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ABSTRACT

The basic principle of sharing and collaborative work by
geographically separated computers is known by several names
such as meta computing, scalable computing, cluster computing,
internet computing and this has today metamorphosed into a new
term known as grid computing. Grid computing is proving to be a
promising method of HPC, which is packaged with many challenges.
This paper elucidates the role that patterns can play in architecting
complex systems with specific reference to grid computing. We
provide descriptions of a set of well-engineered patterns that the
practicing developer can apply to crafting his or her own specific
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= applications. We develop the Software Requirements Specification

.\ ' (SRS), with an attempt to drive to effectual design specifications

~ for use by any grid developer. We analyze the grid using an Object
iy Oriented approach and present the design using the unified Modeling
D_ language (UML) which itself helps the identification of patterns at

A — different phases.

e

s Keywords: Grid computing, Unified Modeling Language, Analysis Patterns,
Design Patterns.

1.0 INTRODUCTION

Rapid technology development in several domains is the result of the explosive
growth of the Internet and of distributed computing in general. Increasingly,
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the high-performance computing community is blending its (parallel/cluster/
distributed) computing technologies to meet its performance needs. Grid
Computing is proving to be one such promising method of high performance
computing, packaged with many challenges. The initial vision of the grid is
presented in (Foster and Kesselman, 1998). Grids have moved from the obscurely
academic to the highly popular. One reads about Compute Grids, Data Grids,
Science Grids, Access Grids, Knowledge Grids, Bio Grids, Sensor Grids, Cluster

~~ Grids, Campus Grids, Tera Grids, and Commodity Grids (Foster, 2002). Consider
>a novice analyst/developer in the field of grid computing, with an objective to
— buﬂ(% a Worhng protOpre of a grid. Implerr}entatlorl_ of the prototype would
= require rigorous analysis of the problem domain especially when the problem at
L hand is very complex. Since many frameworks are already available, the analyst
would refer them and resort to reinventing another similar procedure of building

u
: the prototype.

U Thus it is seen that there are many grid frameworks that are built or are in the

process of being functional. All these grids differ in some functionality or the other,

= though the basic principle over which the grids are built is the same. Commonly

occurring scenarios could be documented as patterns, so as to promote reusability.

These patterns could be customized according to the application needs and would

3 act as catalyst in the analysis, design and implementation stages. We feel that it

would be a lot easier if the developer could choose from a set of patterns to craft

his/her own applications. A pattern oriented approach can lead to an efficient

= and speedy development of the grid prototype. Further it would be a lot easier

wh==d (0 incorporate/enhance the existing prototype. Thus standardization of analysis,

design and implementation procedures towards reusability in this domain needs to

= mmm  be addressed. This paper is motivated from this thought. The following subsection

Qdescribes the grid community as a whole right from its definitions, evolution,

. concepts, various frameworks to its dominant forums, research challenges and its
= = gpplications amongst others.

s 1.1 Grid Definitions

e

: e A computational grid is a hardware and software infrastructure that provides
dependable, consistent, pervasive and inexpensive access to high-end
computational capabilities (Foster and Kesselman, 1998).

e Grid systems are very large-scale, generalized network computing systems
that can scale to Internet size environments with resources distributed across
multiple organizations and administrative domains (Klaus, Buyya and
Maheswaran, 2002).
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High-performance computational grids involve heterogeneous collections of
computers that may reside in different administrative domains, run different
software, be subject to different access control policies, and be connected
by networks with widely varying performance characteristics (Foster and
Nicholas, 1998).

Grids are architectures that are collections of computational and data storage
resources linked by communication channels for shared use (Snavely, Chun,
etal., 2003).

“Grid” stems from the analogy to the electrical power grid, where many
generators produce electrical power that is distributed and delivered to
customers through a complex network of power lines (Foster and Kesselman,
1997).

.my/

: The essence of all the definitions above can be captured by a simple checklist,
U according to (Foster, 2002). The author defines a Grid as a system that:

e

¢ coordinates resources that are not subject to centralized control
= * uses standard, open, general-purpose protocols and interfaces
E e delivers nontrivial qualities of service.

