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ABSTRACT

Several high-ranking watermarking schemes using neural 
networks have been proposed in order to make the watermark 
stronger to resist attacks. However, the current system only 
deals with real value data. Once the data become complex, the 
current algorithms are not capable of handling complex data. In 
this paper, a distortion-free digital watermarking scheme based 
on Complex-Valued Neural Network (CVNN) in transform 
domain is proposed. Fast Fourier Transform (FFT) was used to 
obtain the complex number (real and imaginary part) of the host 
image. The complex values form the input data of the Complex 
Back-Propagation (CBP) algorithm. Because neural networks 
perform best on detection, classification, learning and adaption, 
these features are employed to simulate the Safe Region (SR) to 
embed the watermark, thus, watermark are appropriately mapped 
to the mid frequency of selected coeffi cients. The algorithm was 
appraised by Mean Squared Error MSE and Average Difference 
Indicator (ADI). Implementation results have shown that this 
watermarking algorithm has a high level of robustness and 
accuracy in recovery of the watermark.

Keywords: Digital Watermarking, Complex Back Propagation Algorithm, 
Complex-Valued Data (CVD), Complex-Valued Neural Network (CVNN), 
Fast Fourier Transform (FFT).

INTRODUCTION

Digital watermarking is an approach that involves the embedding of a digital 
mark into a multimedia object (cover work: image, audio, video text) such 
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that it is robust, secure and imperceptible to the human observer, but can be 
detected algorithmically. Due to the digital watermark’s crucial features such 
as imperceptibility, inseparability of the content from the watermark, and its 
intrinsic ability to undergo the same transformation as experienced by the 
cover work, this has made it superior and preferable over other traditional 
methods of protecting data integrity, authentication of information resources 
and ownership assertion. This preference has been proven experimentally 
(Schmidt, Rahnuma & Sadeghian, 2008) to provide improved security. An 
additional cofounding factor of a watermarking system is the robustness of 
the algorithm against attacks. Robust watermarks are designed to survive 
common distortion and resist malicious attacks (Kuttera & Petitcolas, 
2000). All applications presupposing security of the watermarking systems 
require this type of marks in order to survive any kind of alterations or 
intentional removal introduced by standard or malicious processing and 
attacks. Examples of robust watermarking can be found in the works of (Lu, 
Sun & Lu, 2009, Celik, Lemma, Katzenbeisser & Veen 2008; Shih & Wu, 
2005). Something is missing Some watermarking schemes embedded with 
very low robustness are called fragile watermarks. Fragile watermarks can 
be destroyed with the slightest manipulations, as long as the document has 
been illegally manipulated. Such types of watermarks are used to check the 
integrity of objects and might be useful if digital images are used as evidence in 
litigation and forensic application. It is also used to verify the medical content 
of medical images due to its sensitivity (Zain & Fauzi, 2007). Applications 
that use fragile watermarks can be found in the work of (Ting, Goi & Heng, 
2007). A watermarking scheme is mostly designed in view of its application, 
and there is no such watermarking scheme that can perform well under all 
hostile attacks (Khan, Tahir, Majid & Choi, 2008). For example, (Parthasarath 
& Kak, 2007) designed a DCT content-based watermarking scheme. In their 
method, texture, luminance, corner and the edge information in the host image 
were used to generate the mask of a watermarking scheme. It was found that 
their scheme was robust against JPEG compression, median filtering and 
contrast-sharpening filter. However, it was not robust against scaling, rotation 
and high noise levels. For these reasons, the development and the evaluation 
of watermarking algorithm is a challenging task. 

Least Significant Bit (LSB) coding was among the fi rst techniques used in 
watermarking (Van, Tirkel & Osborne, 1994), an today till LSB is a common 
and easy-to-use watermarking scheme. LSB coding is easily achieved by 
camoufl aging the noises inherent in to digital-signal acquisition process (Gao 
& Gu, 2007). When LSB came into use, it was as if it couldnot be attacked. 
However, with advances in algorithm, various steganalysis surfaced (Ge, Gao 
& Wang, 2007, Luo, Liu & Liu, 2005) which found LSB to be vulnerable 
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to even the slightest image distortion. Researchers later improved LSB by 
introducing algorithms such as Patchwork, a statistical method of embedding 
(Bender, Gruhl, Moto & Lu, 1996), correlation-based techniques, feature 
points and chaotic maps (Peng & Jiang, 2009).

