Journal of ICT, 5, pp: 29-44

ATOOL FOR HEALTHCARE INFORMATION INTEGRATION

Sellappan Palaniappan and Ng Yih Huey

Department of Information Technology
Malaysia University of Science and Technology
Kelana Square, 47301 Petaling Jaya, Malaysia

{sell, yhng} @must.edu.my

ABSTRACT

Currently, information collected by the various healthcare providers
(hospitals and clinics) in Malaysia is not integrated. Each collects
information for its own internal use. The information is not
aggregated and analyzed at the state or national level to provide
useful information for decision-making (e.g. by the Ministry of
Health). Extracting and aggregating information from diverse data
sources (databases) has always been a challenge for the healthcare
industry. This paper presents a tool for integrating healthcare
information from several relational databases into a single data
warehouse. It is simple, cost-effective and yet solves the

t.uum.edu.my/

/ljic

information integration problem. It consists of a schema mapping
process which is partially automated and an Extraction,
Transformation and Loading (ETL) process which is fully
automated. To demonstrate its viability, a data warehouse
containing materialized data is built from three databases, namely,

http

Access, SQL Server, and Oracle. It is implemented using the
Microsoft NET Framework.

Keywords: Data Warehouse, Healthcare Information Integration, Extraction

Transformation and Loading (ETL), Metamodel, Schema Mapping.

1.0 MOTIVATION

Currently, healthcare providers (i.e., hospitals and clinics) in Malaysia use
conventional transaction processing systems to record their daily clinical
and financial data. However, as people’s lifestyles become more complex and

25

Journal of ICT, 5, pp: 29-44

technologies become more advanced, users demand better quality or valued-
added services. Healthcare providers are expected to increase the value of their
transaction processing systems - they need to turn data into actionable
information (Phipps, 2002).

Healthcare providers generate voluminous data, but they are not leveraged for

generating valuable information. Extracting, aggregating, and analyzing

healthcare information from distributed and heterogeneous data sources

T~ (relational databases) has always been a challenge for the healthcare industry.

Aggregating and integrating healthcare information is important for

E understanding the health of acommunity because the quality of services provided

depends on the availability of accurate, relevant, and timely information. This

paper presents a tool for efficiently integrating healthcare information from

3 several data sources into a single data warehouse. Such a data warehouse can

-O be used to build healthcare decision support systems that can enhance the quality

q) of healthcare services provided. For example, it can support OnLine Analytical

i Processing (OLAP) and data mining to generate more focused healthcare
information (Poole & Mellor, 2001).

3 Most healthcare providers do not use data warehouse technologies because they
are very costly. This paper presents an integration tool that is effective and yet
inexpensive compared to most other tools available in the market. The tool

P solves the data integration problem by (1) semi-automating the schema mapping

O process and (2) fully-automating the Extraction, Transformation and Loading

= == (ETL) process.

/lj

"~ 2.0 TOOLARCHITECTURE DESIGN

The tool is based on the client-server architecture (Fig. 1). It comprises two
main components: Agent and Web Server. The Agent is installed on each client
computer. Data extracted from the clients are uploaded to the Web Server for
integration via the Internet.

http

The Web Server consists of a Data Warehouse Manager (DWM) and an ETL
engine (Fig. 2). The DWM manages the data warehouse and its metadata. The
ETL engine manages the data integration process. A Web application developed
using ASP.NET facilitates the administrative tasks. It allows the various

30

t.uum.edu.my/

/ljic

http

Journal of ICT, 5, pp:

29.44

o =

Agent Agent Agent
Data Source: Oracle Data Source: SQL Server Data Source: fccess
| | |

E Client Side |
I

| Internet |
I

| Server Side |

Weh Server

Data Source: SQL Server

Fig. 1: High level view of architecture design

stakeholders, e.g. healthcare providers, administrators, Malaysia Medical
Association, Ministry of Health, and researchers, to access the integrated
healthcare information. The healthcare providers can upload their XML data
files extracted automatically by the Agent via the Web application.

The Agent performs the schema mapping and data extraction (Fig. 2). The
schema mapping is semi-automated; the engine first extracts the client’s database
metadata and the data warehouse metadata. The user then performs the mapping
semi-automatically using the client database structure and the data warehouse
structure. The mapping generates a schema mapping metadata for data
integration. The data extraction process, on the other hand, is fully automated.
The ETL engine extracts the data from the client database using the schema
mapping metadata and then converts them to XML data files. The files are
uploaded to the Web server for data integration.

The Web services are implemented as a set of Remote Procedure Calls (RPCs).
The Universal Description, Discovery and Integration (UDDI) is used to publish
the services while the Web Services Description Language (WSDL) describes
the rules for interfacing and interacting. The clients i.e. Agent and Web server
request services and the server responds to these requests. The information is
exchanged as XML documents using Simple Object Access Protocol (SOAP)
over HTTP. The Web services implemented include database web services, data

31

Journal of ICT, 5, pp: 29-44

warehouse management web services, metadata management web services, and
ETL web services. These Web services are used to integrate information into

/fjict.uum.edu.my/

http

the data warehouse.