3 1.2 Grid Evolution, Forums and Standards

Dominant Grid frameworks and their features are listed in chronological order

= (comprehensive but not exhaustive) in Table 1, followed by the existing Grid
whm=d forums and standards in Table 2. Web Services Definition Language (WDSL),
defined by the internet and (World Wide Web Consortium) W3C underlines the

= mmmm OGSA., which is the emerging de facto standard for Grid infrastructures.
] —
~ . .
~13 Production Grids
u u

Some large scale Grid projects have been developed in Asia, and Europe viz.
wh=d Netherlands, France, Italy, Ireland and Poland. In Europe, the UNICORE system
whd allows for seamless access to large number of German supercomputers. The
: ASCI and Teragrid are developing Grids connecting multi-teraflops in the United

States. Some well known @home projects that complement Grid systems and that

support resource sharing within and among institutions are SETI@home, which

is a project that searches for extra terrestrial existence, Climateprediction.net that
studies the climate changes. Einstein@home searches for gravitational signals
emitted by pulsars, LHC@home improves the design of the CERN LHC particle
accelerator, Predictor@home investigates protein-related diseases, Rosetta@
home helps researchers develop cures for human diseases and Cell Computing
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Table 1: A survey of abridged grid frameworks
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Framework
(Conceived)

Concept

Components/Features

Condor (1986)
(Frey, et al., 2002)

Uniform view of
Processor resources

Automatic resource location and job allocation. check
pointing and the migration of processes.

PVM (1991 Uty of
Tennessee) ( Geist,

Provides a machine-
independent

PVM daemon (Unix process that coordinates inter
machine communications) and the libraries that send

(Information Wide
Areca Year 1995)
(Foster, ct

bandwidth networks, using
different routing and
switching technologies

ctal., 1994) communication Layer commands to the local daemon and receive status
information.
I-Way Integrating 10 high Point of presence servers, uniform software called I-

soft, single central scheduler (CRB) and multiple
local scheduler daemons one in each I-pop.

(Grimshaw et al,
1997)

oriented model.

al..1997)
Legion (1997 Uty Builds system components | Data abstraction, encapsulation, inheritance and
of Virginia. on a distributed Object- polymorphism present. APIs to core object types-

Classes and Meta- classes, Host objects, Vault
objects, Implementation Objects and Caches, Binding
Agents. Context objects and Context spaces.

Grid General
Framework (Late
90's) (Foster ct al.,
2001)

Series of layers of
different widths.

Lowest level: fabric -  physical devices.
Connectivity/resource  layers  are  implemented
everywhere.  Collective layer:  protocols/services.

Topmost are user applications.

Globus (Early
2000) (Foster, ct
al., 2002) (Foster
and Kessclmen,
1997)

Middleware that hides the
heterogencous users and
provides applications a
scamless environment.

Central element is the Globus tool Kit that consists of
a set of components; each defines an interface for the
higher level services to invoke the component
mechanisms. Implement basic services like resource
location and allocation.

AppLeS
(Application Level
Scheduling, 2001)
(Berman, ct al.,
2003)

Provides environment for
adaptively scheduling and
deploying applications in

heterogencous, multi user
grid environments.

Customized scheduling agent that monitors available
resource performance and generates dynamically a
schedule for the application. Apples agent steps:
resource discovery, resource sclection, schedule
generation, schedule selection, application execution
and schedule adaptation. Apples templates were
created to embody common characteristics of Apples
cnabled Applications

/ji

http

Table 2: Grid forums and standards

Framework (Conceived) Origination Concept
GGF (Global Grid Forum, 1998) | Merger of the Grid Forum in North | Divides its efforts among
America, the Asia-Pacific Grid community, | seven areas including

and the European Grid Forum (eGrid)

architecture, data, and security

OGSA (Open Grid Ser- GGF announced OGSA at GGF4 in | Common, standard, open
vices Architecture, 2002) February 2002 architecture for Grid-based
applications.

