwise Coverage

Pair Combination T# Pair Combination T#
Netscape, Windows 1 IE, Windows 2
Netscape, LAN 1 IE, LAN 5
Netscape, Local 1 IE, Local 5
Netscape, Macintosh 4 IE, Macintosh 5
Netscape, PPP 4 IE, PPP 2
Netscape, Networked 7 IE, Networked 2
Netscape, Linux 7 IE, Linux 8
Netscape, ISDN 7 IE, ISDN 10
Netscape, Screen 4 IE, Screen 8
Windows, LAN 1 Macintosh, LAN 5
Windows, Local 1 Macintosh, Local 5
Windows, PPP 2 Macintosh, PPP 4
Windows, Networked 2 Macintosh, Networked 6
Windows, ISDN 3 Macintosh, ISDN 10
Windows, Screen 3 Macintosh, Screen 4
LAN, Local 1 PPP, Local 9
LAN, Networked 6 PPP, Networked 2
LAN, Screen 8 PPP, Screen 4
Linux, LAN 8 Firefox, Windows 3
Linux, Local 9 Firefox, LAN 6
Linux, PPP 9 Firefox, Local 9
Linux, Networked 7 Firefox, Macintosh 6

(continued)

ht
tp

://
jic

t.u
um

.e
du

.m
y/

73

Journal of ICT, 9, pp: 59–85

Pair Combination T# Pair Combination T#
Linux, ISDN 7 Firefox, PPP 9
Linux, Screen 8 Firefox, Networked 6
ISDN, Local 10 Firefox, Linux 9
ISDN, Networked 7 Firefox, ISDN 3
ISDN, Screen 3 Firefox, Screen 3

Referring to Table 5, we observe that each combination pair appears at
least once (which means that the generated test cases include all generated
pairs) and there is no missing pair (which means that our strategy is
correct).

(ii) Effectiveness of the G2Way Strategy

To demonstrate the effectiveness of the G2Way strategy for pairwise test data
generation, the FileChooserDemo programme (SUN) has been chosen as an
independent open source code (downloadable from the SUN Microsystem
website). As the name suggests, the FileChooserDemo is a programme to
demonstrate various Java GUI for selection based controls (see Figure 7).

 Figure 7. FileChooserDemo Interface

Table 5

Pairwise Coverage

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

74

Referring to Figure 7, the FileChooserDemo programme has 14 parameters
(1 4 valued parameters, 2 3 valued parameters, 11 2 valued parameters). The
parameters in detail are:

 P1 = Look and Feel (Metal, CDE/Motif, Windows, Windows Classic),
 P2 = Dialog Type (Open, Save, Custom),
 P3 = File and Directory Options (Just Select Files, Just Select Directories,

Select Files or Directories),
 P4 = Show “All Files” Filter (Checked, Not),
 P5 = Show JPG and GIF Filters (Checked, Not),
 P6 = With File Extensions (Checked, Not),
 P7 = Show Hidden Files (Checked, Not),
 P8 = Use FileView (Checked, Not),
 P9 = Use Preview (Checked, Not),
 P10= Embed in Wizard (Checked, Not),
 P11= Show Control Buttons (Checked, Not),
 P12= Enable Dragging (Checked, Not),
 P13= File and Directory Options (Single Selection, Multi Selection),
 P14=Show File Chooser (Select, Cancel).

Based on the number of parameters, considering all exhaustive combinations
would require 41x32x211 = 73728 test cases. Considering pairwise testing and
using the G2Way strategy, the test cases are reduced to merely 15 (see Table
6). Here, we are interested in investigating whether or not the 15 suggested
test cases are suffi cient to test the FileChooserDemo programme whilst giving
acceptable coverage (i.e. in terms of the programme areas, blocks or paths
exercised by the test data). In the absence of the specifi cation, we believe,
it is suffi cient to evaluate our test execution based on whether or not the
programme behaves as expected.

To help measure coverage, we have adopted EMMA (2006), an open source
test coverage tool from SourceForge. Using EMMA, a number of coverage
metrics can be reported. The fi rst coverage metric is the class coverage. In
EMMA, the class coverage refers to the ratio of the covered classes over the
total number of classes. The second metric is the method coverage. Here,
the method coverage refers to the ratio of the covered methods over the total
number of methods. The third metric is the block coverage, defi ned as the
total covered blocks over the total blocks. Finally, the last metric is the line
coverage, defi ned as the covered lines over the total number of lines.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