However, due to direct manipulation and linear addition of the watermark 
to the host media of the above techniques (LSB, Patchwork and chaotic 
map), are vulnerable to attacks. Such techniques are also known as spatial 
domain techniques. Spatial domain techniques are susceptible to attacks 
like compression, geometric distortation, image degradation as well as 
computational ineffi cient. To obtain better imperceptibility as well as 
robustness, the embedding of the watermark is done in transformed domain.  
Scientists exploited the benefits of transform domains like Discrete Cosine 
Transform (DCT) (Choi Seo, Yoo & Kim, 2008), Discrete Fourier Transform 
(DFT) (Sang and Alam 2008), Hadamard Transform (Abdallah et al., 2006), 
and Discrete Wavelet Transform (DWT) (Senthil & Bhaskaran, 2007) to build 
a robust watermarking algorithm. These current schemes are not totally robust 
against all attacks. However, when the principles of neurocomputing, and their 
usage in science and technology surfaced, (Ham & Kostanic, 2001), the use of 
a Neural Network (NN)-based watermarking scheme was successful. This is 
because a NN-based scheme performs well under specifi c sets of conceivable 
attacks and work well with Human Visual System (HVS).

ARTIFICIAL NEURAL NETWORK IN WATERMARKING, 
RELATED WORK

Recent works have taken advantage of artificial intelligence in Neural Network 
to design a robust watermarking system. Owing to the inherent characteristics 
of Neural Network like learning and adaptive capabilities, pattern mapping and 
classification as well as its ability to generalize, not only reproduce previously 
seen data, but also provide correct predictions in similar situations gives the 
trained networks the ability to recover the watermark from the watermarked 
data. Examples of applications of ANN in the watermarking system include 
embedding and recovery of mark, capacity estimation (Me et al., 2002, Fang 
& Zhang, 2005), error-rate prediction (Zhang & Zhang 2007), detection of 
tempering, Safe Region location (Olanrewaju et al., 2010).

Artifi cial Neural Network in Embedding and Recovery of Watermark

In ANN embedding, transform domains such as DCT, DWT, DFT etc., can be 
used to decompose the host media coeffcients fi rst. Then a chosen NN can be 
used to train these information. Such training will establish the relationship 
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among the coeffi cients that will serve as an input to the layers of network. 
Finally, the watermark sequence is embedded into the host media adaptively 
by adjusting weights to produce corresponding target watermark media at the 
output layer. This watermark can be stored at the same time if the original 
media is necessary watermark detection (Bansal  et al., 2005).

  Figure 1. Block Diagram of Embedder and Extractor

A typical watermarking scheme is illustrated in Figure 1 showing the two main 
building blocks; anembedder/encoder with a respective extractor/decoder. 
In general, the embedding process can be understood as the combination of 
a watermark signal and the original host (image, video, text audio) media. 
The watermark embedder inserts a watermark into the cover signal and the 
watermark recovery block extracts/decodes or detects the presence of the 
watermark signal. To create a watermarked image C(x, y), the pseudorandom 
pattern W(x, y) is multiplied by a small gain factor k and added to the host 
image or cover data C(x, y), as shown in equation 1 illustrated in Figure 2.

  
  Figure 2.  Digital Watermarking Embedding Scheme

 

C^’ (x,y)=C(x,y)+k.W(x,y)                                                                  (1)

Li and Wang (2007), demonstrated the combination of the video-watermarking 
scheme based on RBF Neural Network and 3D-DWT. The algorithm established 
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a relationship among the coeffi cients of the discrete wavelet decomposition 
along the spatial and temporal axis using the RBF networks. It was applied 
during the embedding and extracting processes to limit pirate attacks. Chang 
(2005) proposed a Full-Counterpropagation Network (FCNN) to insert the 
watermark into the synapses of FCNN rather than the cover image. This 
method increased the robustness of the algorithm and reduced imperceptibility 
problems to a great extent. Similarly, Bansal and Bhadauria (2005) introduced 
a scheme based on Backpropagation Neural Network to train a given cover 
image in which the trained-network weights are hidden within the original 
cover image itself. This increased robustness and preserved the cover image. 
Majhi and Shalabia (2005), also showed how to again computation effi ciency 
as well as memory requirement by embedding and detecting watermarks using 
a modified Functional Link Artificial Neural Network (FLANN) in Discrete 
Cosine Transform (DCT). The algorithm was trained using backpropagation 
algorithm to achieve minimum MSE. The results showed that the scheme 
reduced computational cost in the training stage and maintained a good 
performance of approximation. Tsai (2007) proposed a decision-processor-
based watermarking in the wavelet domain using NN that incorporated the 
HVS model. This technique was used to extract the watermark and enhance 
imperceptibility of the watermarked media.
 