The Web Services Resource Dissatisfaction with OGSl led to a | Contains a set of

Framework (2004) collaborative effort among architects from | specifications for expressing
the Grid and Web services communities. On | the  relationship  between
20 January 2004, Hewlett-Packard, IBM, | stateful resources and Web
Fujitsu, and the Globus Alliance announced | services.

the framework
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that helps conduct biomedical research. Years 2000 to 2001 have marked the
emergence of GriPhyN, NASA IPG, the EU DataGrid, UK e-Science Grid and
the US TeraGrid. Two other well known Grids are the DOE Science Grid and the
Asia Pacific Grid.

14 Grid Users/Applications and Industry Participation

~— Applications are key driver to this technology. Grids serve as an enabling technology
>f0r applications in science, business health and other areas. Grids have nodes that
s PrOVide for compute intensive activities viz. simulations, analysis and data mining
'p_ amongst others. Life sciences are one of the fastest growing application areas of
L Grid computing as a method to access, collect and mine data. Some areas in life
" sciences are bioinformatics, computational biology and neurosciences, genomics
among other areas. e.g. Biogrid for biologists and chemists to use remote HPC
facilities and to use remote biological packages. Grids have made resource intensive
U engineering applications more cost effective. e.g. US based NASA IPG is one of
the most comprehensive approaches to deploying production Grid infrastructure

= and developing large scale engineering oriented Grid applications.

Next, data oriented applications are emerging as an important application of grids.

Data emerges from instruments, experiments, sensors to name a few. DAME

3 (Distributed Aircraft Maintenance Environment) uses Grid technology to gather

and handle its in-flight gigabytes of data. Other areas of Grid applications include

= astronomy, particle physics, financial institutes for modeling foreign exchange

wh==d market to forecast exchange rate, medical imaging, chemistry, optimization,

meteo grid for world-wide local weather forecasts, using remote HPC, astrogrid,

= mmm magnetic fusion and Distributed Interactive Simulation (DIS) amongst others.

~ Yhus, certain broad classes of applications that are natural for Grids are as follows:
~— (Berman et al., 2003).

u u

D_l. Parallel applications, where a problem can be divided into many independent
parts.
whm=d 2. Staged/Linked applications, e.g. one gets a input from site A, analyzes at site
: B and visualizes at site C.
3. Simply access resources that include portals. access mechanisms and
environments.
4. Adaptive applications, where one can run an application wherever a resource
is found satisfying a given criteria.
5. Realtime and on demand applications, that involves performing acomputation
right away. Some of the leading Grid solution providers from the industry are
presented in Table 3.
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1.5 Our Contribution

Building grid frameworks using analysis and design level patterns i.e.
standardizing the analysis and designing process by propagating the idea of
reusability. We emphasize on techniques that would enable future grid analysts
to build and deploy grid prototypes much faster. We show the role that pattern
can play in architecting complex systems. and provide a very pragmatic
reference to a set of well-engineered analysis and design patterns that the
practicing developer can apply to crafting his or her own specific applications.
Specifically, we analyze the grid using an object oriented approach and UML.
There are few initiatives. for example, GoF, that have suggested the usage of
design patterns to develop grid applications. Specifically, the authors” attempt
in this paper is to employ a pattern-oriented approach at every stage viz.
analysis, design, architecture and technology realization for developing and
deploying a grid. The authors presented this concept of reusability and pattern
oriented approach for grids in (Prem and Raghavan, 2003).

Table 3: Grid and Industry

Organization: Contribution Functionality

Sun Microsystems: Sun NI Grid | Incorporates thousands of Windows desktops and servers,
Engine significantly the utilization of compute resources. Supports
most Microsoft Windows operating systems, Inter-
operability with Sun Control Station, Accounting and
Reporting, Heterogeneous support, including Windows
platform, Cluster Queues.