75

Journal of ICT, 9, pp: 59–85

Ta
bl

e
6

Su
gg

es
te

d
Te

st
 S

et

T
#

P1
P2

P3
P4

P5
P6

P7
P8

P9
P1

0
P1

1
P1

2
P1

3
P1

4

1
M

et
al

O
pe

n
J.S

.F
T

T
T

T
T

T
T

T
T

Si
ng

le
Se

le
ct

2
C

D
E/

M
ot

if
O

pe
n

J.S
.D

F
F

F
F

F
F

F
F

F
M

ul
ti

C
an

ce
l

3
W

in
do

w
s

O
pe

n
F

or
 D

T
F

T
F

T
F

T
F

T
M

ul
ti

Se
le

ct

4
W

in
.C

la
ss

ic
O

pe
n

J.S
.F

F
T

F
T

F
T

F
T

F
Si

ng
le

C
an

ce
l

5
M

et
al

Sa
ve

J.S
.D

T
T

F
F

T
T

F
F

T
Si

ng
le

C
an

ce
l

6
C

D
E/

M
ot

if
Sa

ve
J.S

.F
T

F
T

T
F

F
T

T
F

M
ul

ti
Se

le
ct

7
W

in
do

w
s

Sa
ve

J.S
.F

F
T

T
T

T
T

F
F

F
M

ul
ti

Se
le

ct

8
W

in
.C

la
ss

ic
Sa

ve
F

or
 D

T
T

T
T

T
F

T
T

T
Si

ng
le

C
an

ce
l

9
M

et
al

C
us

to
m

F
or

 D
F

F
F

T
F

T
T

T
T

Si
ng

le
Se

le
ct

10
C

D
E/

M
ot

if
C

us
to

m
J.S

.F
T

T
T

F
T

T
F

T
T

Si
ng

le
C

an
ce

l

11
W

in
do

w
s

C
us

to
m

J.S
.D

T
T

T
T

F
F

T
T

F
Si

ng
le

Se
le

ct

12
W

in
.C

la
ss

ic
C

us
to

m
J.S

.D
T

F
T

F
T

T
T

F
T

M
ul

ti
Se

le
ct

13
C

D
E/

M
ot

if
O

pe
n

F
or

 D
T

T
T

T
T

T
F

T
F

Si
ng

le
Se

le
ct

14
W

in
do

w
s

O
pe

n
J.S

.F
T

T
F

T
T

T
T

T
T

Si
ng

le
C

an
ce

l

15
M

et
al

O
pe

n
J.S

.F
T

T
T

T
T

F
T

T
F

M
ul

ti
Se

le
ct

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

76

Executing the 15 suggested test cases, we observe no errors as the programme
behaves as expected. Using EMMA, we obtain the following coverage results
(see Table 7). Noted here is the fact that these metrics are calculated based on
the FileChooserDemo implementation consisting of 9 classes, 42 methods,
2136 blocks, and 450 lines.

Table 7

Percentage Coverage

Class Coverage Method Coverage Block Coverage Line Coverage

100% 83% 96% 94%

Referring to the coverage results tabulated in Table 7, two conclusions can be
made here. Firstly, the pairwise test data set generated by G2Way is reasonably
effective to exercise various coverage metrics (i.e. 100% of class coverage,
83% of method coverage, 96% of block coverage and 94% of line coverage).
Secondly, in this programme, there is not much interaction among all the
control interface parameters with each other. As will be seen later, interactions
between parameters can play a signifi cant role as far as coverage is concerned.

(iii) Applicability of the G2Way Strategy for Test Planning and Execution

In this section, we aim to demonstrate the applicability of G2Way for both
test data generation and execution. Here, we opt to use the programme
source codes which consist of highly interacting input variables (as will be
discussed later). To do so, we hypothetically envisage a programme (called
college_acceptance) that can automatically advise student’s acceptance for
college admission. In this programme, it is assumed that the college has
four main departments, that is, Department of Mathematics, Department
of Physics, Department of Biology, and Department of Computing. The
acceptance criteria to any of the departments depends on the student’s
grade in high school for fi ve subjects namely English, Mathematics,
Physics, Biology, and Computer Science. In this hypothetical problem,
the student can be accepted in one of the departments, only if:

(a) he/she passes all fi ve subjects (i.e. each subject has a score of 50 %
or better).

(b) he/she scores 75% or better in the related subject to the department
he/she is applying for.

(c) the acceptance will be conditional if the English subject score is less
than 75%.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

77

Journal of ICT, 9, pp: 59–85

Unlike the earlier assessment (i.e. the GUI-based FileChooser demo)
which lacks parameter interaction, the acceptance criteria discussed here
appears to be highly intertwined and interdependent with each other. Thus,
it is expected that pairwise interaction may not be suffi cient for a good
coverage.