Artifi cial Neural Network as Capacity Estimator

Researchers like Fang and Zhang (2005) studied the bounds of embedding 
capacity in a blind watermarking algorithm based on the Hopfield neural 
network. They used basin attraction via Hamming distance to restrict the 
capacity of the watermark. Similarly Shi-Chun et al., (2002) modeled the Human 
Visual System (HVS) using the feed forward ANN-based image-adaptive 
method in order to decide the watermark strength of DCT coeffi cients. The 
experimental results showed that the method could increase the watermarking 
strength and the robustness of the watermark was enhanced. Furthermore, 
Jin and Wang (2007), indicated that using ANN in different textural features 
of each DCT block, the luminance of an image can be implored to decide 
adaptively the watermarking-embedding strength. Similarly, Ming et al, 
(2003) defined a Radial Basis Function neural networks-based algorithm that 
controlled and created a maximum image-adaptive strength watermark.

Artifi cial Neural Network  in Error Rate Prediction 

Some authors have used neural network to predict the error rate of watermarked 
images. The watermark-detection error rate helps embed more watermark 
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messages while keeping an acceptable detection error rate. It is useful in the 
design of general watermarking and detection algorithms. According to the 
experimental results obtained by Zhang et al. (2007), the detection error rate 
of watermark is mainly influenced by the watermark average energy and the 
watermarking capacity. The error rate rises with the increase of the watermarking 
capacity. When the channel coding is used, the watermarking error rate drops 
with the decrease of the payload capacity of watermarking. Naoe and Takefuji 
et al. (2008), proposed a frequency-based transform watermarking using NN 
on the YCbCr domain to detect a hidden code from the content. A conditioned 
neural network was used as a classifier to recognize a hidden bit pattern from 
the content which the embedder associated to the target content. They reported 
that the method did not damage the target content. However, the extraction 
keys had to be shared among the embedder and the extractor in order to extract 
the hidden bits completely from the target content.

Artifi cial Neural Network in Tamper Detection 

Another area of watermarking that researchers have looked into is in tamper 
detection phase. Detection is to find if the watermark is present or not. During 
the watermark recovery, just before the extraction, a detection threshold may 
be set to establish whether a watermarked media contains a mark or not Only 
two values are set true or false/ 1 or 0. Usually the correlation test method is 
used in watermark detection. There are two types of error detection (Cox et 
al., 1999); the false negative, when the watermark detector fails to detect a 
watermark that is present, and False positive, when the watermark detector 
indicates the presence of a watermark in an unwatermarked media.

Artifi cial Neural Network in Location of Safe Region

Recently, a new watermarking component was found; the Secure Region (SR) 
within the capacity estimated. According to Olanrewaju et al., 2009, Secure 
Region (SR) is an identified region in the host media in which when the 
watermark is hidden therein, it will not be destroyed nor degraded.  ANN is 
used to locate such a region (Olanrewaju et al., 2010).

So far, to the best of our knowledge, no work has been done on watermarking 
using Complex- Valued Neural Network (CVNN). All of the above algorithms 
used Real-Valued Neural Network (RVNN), that is, the input to the network 
is real values and the output of the network is real values as well. The CVNN 
method enables the network learn complex numbered patterns naturally. The 
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input, weights and output of the network are complex valued. Traditionally, 
watermarks are embedded to the phase or magnitude (real values) of the host 
image in the DFT domain. However, embedding in phase only (Cheng & 
Cheng, 2005) or magnitude only (Hernandez et al, 2005) may lead to loss 
of information. With CVNN, both components can be used for embedding 
simultaneously without the loss of information. Therefore, neural network 
dealing with input and output vectors expressed in complex numbers are 
strongly desired, such as in optoelectronics, imaging, remote sensing, etc., 
(Liu et al 2009).