XML Da Files

|

Web Sexvices |

(UDDI Registry)

Fig. 2: Low level view of architecture design

Monitor, & Adminishation

Metadata Repository

Data Sources

_n Load Enterprise Daia

‘Warehouse

2Updaic @

_ Operational System

Qu‘}ﬁ’@a‘@ﬁhrﬁng

OLAP Server

Fig. 3: Data warehouse architecture (Zhengxin, 2002)

32

ict.uum.edu.my/

T+ + 4+ £+ 4+

Journal of ICT, 5, pp: 29-44

3.0 DATA WAREHOUSE ARCHITECTURE DESIGN

The data warehouse architecture consists of several components: database
sources, enterprise data warchouse storage, data marts, back end systems and
metadata repository (Fig. 3).

The design is based on the three tier architecture: the bottom tier is a data
warehouse server, the middle tier is an OLAP server, and the top tier is a client
with query and reporting facilities. This research focuses only on the bottom
tier. The middle and the top tiers are areas for future work.

4.0 DATA WAREHOUSE METAMODEL DESIGN

The metamodel is an important element in the data warehouse environment as
it represents the structures and semantics of the different data models within
the tool (Tan & Zaslavsky, 2003). Tt is used to integrate the heterogeneous data
sources. Fig. 4 shows the design of the metamodel.

DB Connection Schema
Meppirg

tapping Filename: string
dataWaehouseConnection: siring have
dataWWaehouseMName: sring
typeOfDataWareheuse: string
databaseConnection: string
databaseName: shing
typeOfDatabase: =rng 1=
dateCreated: siring

consist of

/lji

http

formElemant
1.»

consist of
1

D=ta WarehouseTable DatzbaseTable

dukdappingTable: string
dwTableDescription: string
dwColMame: string
dwKeyType: string
dwFkCdName: shting
dwFkTbiName: sting
dwColType: =ring
dwColLength: string
dwColPrecision : sftring
dwColScale: string
dwColDescription: string
dwCrilera: sfing

dbMapping Table: siring
dbTableDesocription: string
db ColMame: string
dbKeyType: shing

db FkCoiName: string
db FkTbiName: string
db ColType: siring

db ColLength: string

db ColFrecision: string
db ColScde: shing

db ColDescription: gring
db ExtraTable: string

db Crilera: string

map with

+ + 4+ + 4+ FF++ 4

Fht A A F

Fig. 4: Data warehouse metamodel design

33

S~

/fjict.uum.edu.my

O

htt

Journal of ICT, 5, pp: 29-44

5.0 DATA WAREHOUSE SCHEMA DESIGN

The conceptual data warehouse schema can be modelled using the dimensional
model or the tabular model. Both models have their own advantages. This
research uses the tabular model because it captures both detailed and summarized
data. Thus, it can provide greater value to stakeholders in the future as these
can be optimized for numeric and textual analysis. Fig. 5 shows the conceptual
data warehouse schema design. The schema serves to demonstrate the feasibility
of the information integration tool. The schema can be extended to include
other information. The tool is quite generic, so it can be adapted to other data
warehouse schema design.

Although this research uses the tabular model to structure the data warehouse
schema, we can also easily derive the dimensional model should there be a
need, for example, to support OLAP functions which require retrieving tables
and their attributes. Not that the tabular model can still support analysis functions
using Relational OLAP (ROLAP) tools.

6.0 IMPLEMENTATION

The tool uses a schema mapping engine that is semi-automated (Fig. 4) and a
fully automated ETL engine. The tool provides interoperability, flexibility, and
convenience to users. A prototype is implemented to demonstrate its viability.
The schema mapping metadata adheres to the defined metamodel which is used
to facilitate the ETL process.

=2
oy
wn
(]
=
]
2
=]
]
=}
o]
o
=
1]

The tool automatically extracts and loads the data source metadata and the data
warehouse metadata. It displays a list of tables and their attributes in a tree
view format to facilitate the mapping process. Users interact with the schema
mapping engine through the Agent to select attributes for mapping from the
data source to the corresponding attributes in the data warehouse tables as shown
in Fig. 6. In order to perform mapping, users must have a good understanding
of both their organizations’ database structure as well as the data warehouse’s
structure (such as what information is stored in the tables, relationships between
tables, and the integrity constraints). In addition, users must also have basic
knowledge of constructing SQL queries. This is because only they know their
organization’s business flow and only they can do the schema mapping. The