Hewlett Meets storage management challenges. Its architecture

Packard: Hewlett provides a dynamic, flexible, scalable, intelligent storage

Packard's StorageWorks Grid environment. Its strategy focuses on grid resource
management, utility resource provisioning. and homogeneity.

IBM: IBM grid tool box Focuses on homogeneity. standards, packaging, compute and
data grids, and professional services delivery.

Oracle Corporation: oracle 10 g DBA grid solutions.

Silicon Graphics: Visualization Focuses on visualization (three-dimensional computer

Grid Framework modeling),  high-performance  computing, and the

management of complex data.

Data Synapse: Financial grids Software infrastructure that virtualizes access to computing
and data resources.

Entropia: PC grids Solutions that harness and manage the untapped processing
power of desktop PCs.

Platform: eEnterprise Grid solutions | Integrated workload, resource, and performance management
solutions.

Dell: Dell PowerEdge Servers Intel-based Linux high performance computing clusters.
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1.6  Outline of the Paper

In section 2 we present the literature relating to various grid frameworks,
primarily on the architecture, resource economics, workload management
and scheduling components. Section 3 presents the software requirement
specifications. Sections 4 and 5 describe the analysis and design patterns in
UML. Section 6 presents the conclusions and future work.

~—
>2.0 RELEVANT LITERATURE SURVEY

': Some of the grid efforts that started as projects to link supercomputer sites are
detailed in (Roure et al., 2003). All the dominant grid projects are depicted in

" Fig. 1. Of late from the implementation perspective it is known that globus
from its experiences and the experiences of others in developing and using
its tools and applications, have started to identify commonly used design
U patterns or solutions, knowledge of which can facilitate the construction of
new applications (Foster, 2005). An approach using UML, patterns and SRS

= in general reusability as such is not propagated in any of the grid infrastructure
E designs. The advantages in using UML., analysis patterns, design patterns and

building of good software requirements specifications are well known.

3 Hruby (2000), suggests that it is appropriate to customize and design a new
process framework depending on the complexity of the software being
» developed. using all the three techniques viz. the analysis patterns, the UML
wh==d and the SRS. The use case based analysis is the optimal method because of
its many advantages (Chen, 2000). The plethora of problems and challenges
= = iNVOIVed in the analysis, design and implementation of grids motivated us to
_explore the analysis and design issues. We thus intend to conduct an OOAD
- of the grid framework that will predominantly be ‘pattern oriented’. We
= = will create software patterns at the analysis and design levels, thus enabling
software developers leverage the expertise of other skilled architects hence
reducing the effort and time in software development. We will specify our
wfmd architecture using UML.

£3.0 SOFTWARE REQUIREMENT SPECIFICATION FOR THE
GRID

In this section we present the inter-relationship between the various analysis
techniques. We also present the software requirement layout in this section. A
complex technology like Grid computing would require a highly systematic
process, right from requirements capturing to implementation and maintenance.
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(Grid Frameworks, Projects and Systems l

Early Representative Projects

f

FAFNER (Factoring via Network
Enabled Recursion)

v

I-WAY (Information Wide Area Year)

Was a experimental

high performance

(Internet's first
general-purpose
distributed computing)

(Search for
Extraterrestrial
Intelligence)

.my/

Based on

Uses Internet connected computers

BOINC Software
(Berkeley Open Infrastructure for
Network Computing)

v

Other examples
Climateprediction.net
Einstein(@home

Rosetta@home
Cell Computing

ict.uum.edu

U.S multi-institutional effort

To solve the factoring challenge network
Forerunne} for Forerunner for
‘ v v v
h 4
SETI@Home Distributed. NET Globus Legion

Object based meta system

Central element is the Toolkit,
Implements basic services

Encapsulated all of it
components as objects

Condor
Automatic resource location, job
allocation. check pointing

Resource Management &
Scheduling systems

PBS
Batch queuing and workload
management system

NetSolve: middleware seamless
bridge between the simple,
standard programming
interfaces and desktop systems