In this paper, a new scheme for embedding watermark into digital images 
using CVNN is presented. The proposed algorithm is operated in the Fast 
Fourier Transform (FFT) domain.

COMPLEX-VALUED NUERAL NETWORK SYSTEM

Complex numbers are used to express real-world phenomena such as in a image 
that comprises of phase and magnitude. However, to process such signals 
by neural network, a Complex-Valued Neural Network (CVNN) is needed 
(Amin & Murase, 2009). When using the conventional Real-Valued Neural 
Networks (RVNN), one must apply the method individually to the real and the 
imaginary part of a signal. On the other hand, CVNN allows direct processing 
of both the real and the imaginary component of a signal simultaneously. 
Moreover, CVNN enables us to capture the good rotational behavour of a 
complex number (Nitta, 2003). CVNN as shown in Figure 3 consists of the 
Complex-Valued Feed Forward (CVFF) and the Complex Back-Propagation 
(CBP) algorithms. CVNN has been studied and developed by Leung & Haykin 
(1991), Georgiou. & Koutsougeras (1992), Kim & Adali (2001), Hanna & 
Mandic (2002), and Kim and Adali (2002). The Complex-Valued Neural 
Network (CVNN) consists of an interconnection of the Complex-Valued 
(CV) neurons and Complex-Valued synaptic weights as depicted in Figure 
4. It processes information using a connectionist approach to computation in 
the complex domain. CVNN starts by transmitting the complex input signals 
or data through the connection; each connection has an associated weight that 
improves the transmitted signal; each neuron transforms the received signals 
(sums the input multiplied by the connection weight as in equation (2) through 
an activation function which in turns determines the output signal.
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Figure 3. CVNN; Consisting of the CVFF and the Complex Back 
Propagation Algorithm

2n this Fifure T(n) is the desired output, y(n) is the actual output of CVNN, 
e(n) is the error to be propagated backward.

Complex Neuron

A model of the complex neuron used in this study as shown in Figure 4, is 
divided into two parts: the summation, and the activation function parts. It 
begins by summing up the weighted complex-valued inputs in order to obtain 
the threshold value which will be used to represent the internal state of a given 
input pattern. The net output  yn  of  a complex-valued neuron n is shown by:
          
             (2)

where Wnm is  a complex synaptic weight connecting neuron n and m, Xm  is 
the complex input signal from neuron m. However yn is a function of z; f(z)  
isthe activation function. Details of the activation function are discussed in 
section 3.2.
  
All the complex inputs are computed based on the complex algebra which 
results into a complex output through complex weights. The resultant sum is 
fed into the activation function which maps the weighted sum to the real value 
output. The complex-value neurons are used in both the hidden and the output 
layers.

уn = ∑ m = 0  Χ m Wn m
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  Figure 4. Complex Neuron Model

Activation Function

The neuron uses the sigmoid activation function which is applied to both 
the real and the imaginary parts separately. As soon as the result from the 
summation part is fed into the activation function part, the activation function 
is triggered which causes the output to be bounded. For this study, the sigmoid 
activation function is used. It is defined as:

                   (3)
        
 
        (4)
        
          
        (5)
   
The error is calculated to be

        (6)

Where  e (n) = T n (R) + iTn (I)  is the target complex valued data and is the 
output of CVNN. The objective of CVNN training using the complex 
backpropagation technique is to find a set of parameters that minimize the 
sum of the squared of the error function, that is

        
(7)

Where * e (n) = * en (R) -  is the complex conjugate of the error function, l is the 
total number of neurons in the output layer. For the CVNN, l = 1. During the 
training, the complex network weight update is given by:

= ( ) +  ( )
( ) = ( ) +  ( )  ( ) +  ( )
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        (8)

But
          
        (9)

where μ is the learning rate, En is the gradient of the cost function and w is a 
complex weight function with Real (R) and Imaginary (I) parts. Therefore, (9) 
can be re-written as a complex variable with partial derivatives as:

          
        (10)
 

In order to use the chain rule to fi nd the gradient of the error function E with 
respect to w, the interdependency of the variables needs to be taken into 
consideration. The partial derivatives can be written as:
 
        (11)

        
        