To serve as our case study, we have implemented the college_acceptance
programme as a Java programme. The college_acceptance programme
consists of 1 class, 2 methods, 594 blocks and 61 lines. The two methods
in the programme are the main () and the testAcceptance () method. Here,
the testAcceptance () method takes fi ve parameters of type double, for
each of the subject scores (e.g. English, Mathematics, Physics, Biology,
and Computer Science). Considering the subject scores with the criteria
discussed earlier, a decision will be taken and printed as Incorrect Grades,
Not Accepted in any department, Conditionally Accepted in specifi c
department, or Accepted in specifi c department.

Using the equivalence partitioning technique, the grade level can be divided
into three intervals. The fi rst interval is between [0, 50]. The second interval
is between [50, 75], and the fi nal interval is between [75,100]. Here, the
base test cases (see Table 8) can be selected in each of the intervals to
cover all the valid values. In this case, the fi rst value 49 belongs to the 1st
interval. The second value 74 belongs to the second interval. Finally, the
third value 76 belongs to the last interval. As an illustration, an excerpt
snapshot of the test data specifi cation for the base test data can be seen in
Figure 2 given earlier.

Table 8

Base Test Cases

Maths Physics Biology English Computer Science

49 49 49 49 49

74 74 74 74 74

76 76 76 76 76

Based on the number of parameters, considering all exhaustive combinations
would require 35 = 243 test cases. Considering pairwise testing and using
the G2Way strategy, the test cases are reduced to merely 14 (see Table 9).

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

78

Table 9

Suggested Test Set

T# Math Physics Biology English Computer Science
0 49 49 49 49 49
1 74 49 74 74 74
2 76 49 76 76 76
3 49 74 74 76 49
4 74 74 49 49 76
5 76 74 49 74 74
6 49 76 76 74 49
7 74 76 49 76 74
8 76 76 74 49 76
9 74 74 76 49 74

10 74 49 49 49 49
11 76 49 49 49 49
12 49 49 49 49 74
13 49 49 49 74 76

Concurrently executing the 14 suggested test cases (see snapshot in Figure
8) using G2Way, we observe no errors as the programme behaves as
expected.

 Figure 8. Concurrent Execution Snapshot

ht
tp

://
jic

t.u
um

.e
du

.m
y/

79

Journal of ICT, 9, pp: 59–85

Again, using EMMA tool (2006), we obtain the following coverage results
(see Table 10).

Table 10

Percentage Coverage

Class Coverage Method Coverage Block Coverage Line Coverage

100% 100% 21% 16%

Theere are two conclusions that can be elaborated here. The fi rst conclusion
is that G2Way can support automated (concurrent) execution apart from
its test generation capability.

The second conclusion is a more subtle one. As expected, referring to the
coverage results tabulated in Table 10, the pairwise test data generated is
not suffi ciently enough to give a good coverage. In fact, for this highly
interacting parameters implementation, there is a need to go for a higher
order interaction in order to get a good coverage.

(iv) Comparison with Other Strategies

Concerning comparison, we have identifi ed the following existing
strategies that support pairwise testing: AETG (Cohen et al., 1997, Cohen
et al., 1994), AETGm (Cohen, 2004), IPO (Lei & Tai, 1998), SA (Yan &
Zhang, 2006), GA (Shiba et al., 2004), ACA (Shiba et al., 2004), and All
Pairs tool (Bach, 2009). We considered eight system confi gurations:

S1: 3 3-valued parameters,

S2: 4 3-valued parameters,

S3: 13 3-valued parameters,

S4: 10 10-valued parameters,

S5: 10 15-valued parameters,

S6: 20 10-valued parameters,

S7: 10 5-valued parameters,

S8: 1 5-valued parameters, 8 3-valued parameters and 2 2-valued

parameters.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

80

Table 11 shows the size of the test set generated by each strategy, and
Table 12 shows the execution time for each system. All the problem
instances and data for the existing strategies are taken from (Younis et al.,
2008), except for the All Pairs tool (which is free for download, hence, we
could run it in our platform). Entries marked with NA are data that are not
available in these papers.

In order to ensure objective comparison, we summarized the hardware and
software platform used:

 AETG, AETGm, SA: Intel P IV 1.8 Ghz, C++ programming
language, Linux Operating System.

 IPO: Intel P II 450 Mhz, Java programming language, Windows 98
operating system.

 CA, ACA: Intel P IV 2.26 GhZ, C programming language, Windows
XP operating system.