P Nimrod-G: resource management
Platform Computing: Some commercial g and scheduling
Load Sharing svstems
Facility (LSF) APST
(AppLeS Parameter Sweep Template)
T Others }—
= ! Deployment and Scheduling of
parameter sweep applications
= ! : GRAIL Projects
\ un grid engine
\ & + GRAIL Projects
»
Ll
- - PVM (Parallel Virtal vMachme) Ninf: Network Enables development & performance
Heterogeneous collection of programming Weather wning of Grid applications
middieware Services

Q Unix/windows computers

Il y Fig. 1: Abridged literature chart

L
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Fig. 2: Analysis techniques Fig. 3: Requirement specification layout
interrelation

Analysts need to bridge the gap starting at the most preliminary level so as
to avoid incomplete, incorrect, ambiguous, or even inconsistent requirements
for building the prototype (Chen, 2000). This and the following sections focus
on UML and analysis patterns (AP) to facilitate requirement capturing for a
sound SRS for the grid. It depicts how the three techniques viz. UML, AP
and SRS can be worked in parallel and interactively assisting one another
for a sound analysis phase. Fig. 2 depicts the interrelation between the three
3 techniques. We have only considered the sequence and the class diagrams. We
, hote that (Foster and Kesselman, 1998), (Foster et al., 2001), (Foster, et al.,
wfd 2002) and (Ferreira et al., 2002) have helped us in developing the SRS. The
O SRS is partitioned into two parts, the non-functional requirements and the
= mmm [Unctional requirements. The organization of the SRS is depicted in Fig. 3.
= mmm==l'he functional requirements for both the core and the support modules have
Q been categorized into entity requirements and processing requirements. An
= = entity/component refers to a separate unit in the grid, which is meant for a
Qpeciﬁc functionality, that will be initiated either by interacting with another
ntity, external application/client or by a direct database manipulation. An
wjd NIty may be independent or related to one or more entities. One module each
: in the core and the support module and a grid process are described.

um.edu.m

3.1 Core Module: Resource Entity

A-resource entity is a collection of all the resources that provide some service
and to which Shared access is mediated. It is a physical or a logical entity
like the distributed file system, cluster or a pool of distributed computers
and databases. It could also include supercomputers, storage systems, data
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sources, and specialized scientific instruments and devices owned by different
organizations. A use case diagram depicting the actor and the use cases of the
resource entity is shown in Fig. 4.

3.2 Support Module: Economic Paradigm in the Grid

The popular models of dynamic markets have instigated the emergence of
economic theories in grid resource management (Buyya, Abramson and
Giddy, 2000). In these models, the scheduling decision is directed by the end
user requirements. The pricing is based on the demand of users and the supply
of resources is the main driver in the competitive economic market model.
The user is in competition with other users and a resource owner with other
resource owners. A class diagram depicting this entity is shown in Fig 5.

“Urer Fequinsment

Resource Entity

E S

extend Super computert

extend:

Dictributed File Service

Rezomce
Entiey

Fig. 4: Resource entity use case Fig. 5: Economic paradigm class
. diagram diagram
\
\
® " 33 Grid Processes
wpued There are many processes running in the grid, when seen from different
wp==d perspectives. The survey use case diagram in Fig. 6 depicts the general

L

functionality of the grid with respect to the user. These diagrams help in
extracting the most obvious and the not so obvious internal grid processes.
Elaborating the primary and the alternative flows for each actor helps to
refine the software requirements. The not so obvious grid processes include
scheduling and functionality incorporated so as to make the whole system
fault tolerant. The scheduling process is depicted in Fig. 7. We use the above
SRS to specifying the various patterns.
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Fig. 6: Grid process survey diagram Fig. 7: Grid scheduling process
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4.0 ANALYSIS PATTERNS

This section, addresses a few patterns that act as catalyst to analyze complex
problems of the grid. Analysis patterns focus on the result of the process
(Fowler, 2002). i.e. the model itself, thus providing a template to easily fit
requirements. More analysis patterns are detailed in our technical document
(Prem and Raghavan, 2003).