                    
 

           (12)

Finding the partial derivatives associated with (11) - (12) and applying the 
Cauchy- Reima condition leads to the CVNN weight update given as

        

           
(13)

The complex network weight update for a fully complex CVNN is thus given 
as: 

        
                   

  (14)

( + 1) = ( ) + ( + 1)
=  

= +

=  ( . + ) + 

=  ( . + ) +( . + )

( . + )

=  ( ) + ( ) ( )
= ( ) ( ) +

= ( ) ( )
( + 1) = ( ) + ( ) ( )= ( ) + ( ) ( ) + ( )
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METHODOLOGY

The block diagram of the proposed Damageless watermarking system is shown 
in Fig. 6. It consists of a three-stage cascade system, namely Fast Fourier 
Transform (FFT), CVNN and the Embedding section. Details are discussed in 
subsection 4.1 to 4.3

   Figure 5. Block  Diagram of Damageless Watermarking System

Discrete Fourier Transform; Some Complex Values

Block decomposition and transformation of the host image  from the spatial 
to the transform domain using the fast version of  Discrete Fourier Transform 
(DFT)  is the fi rst step in the FFT process. Given an image I(x, y) of size MXN, 
for x = 0, 1,… M-1  and  y = 0, 1…N -1,   the 2-D DFT of I(x, y)  is represented 
by F(u, v):

          

        (15)

Thus, given F(u, v), we can obtain I(x, y) back by means of the Inverse 

2-Dimensional DFT (2D IDFT).

          

        (16)

where u,v are frequency variables and x, y are spatial variables.

Figure 6 shows how FFT is used to transform image I(x,y) from the spatial 
domain to the transform domain in order to obtain complex values. 

( , ) = ( , ) 2 ( + )1
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The host image is decomposed into non-overlapping 8 X 8 blocks. An N point 
FFT transformation of each selected and decomposed block is implemented 
independently in this stage as the input vector space. For the host image I(x,y)  
with size MxN, there should be N2 FFT points such as 16, 64, 128, 256, etc. 
This is because the FFT points must not be smaller than the data length. For 
this study, a FFT point of 16 is used.  The FFT shift of each block was then 
taken to determine the DC component. Once the data are sorted, the midpoint 
is easily located. This procedure helps in partitioning the data into the left-
hand side (LHS) and the right-hand side (RHS) based on the target data. For 
data on RHS of the number line, it is considered positive with a target data 0 
while data on the LHS is negative and its target is 1. Further categorization is 
done on both RHS and LHS based on the frequency component to low, mid 
and high frequencies. These serve as the fi nal complex input data to be fed 
into the CVNN.

Figure 6. Conversion of image from spatial domain to transform domain 
in order to obtain complex value using FFT (adapted from Smith, 1999).

CVNN Training

After the FFT values of the host image were calculated which contain the real 
and the imaginary components as explained in section 4.1, these data were 
used as the input data for the CVNN. Figure 7 show the real and the imaginary 
parts (complex values) of the host image. At the beginning of the training, 
weights and bias were initialized with small random complex values. After 
several experimentations, the optimum architecture (shown in Figure 8) for 
the CVNN is found to be 11:6:1: 11 nodes at the  input layer, 6 nodes at the 
hidden layer and 1 node at the output layer with a 0.69  learning rate.
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Figure 7.  Real and Imaginary Components of FFT Result for Sub-block 
of Host Image(Block9)

    Figure 8.  Damageless Watermarking CVNN Network Topology
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Learning Convergence

Generally when any neural network is trained with inputs, the error on training 
dataset decreases gradually with the epochs or the goal set. The CVNN stops 
training when the goal is achieved or reached or the maximum number of 
epochs are specifi ed; which-ever condition is met fi rst. Equation (17) was 
used as the criteria to stop the training when the maximum epoch set was 
achieved (1500epochs). Once the condition in Equation (18) was satisfi ed, the 
algorithm stopped training, weights and bias were blocked. Figure 9 shows 
how the mean square error changed over the epochs.

         
              (17)
          
     
        
              (18)

where T and y are complex numbers representing the target and the output, J 
is the total number of training patterns, k is the pattern number while l is the 
number of output neurons.