 All Pairs: Intel P IV 1.8 Ghz, 512 MB RAM, Perl programming
language, and Windows Vista operating system.

 G2Way: Intel P IV 1.8 Ghz, 512 MB RAM, C++ programming
language, Windows Vista operating system.

Referring to Table 11, G2Way and All Pairs generate the same number
of test cases for S1. For S2, AETG, IPO, SA, GA, and ACA outperform
G2Way and All Pairs. For S3, AETG gives the best result compared
to all other strategies. For S4, G2Way comes second to ACA. For S5,
G2Way outperforms IPO and All Pairs (i.e. no data is available for other
strategies). For S6, AETG outperforms all other strategies. For S7, G2Way
outperforms other strategies. Finally, for S8, GA and SA yield the best
results.

From the above given results, it can be seen that no strategy can claim
dominance over the others. Although having a lot of entries with NA,
AETG appears to give the best overall results. IPO gives good results
with small confi gurations, but appears to generate more test set with high
confi gurations. Perhaps, All Pairs can be comparable to G2Way as it gives
similar number of test sets for small confi gurations. However, G2Way
appears to give better results for high confi gurations as compared to All
Pairs.

Concerning execution, it must be stressed that no fair comparison can be
made in terms of execution time due to the differences in the computing
environment as well as the unavailability of the open-source code or

ht
tp

://
jic

t.u
um

.e
du

.m
y/

81

Journal of ICT, 9, pp: 59–85

executable code to run in our platform. As noted earlier, we only managed
to get access to All Pairs to run in our platform. As a general observation,
however, we believe the execution time for G2Way is acceptable as
compared to other strategies (see Table 12).

Table 11

Comparison Based on the Number of Generated Test Set

System AETG AETGm IPO SA GA ACA ALL Pairs G2Way

S1 NA NA NA NA NA NA 10 10

S2 9 11 9 9 9 9 10 10

S3 15 17 17 16 17 17 22 19

S4 NA NA 169 NA 157 159 177 160

S5 NA NA 361 NA NA NA 390 343

S6 180 198 212 183 227 225 230 200

S7 NA NA 47 NA NA NA 49 46

S8 19 20 NA 15 15 16 21 23

Table 12

Comparison Based on Execution Time (in seconds)

System AETG AETGm IPO SA GA ACA ALL Pairs G2Way
S1 NA NA NA NA NA NA 0.08 0.047
S2 NA NA NA NA NA NA 0.23 0.062
S3 NA NA NA NA NA NA 0.45 0.25
S4 NA NA 0.3 NA 866 1180 5.03 2.906
S5 NA NA 0.72 NA NA NA 10.36 7.438
S6 NA 6,001 NA 10,833 6,365 7,083 23.3 1,753
S7 NA NA 0.05 NA NA NA 1.02 0.687
S8 NA 58 NA 214 22 31 0.35 0.33

As discussed earlier, the fact that G2Way supports both the test data
generation and execution can signifi cantly infl uence its execution time
as compared to other strategies. In G2Way, the base test data need to be
specifi ed in the external fi le, that is, to permit the specifi cation of real
data values for consideration (as opposed to merely symbolic values in

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

82

order to permit execution). In fact, unlike other strategies (e.g. All Pairs,
IPO), G2Way permits the use of real data values as opposed to symbolic
representation.

Notwithstanding the aforementioned variation in terms of input handling
as well as the differences in the computing environment, it is clear that
IPO outperformed other strategies as far as execution time is concerned.
This may be due to the fact that it is impractical to hard code the base
test data for generation. In this manner, there is bound to be some timing
overhead in that IPO is deterministic algorithm and needs only one run.
For this reason, it requires much less time to execute than others. Although
giving the best overall results in terms of the number of generated test set,
the execution time for AETG is unknown.

CONCLUSION

In this paper, we have proposed and implemented a deterministic
computational strategy for pairwise testing, called G2Way, as well as
demonstrated its correctness. Compared to other strategies, our evaluation
results are encouraging with acceptable test size and execution time.
In fact, G2Way is the only strategy that can support both test planning
and automated (concurrent) test execution. In this manner, G2Way can
potentially alleviate the mundane tasks as far execution of the combinatorial
test data is concerned.

Concerning our evaluation of pairwise testing as a whole, we believe that
much effort needs to be invested to develop strategies that can support
higher order interaction. In fact, there is also a need for a systematic test-
characterization exercise in a case-by-case basis before one can establish
whether or not pairwise or higher order interactions can be effectively
used for testing a particular programme. This fi nding is supported by our
case studies involving the FileChooserDemo and the college_acceptance
programme. Here, using pairwise generated test data, the FileChooserDemo
achieves a good coverage (see Table 7) whilst the college_acceptance
programme gives poor coverage (see Table 10) implying contradicting
parameter interactions.