4.1 Participant Scope Pattern

uum.edu

% The participant scope defines the responsibilities that are taken when
accountability is created. It further helps to list the types of operating scopes,
and whether a participant is a donor or user or both. Refer to Fig. 8.

ICt

J

4.2  Identification Pattern

/l

u
nce all the participants are enrolled, an identification number is allocated;

enceforth these participants could be identified by this number. Refer to Fig. 9.

P

| Seape

htt

I Quatiey oo ] BEVONECE Resource Type

Communication |

|
}' Anthemtieation
Type o

Revenrer

{ inNe
{1 Quandy -

Fig. 8: Participant scope pattern Fig. 9: Identification pattern
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4.3  Job Properties Pattern

Any job on the grid can be recorded. It is associated with a unique id. A job
is associated with a time frame for completion and the donor resource will

execute the job. Refer to Fig. 10.

4.4 Job Structure Pattern

Job is either an instance of implemented or the proposed stage. These patterns
help in differentiating between planning and reality. They help record daily
jobs. Some jobs do not get implemented and certain jobs occur without prior
planning, hence can rationalize last minute changes. The statistics help in
formulating a fault tolerance module that can be used for trouble shooting, in
case a job abruptly stops. Refer to Fig. 11.

>
(V)]

Resource Allocation Pattern

y A

=
~d

{ ‘ E T

T Reference

\ 7
\_i\;
y

/
/
/

/

Denor Machime

: Timt Required

i Orther JDH Job watus ‘

S -

—_t |
| | M Ieb Ly Cﬁ 4}
) L - 1 Husp
|
i Proposed |
| A
P
[ Taplemened| | Completed |
f S
S SR

Fig. 10: Job properties pattern

Fig. 11: Job structure pattern

Important part of schedule or planning is resource allocation. An implemented
job uses the resources allocated to it. A proposed job books the resources that

® it needs. Resource allocation is a certain quantity of a certain resource type.

Refer to Fig. 12. On request by a client for processing a job on the grid, the
different resources combine to form resource sets. Identification and selection

Canmast

Auribures
Price
Quantiry

| Lasg |

i
|
J

Suort_| |

Fig. 12: Resource allocation pattern
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Client —l [ Catekieeper ] [ Job Mamager [ € lrenisTrers Agent Computatioual
resources

request

job submit Select server

data request

request

meniter jeb
Tives data

Sends resuin

seud staras

motifiey agent

/

Fig. 14: Sequence diagram

y

of the viable resource set from the possible resource combinations depend on
the three important factors, viz. the application, predictions of performances
and previous application executions. For each resource set, a set of candidate
schedules are possible.

4.6 Contract Pattern

This pattern helps determine the kinds of contracts possible. Auctions/
economic paradigms can be worked out here. Thus this pattern is good for
capturing deals done between hosts organizations and other parties. Refer to

Fig. to 13.

5.0 DESIGN PATTERNS

uum.edu.m

= Design patterns when used effectively help reusability, increase the design
choice and documentation gets easier. Grids have similar components and hence
g P
O we apply design patterns for efficient development of the grid. This section
o = describes design patterns in the grid, which are customized from (Gamma et
al., 1995). More design patterns are detailed in our technical document (Prem
p

and Raghavan, 2003). A common scenario with interactions and exchange

u
“ of messages amongst entities is depicted by the sequence diagrams (UML
D_ana lysis). Fig. 14 depicts the interaction between the clients/users. These help

wh==J in identifying the design patterns, at a very high level.
e
: We use design patterns to effectively build an efficient grid which performs

the tasks of Scheduling, Monitoring and Resource brokering. A few design
patterns are listed below.

31



Journal of ICT, 6, pp: 19-39

- —

Adapter This pattern converts the interface of a class into another interface the clients expect. Adapter

Pattern combines the incompatible interfaces of different components to build a grid computing
environment

Bridge Bridge decouples an abstraction from its implementation such that the two can vary

Pattern independently. A bridge pattern is used to build platform independent applications as an end to

end software in order that it can be used across heterogeneous grid environments and be
implemented using multiple languages.