  Figure 9. A Typical Mean Square Error, MSE Plot for CBP Algorithm

( ) =  12 (=1 )2 =1
( ) =  12 (=1 )2 ==1 1500
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Watermark Vectorising and Binarization

The watermark is a 19x17 image of the IIUM logo as shown in Figure 10. 
It was vectorized and the gray level was calculated for binarization. The 
resultant vector serves as the target or classifi cation signal. The size of the 
watermark determines the number of blocks to be selected for CVNN training 
data. The watermark also determines the class type each watermark bit will be 
mapped to,  either positive or negative. 0 bit is embedded in the positive while 
1 bit is embedded/mapped to the negative part. For a binary sequence b(m,n) of 
watermark w(m,n) is mapped to the RHS negative, or the LHS positive of the 
frequency spectrum by applying the following constraint:

        (19)

Where f(m,n) is the frequency spectrum

      

        
(20)

Embedding Method

The main step in embedding is suffi cient generation of weights (hidden and 
output) by the CVNN and carefully mapping of the target content (watermark) 
to the input data (host image). Our method uses the mapping strategy to embed 
the watermark instead of the traditional adding (+) of the watermark to the 
host image. It is damageless because there is no physical addition (+) of the 
watermark to the host image during embedding. Each block is mapped with a 
watermark bit as illustrated in Figure 10, the embedding/mapping procedure.

1.   Block selection: Consider a grayscale host image I(x, y) with size M x N 
and a watermark w of size Mw X Nw binary image. The total block that 
can be selected from I(x, y)   is   x  size 8x 8. However, the size of the 
block to be selected for watermarking is determined by the total size of 
the watermark w. The selection can be sequential or random. 

2.   Transformation of the each selected block by FFT to obtain the complex 
values for the CVNN is explained in section 4.1.

3.   Establishing a CVNN relationship between the input data and the target 
content, which is, carefully matching the target content with the input 
data. A three bits binary target content T is mapped to the input data. 
The mapping rule is determined by:

( , ) {01 ( , )=+
= { ( , )| ( , ) {0,1}}
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  Figure 10.  The Watermarking Embedding Procedure

         (21)

Where t (m,n) is defi ned as follows:

           
        

(22)

Where T is the target content and   is the position of the low, mid and high 
frequencies.

= { ( , )| ( , ) {0,1}}
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4. Training is repeated and the relationship is adjusted between the target 
content and the corresponding output of the CVNN model until the 
network learning threshold is satisfi ed and the convergent of network 
weights are achieved.

5.  Weights are saved for future extraction.

                                   
  

  Figure 12. Pepper, the Host Image

Figure 11. IIUM Logo as the Watermark      
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Figure 13a.  Host image, Pepper, b. The Watermarked Pepper, c. Histogram 
of Host Image  d. Histogram of Watermarked Imaged.

RESULT AND DISCUSSION

Figure 13b shows the result of the watermarked image and its corresponding 
histogram is shown in 13d.  Since we do not embed any data into the cover 
image, there will be no visual quality degradation to the watermarked image, 
which fulfi lls the imperceptibility requirement of watermarking algorithm. As 
can be seen from Figures 13c and 13d, the histograms of the host image and the 
watermarked image show that both images are identical. This imperceptible 
result is achieved due to the mapping strategy.  Here, we would like to stress 
more on the robustness of the proposed algorithm especially the extraction of 
the watermark bits.

Table 1 shows the result of a single run for training the embedder using a 
three bit watermark on an average of 40 sub blocks. Results of the preliminary 
experiment showed that the algorithm was able to map 3 bits of watermark data 
per one sub-block. The watermark pattern for all the sub-block frequencies 
(low, mid and high) are three bits, 0 1 0. 40% of the original data was used for 
training the network. Once the network was correctly trained, another separate 
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40%, different from the training data, was used as test data and the remaining 
20% for validation. These data were taken from independent blocks. For 
the test result for low frequency neuron output, using the saved weights in 
Table 2, the watermark were correctly mapped and recovered, which showed 
that the weights used for extraction were suffi ciently enough to recover the 
watermark bit accurately. For all the 0 bits mapped, the test result was between 
0.00 and 0.04, which is considered a very good extraction. This is because 
after taking the threshold, the values fall back to 0. The results buttress the 
point that watermark signals were recovered only when the correct input data 
was used. For the mid frequency neuron output in column 3, the mapped bit 
is 1. The result after extraction gives between 0.99 and 0.95. This is also an 
indicator that the watermark is correctly recovered; 0.99 is considered 1 after 
the threshold. The high frequency neuron in column 4 output is mapped to 0. 
The result after extraction shows retrieved values between 0.00 and 0.04. This 
is also a good output because it recovered the exact bit after the tresholding 
in column 5. The result also shows that there were no wrongly mapped bit. 
This indicates that the algorithm is very accurate. Objective test for accuracy 
is future work.