Acknowledgement

This research is funded by the USM Short Term grant – Development
of Interaction Testing Tool for Pairwise Coverage with Seeding and
Constraint.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

83

Journal of ICT, 9, pp: 59–85

REFERENCES

EMMA: a free Java code coverage tool. (2006) Retrieve from http://emma.
sourceforge.net/

Bach, J. (2009). All Pairs test case generation tool. Retrieve from http://
tejasconsulting.com/open-testware/feature/allpairs.html.

Cohen, D. M., Dalal, S. R., Fredman, M. L., & Patton, G. C. (1997). The
AETG system: An approach to testing based on combinatorial
design. IEEE Transactions on Software Engineering, 23, 437–444.

Cohen, D. M., Dalal, S. R., Kajla, A., & Patton, G. C. (1994). The automatic
effi cient test generator (AETG) system. Proceedings of the 5th
International Symposium on Software Reliability Engineering.
Monterey, CA, USA.

Cohen, M. B., Gibbons, P. B., Mugridge, W. B., & Colbourn, C. J. (2003).
Constructing test suites for interaction testing. Proceedings of the
25th International Conference on Software Engineering. Portland,
Oregon USA.

Colbourn, C. J., Cohen, M. B., & Turban, R. C. (2004). A deterministic
density algorithm for pairwise interaction coverage. Proceedings
of the IASTED International Conference on Software Engineering.
Innsbruck, Austria.

Copeland, L. (2004). A Practitioner’s guide to software test design.
Boston, MA, Artech House.

Grindal, M., Offutt, J., & Andler, S. F. (2005). Combination testing
strategies: A survey. Software Testing Verifi cation and Reliability,
15, 167–200.

Hartman, A., & Raskin, L. (July, 2004). Problems and algorithms for
covering arrays. Discrete Mathematics-Elsevier, 284, 149–156.

Hedayat, A. S., Sloane, N. J. A., & Stufken, J. (1999). Orthogonal arrays:
Theory and applications. New York: Springer Verlag.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 9, pp: 59–85

84

Klaib, M. F. J., Zamli, K. Z., Isa, N. A. M., Younis, M. I., & Abdullah,
R. (2008). G2Way – A backtracking strategy for pairwise test data
generation. Proceedings of the 15th IEEE Asia-Pacifi c Software
Engineering Conference. Beijing, China.

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., & Lawrence, J. (2007). IPOG:
A general strategy for T-Way software testing. Proceedings of the
14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems. Tucson, AZ, USA.

Lei, Y., & Tai, K. C. (1998). In-Parameter-Order: A test generation strategy
for pairwise testing. Proceedings of the 3rd IEEE International
High-Assurance Systems Engineering Symposium Washington, DC,
USA.

Schroeder, P. J., & Korel, B. (2000). Black-box test reduction using input-
output analysis. Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA). Portland, OR, USA.

Shiba, T., Tsuchiya, T., & Kikuno, T. (2004). Using artifi cial life techniques
to generate test cases for combinatorial testing. Proceedings of the
28th Annual International Computer Software and Applications
Conference (COMPSAC). Hong Kong, IEEE Computer Society.

SUN How to use fi le choosers. Retrieve from http://java.sun.com/docs/
books/tutorial/uiswing/ components/fi lechooser.html

Tai, K. C., & Lei, Y. (2002). A test generation strategy for pairwise testing.
IEEE Transactions on Software Engineering, 28, 109–111.

Williams, A. W., & Probert, R. L. (1996). A practical strategy for testing
pair-wise coverage of network interfaces. Proceedings of the 7th
International Symposium on Software Reliability Engineering.

Yan, J., & Zhang, J. (2006). Backtracking algorithms and search heuristics
to generate test suites for combinatorial testing. Proceedings of the
30th Annual International Computer Software and Applications
Conference (COMPSAC). Chicago.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

85

Journal of ICT, 9, pp: 59–85

Younis, M. I., Zamli, K. Z., & Isa, N. A. M. (2008). IRPS–An effi cient
test data generation strategy for pairwise testing. Proceedings of the
12th International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems (KES). Zagreb, Croatia,
Springer-Verlag.

Zamli, K. Z., Isa, N. A. M., Klaib, M. F. J., & Azizan, S. N. (2007). A
tool for automated test data generation (and execution) based
on combinatorial approach. International Journal of Software
Engineering and Its Applications, 1, 19–34.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