Decorator | A decorator attaches additional responsibilities to an object dynamically. Decorators are used
Pattern over the basic services of a grid scheduler to enhance security, performance to overcome
failures and reallocation of resources.

Facade Facade provides an unified interface to a set of interfaces in a sub system which makes the
Pattern subsystem easier o use. Facade in the grid context is used to encapsulate the performance
critical tasks as required by the users to reduce more interactions among the users and the grid.

Flyweight | Flyweight use sharing to support large number of fine-grained objects efficiently. Flyweight in
pattern a grid environment is used to share resources (idle) which would reduce expenses on
scheduling.

Similarly we use several other patterns in combination to effectively perform
the above mentioned services. The detailed description of two design patterns
that best fit the grid scenario is dealt in this section.

5.1 Builder Pattern

Intent Builder pattern separates the construction of complex object from its representation so that
the same process can be used to create different representations.

Grid Complex representation of the grid architecture should be separated from the process of
Perspective building the structure so that the same structure can be used to derive various representations
of Grid Architecture (e.g. resource management).

Motivation Grid Architecture composes and constructs several resource managers and hence directs
allocation of the resources to the respective managers. The managers can be categorized

as Computational, Catalog and Storage resource managers. The structure of these Resource
Managers are not exposed to the users so that various resource management activities can be
constructed using the underlying structure.

/ljict.uum.edu.my/

Participants BUILDER: (resource management) Specifies for creating parts of product objects like
computational and storage resources.

CONCRETE BUILDERS: (computational resource managers, catalog resource managers)
This constructs and assembles parts of various resources by implementing the resource
managers. Defines and keeps tracks of the representation.

DIRECTOR: (grid architecture) Constructs the resource management object using its
interface.

PRODUCT: (catalog resource, storage resource) Represents the complex object under
construction i.e. catalog resource manager builds the catalog resource internal representation
and defines the process by which it is assembled.

http

Consequences | This pattern can vary the internal representation of various resources. A new kind of
resource management can be implemented to assemble new varieties of resources just by
changing the representation. Finally this provides a finer control for constructing various
resources. building it part by part.

Code Interfaces: Grid Architecture provided to Users and Resource Management provided to
Generation various Resource managers.
Concrete Classes: Catalog, computational, storage resource managers implement resource
management.
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Refer to Fig. 15, 16 and 17 for the Use case. Structural and Sequence diagrams
respectively, for the Builder Pattern.
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Fig. 15: Use case - Builder pattern

TSERS -

CRID igcﬂm:g:{'at :

ict.uum.edu.m

/ji

http

diztributed enve

L 4:5:!& For Gnid Environment

cify Ressurce Rewmremnr

:
-0

3 Determine Policiey Of Sharing Relativn: hip

—

1: Derive Stratezies

#: Confing Allecation
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5.2 Mediator Pattern
Intent This pattern defines an object that encapsulates the set of objects interactions. Thus objects
are decoupled from referring to each other.
Grid The Grid middleware is responsible to determine all the interactions of its components. The

Perspective

¢grid infrastructure uses various protocols to communicate between various services and
receiver of these services (users).

Motivation

For various components in a grid environment the Grid middleware exercises centralized
control for effective communication so that each of these components would communicate
through the grid middleware only and can be bereft of maintaining information about each
other. In particular such a communication takes place through a common agreement between
the grid middleware and the components using protocol. Thus this sort of a communication
is reduced from many-to-many to one-to-many.

Participants

MEDIATOR: (GRID MIDDLEWARE) Defines the policies (interface) for communication
between components.

CONCRETE MEDIATOR: (GRID INFRASTRUCTURE) Implements the component
behavior and their interactions, by coordinating them through a set of protocols.
COLLEAGUE CLASSES: (RESOURCES, USERS) Each of these components would
communicate through the grid middleware.