Regarding learning convergence, the algorithm converges before the training 
cycles(epoch) are completed, which is  500 epochs instead of the 1500 set 
epoch. This is evidence that it takes less time to reach the minimum validation 
error. Figure 9 show a typical training cycle.

EVALUATION CRITERIA

The performance of the algorithms were appraised by some objective 
performance measures such as: Mean Square Error (MSE) and Average 
Difference Indicator (ADI). MSE and MDI were used as accuracy indicators 
for the retrieved watermark. Technically, MSE and ADI are similari 
measurements between two different signals. The value ranges between 0 and 
1. When the result of two signals/images is 0 it means they are similar while 1 
means dissimilar; that is, a lower value signifi es closeness.

MSE and ADI are defi ned as:

          
  (23)

            
 (24)
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Table 1

Watermarked Neuron Output and Performance Evaluation.

Frequency component of 
recovered watermark. 

Measure  of 
quality 

Embedded 
watermark 

Low Mid High Threshold (x>0.5)  of 
Recovered watermark 

MSE ADI

010 0.0355 0.9638 0.0021 010 0.01 0.00
010 0.0226 0.9768 0.0084 010 0.01 0.01
010 0.028 0.9686 0.0169 010 0.01 0.02
010 0.0355 0.9658 0.0002 010 0.01 0.00
010 0.032 0.9707 0.0012 010 0.01 0.00
010 0.0267 0.9786 0.0022 010 0.00 0.00
010 0.0223 0.9759 0.0125 010 0.01 0.01
010 0.0283 0.9707 0.0029 010 0.01 0.00
010 0.0307 0.9683 0.0132 010 0.01 0.01
010 0.0268 0.9695 0.016 010 0.01 0.02
010 0.0397 0.9574 0.0068 010 0.02 0.01
010 0.0329 0.9633 0.0139 010 0.01 0.01
010 0.0334 0.9658 0.002 010 0.01 0.00
010 0.0142 0.9879 0.0025 010 0.00 0.00
010 0.0267 0.9641 0.0194 010 0.01 0.02
010 0.0257 0.9556 0.0252 010 0.01 0.02
010 0.0313 0.9641 0.0165 010 0.02 0.01
010 0.0373 0.9603 0.013 010 0.01 0.01
010 0.0205 0.9739 0.0129 010 0.00 0.00
010 0.0139 0.9858 0.0001 010 0.01 0.03
010 0 0.9636 0.0319 010 0.03 0.05
010 0.0024 0.9472 0.0451 010 0.01 0.03
010 0.0018 0.9674 0.0322 010 0.00 0.01
010 0.0163 0.9783 0.0132 010 0.01 0.03
010 0 0.9668 0.0279 010 0.01 0.03
010 0.0007 0.9745 0.0261 010 0.01 0.03
010 0.001 0.9733 0.029 010 0.01 0.03
010 0.0036 0.9679 0.029 010  0.01 0.03
010 0 0.9721 0.0257 010 0.03 0.05
010 0.0003 0.9473 0.047 010 0.01 0.03
010 0.0017 0.9681 0.0258 010 0.01 0.03
010 0.001 0.9668 0.0326 010 0.01 0.03
010 0.0016 0.9726 0.0309 010 0.01 0.03
010 0.0028 0.9673 0.0343 010 0.01 0.04
010 0 0.9628 0.0356 100 0.02 0.04
010 0.0011 0.9523 0.0446 010 0.02 0.04
010 0.0015 0.9544 0.0438 010 0.01 0.03
010 0 0.9726 0.0308 010  0.01 0.04
010 0.0041 0.9667 0.0353 010 0.01 0.03

ht
tp

://
jic

t.u
um

.e
du

.m
y/



131

Journal of ICT, 9, pp: 111–137

From the result obtained in Table 1 column 6, the mapped bit/target bit and 
the recovered bit for 40 independent blocks show that MSE is between 0.00 - 
0.03, which is considered to be highly similar by its defi nition, that is, 0.03 is 
closer to 0 than to 1. For ADI, the obtained evaluation result for the mapped 
bit and the recovered bit is between 0.00 - 0.05. Apparently this shows that 
the mapped bits are very similar to the recovered watermark. Figure 12 shows 
the variation of the mid frequency extracted watermarks in relation to the 
embedded watermarks.

Table 2

Learned Hidden and Output Weights of CVNN for 11 Inputs

Complex Hidden Weights (real and imaginary components)

0.7098       +  
0.0231i

0.7608        -
0.1085i

1.2545       +
0.1907i

1.2837        +
0.2815i

0.7733       +
0.1017i

0.3700       -
0.1149i

0.6379       - 
0.0370i

0.9017        + 
0.1094i

0.1082       -
0.1392i

0.8171        -
0.2010i

0.0576       -
0.0604i

0.7149       +
0.1014i

-0.7209      
-0.0538i

0.0556        +
0.1789i

0.5707       -
0.2451i

0.8940        -
0.3662i

0.7862       -
0.0974i

0.8296       +
0.1666i

0.7155       + 
0.0398i

1.0945        -
0.1142i

0.1304       +
0.1577i

-0.0812       -
0.2380i

0.3442       +
0.0657i

0.7259       -
0.1066i

0.9307       +
0.0834i

-0.2489       -
0.2027i

0.6664       +
0.2891i

1.4619        +
0.4331i

0.2484       +
0.1222i

0.3208       -
0.1961i

0.5096       - 
0.0505i

0.4679        +
0.1465i

0.1490       -
0.1945i

0.5415        -
0.2865i

0.1953       -
0.0827i

0.9433       +
0.1367i

0.1894       - 
0.0103i

0.2749        +
0.0849i

0.1703       -
0.0963i

1.0867        -
0.1310i

0.3160        
-0.0362i

0.4552       +
0.0741i

0.3781       + 
0.0643i

0.3833        -
0.1889i

0.4506       +
0.2489i

0.4192        +
0.3663i

0.2306       +
0.1061i

0.3264       -
0.1754i

0.8155       + 
0.0215i

0.1097        -
0.0641i

0.2358       +
0.0787i

0.5903        +
0.1137i

0.7004       +
0.0355i

0.9581       -
0.0582i

0.2581       - 
0.0388i

0.1846        +
0.2200i

1.1643       -
0.2369i

0.4950         -
0.3185i

0.8899       -
0.1002i

0.2201       +
0.1898i

0.3190       - 
0.0041i

0.6477        +
0.0056i

0.4860       -
0.0116i

0.8630         -
0.0190i

0.5285       -
0.0046i

0.6326       +
0.0065i

Complex Output Weights (real and imaginary components)

-0.4441      – 
1.0333i

1.3803    -
1.9589i

-1.3612   +
  0.8452i

-2.0742  +
1.3051i

-0.3152   +
0.5714i

1.1096      -
0.5664i
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Figure 14. The Midfrequency Embedded Watermark Bits and the 
Respective Extracted Bits

CONCLUSION

In this paper, a new method of embedding a Damageless watermark based on 
CVNN has been presented. The method is damageless in the sense that there 
is no physical “touch” of the host image. The embedding strategy is mapping-
based which does not require the watermark to be traditionally added (+) to 
the host image.  The method converts a real domain data to a complex domain 
via Fourier transform techniques to obtain complex values. The transformed 
data was then used to train a CVNN system. Once the network was properly 
trained it was tested on some other cases that were unknown to the system. 
The effectiveness of the algorithm was evaluated using the objective 
performance measure and it showed  that the algorithm was able to recover all 
the embedded bits acurately. The fi rst major contribution of this work was is 
the innovative application of CVNN in embedding. In the fi eld of signal and 
image processing where inputs, outputs and transfer function are modelled in 
the complex domain, this proposed CVNN-based embedder will be a useful 
tool for watermarking. The second contribution was the level of accuracy 
obtained. Increasing the watermark bits and attacking the watermarked image 
is enumerated as a future work problem. 
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