Consequences

Grid middleware centralizes control. It can divide its responsibility among different
schedulers, instead of dividing the responsibility of interactions among components. This
reduces the complexity of communication among the components and provides a common
and single means of communication, thus decreasing the number of protocols for
connectivity.

Code
Generation

INTERFACES: Mediator and Colleague
CONCRETE CLASSES: Grid Infrastructure implements Mediator and Resources And users
are subclasses of Colleague (components).

uum.edu.my/

m Refer to Fig. 18, 19 and 20 for the use case, structural and sequence diagrams
respectively, for the mediator pattern.
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Fig. 18: Use case - Mediator pattern
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Fig. 19: Structure - Mediator pattern

5.3 Pattern Combination: Factory/Command/Singleton Patterns

Factory method invokes an object representing the systems on the network
with a scheduler that controls and co-ordinates the rest of the systems. Every
system on the network will have a single instance to represent their behavior
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and state. Command pattern involves creating a request object from the in-
voker (users), where the scheduler would act as the command (to forward) this
q) request to the receiver (such as the systems on the network). The execution of

various requests would be forwarded by the scheduler to other systems. Refer
[ ]

du

to Fig. 21.

5.4 Pattern Combination: Memento/Observer/Mediator Patterns

um

Each machine or system that is allocated as a part of the application execution
should maintain its state (Memento) to provide a feedback to the scheduler,
* 50 as to execute and collate the application. Similarly the scheduler (observer)
which is central to the system has to update its dependents about the systems,
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Fig. 22: Factory/Command/Singleton  Fig. 23: Memento/Observer/Mediator
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—

among which these jobs are allocated. The controlling, coordinating and the
distribution of the jobs among all the systems and collating them to execute
the final application lies with the scheduler. Refer to Fig. 22.

In (Prem and Raghavan, 2003), we provide intuitive arguments with examples
and state a few empirical results to support the methodology considered in this

paper.

6.0 CONCLUSIONS AND FUTURE WORK

y/

N

In conclusion, the advantage of opting for grid computation is so high that
the concept in itself has given rise to challenges that motivate technological
advancements in other areas such as web services, patterns (analysis, design or
architectural), grid mark up language, semantic grid and at the programming
level. We have detailed in this paper the SRS for the grid, UML based analysis
and design patterns to depict the complex interaction of the grid components.
We have presented the object oriented analysis and design of a grid framework
that is predominantly ‘pattern oriented’. We have created software patterns at
the analysis and design level thus enabling software developers leverage the
expertise of other skilled architects hence reducing the effort and time in grid
software development.

This is an initial attempt towards the usage of a combination of sound
techniques including the SRS, UML and OOAD. Yacoub and Ammar (2000)
state that the reusable components range from simple classes and libraries to
reusable patterns and frameworks. We show the role that patterns can play
in architecting complex systems and provide a very pragmatic reference
~_ Yo a set of well engineered patterns that a practicing developer can apply
=~ o crafting his or her own applications. As a part of future work one could
= ® work towards a full fledged SRS and build a whole set of analysis and design
patterns from different aspects of the grid. One can also look at developing

wj=d architectural and technology realization patterns. Using various patterns, the
wh==d authors have built a working prototype of a few key functionalities under the
: resource management module of the grid. The authors have also identified
various Petri net patterns and built an executable framework for performance
analysis of the grid infrastructure. The various patterns identified have largely
contributed to faster turnaround time and indeed the reusability factors as well.
The findings of the results using the framework are presented in a follow up
technical paper titled “Stochastic Petrinet Patterns for Performance Analysis
of Distributed Systems”. However it will be useful to build an end to end grid
system based on the patterns complemented by a comprehensive SRS, UML

t.uum.edu.n
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and OOAD techniques. Patterns would also prove to be very advantageous in
scenarios involving the on-boarding of applications viz. life sciences/financial
for execution on to an existing grid infrastructure.
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