34

/fjict.uum.edu.my/

Journal of ICT, 5, pp: 29-44

B Race
g %ra;ulr} g e stz
e lams niames
| |o=nce:
o Eountryl i
_ |racemn T courevID !
_addess e Hospital
state T = S ot alD
tet) it e [hospalin
He pestnbl narE
| boodType _|address
B Hergy T |stare
__jpatFrislD o) dewn T courtrvin
[o
PatientFamilytistory
_W{patFesiD 5
__jmare 2N i %
genger e |patientiD Physician
T retstonsh {7 {pberaciandn il
foe P == |eckressio]
:he“‘ Fstory _uéescs“.pmn ::
Admission : = =i T
R | edmssonll 2 | s nam
__jadmiDave i : courtry D -l
| jouatceme Sr.ﬁlr‘g_eﬁr'_m_ i b i | |spacisistiD ==
___irenfray i _T | mrgery il =T | hospkalld
L ftroe
. |desopten
Drug __ |phwsdani0 i :
i e oy : i
rame —
i Lope -] descrpbion
[R =4
Ui (£

Fig. 5: Data warehouse schema design

Conceptual View of Schema Mapping

™

http

Table from Oracle dala source

Physical View of Schema Ma

ing throw, A t

Record patient spatient1D;
Record patieng name

ﬁ’= Patient table, FIRSTN&ME“E
Record patien: name i

}

#

Patient table,{ MIDDLENAME
Patient table,! LASTNAME
Patient table, i SEX

Patient table, .DOB :

Record patier: name
Record patier\t‘ gender
Record patient.dob

v

Show table name ‘Palient’

Pt =

DWW atiributes map to DB altributes

Fig. 6: Schema mapping

35

t.uum.edu.my/

/ljic

http

Journal of ICT, 5, pp: 29-44

dbl-mappSschema.mapp

<Mxml version="1.0" encoding="utf-8" 7>

<ArrayOfFormElement
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance”>

<formElement>

<dbMappingTable>tblStaff</dbMappingTable>

<dbTableDescription />

<dbColName>staffID</dbColName>

<dbKeyType>PK</dbKeyType>

<dbFkColName>-</dbFkColName>

<dbFkTblName>-</dbFkTbIName>

<dbColType />

<dbColLength />

<dbColPrecision />

<dbColScale />

<dbColDescription />

<dbExtraTable>tblStaffType</dbExtraTable>

<dbCriteria>tblStaff.staff TypelD =
tblStaffType.staffTypeID AND
tblStaff Type.description = Doctor’</dbCriteria>

<dwMappingTable>Physician</dwMapping Table>

<dwTableDescription>Record physician personal
data</dwTableDescription>

<dwColName>physicianID</dwColName>

<dwKeyType>PK</dwKeyType>

<dwFkColName>-</dwFkColName>

<dwFkTbIName>-</dwFkTblName>

<dwColType>bigint</dwCol Type>

<dwColLength>8</dwColLength>

<dwColPrecision>19</dwColPrecision>

<dwColScale>0</dwColScale>

<dwColDescription>Unique
identifier</dwColDescription>

<dwCriteria />

</formElement>

<formElement>

: (define next element)
</formElement>
</ArrayOfFormElement>

Fig. 7: Sample of schema mapping metadata specifying mapping

information

36

/fjict.uum.edu.my/

http

Journal of ICT, 5, pp: 29-44

organizations may have different business flows even if the nature of their
business is the same. That means, only the users can ensure the correctness of
the mapping. This step is crucial because only correct mapping will lead to
correct data integration. The schema mapping metadata (Fig. 7) is generated
automatically according to the specified metamodel (Fig. 4).

The sample schema mapping metadata shows that the field ‘staffID’ from table
‘tblStaff’ of the data source is mapped to the field ‘physicianID’ from table
‘Physician’ of the data warehouse. The data is structured in XML format. This
mapping is only needed for the first time when data from a data source is to be
integrated into the data in the data warehouse. From then on, the metadata is
loaded from the system whenever users update the structure of their data sources
or the structure of the data warehouse.

6.2 Extraction, Transformation, and Loading (ETL) Process

The schema mapping metadata created from the schema mapping process is
used for expressing the ETL process. Algorithms are developed to automate the
ETL process. Data extraction involves extracting data from several data sources
such as SQL Server, Oracle, and Access. This invariably requires resolving
semantic conflicts and handling multiple data types and data structures. Data
are extracted based on specified criteria in the schema mapping metadata and
structured to the data warehouse structure. This step simplifies data integration
and loading. Data transformation involves handling inconsistent data, checking
for null values, data concatenation and type conversion, and eliminating duplicate
records. All these steps improve the quality of the data before they are loaded
into the data warehouse. Data loading also includes integrity constraints and
surrogate key management and integration.

The ETL engine in the Agent is responsible for automating the data extraction
and data transformation processes whereas the ETL engine in the Web server is
responsible for automating the data transformation and data loading processes.
The materialized data integration is achieved by loading the actual data into the
data warehouse,

6.2.1 Integrity Constraints Management

In order to resolve integrity constraints imposed by the data warehouse during
the uploading of data into the corresponding tables, all the independent tables

3

/

Journal of ICT, 5, pp: 29-44

are processed first, followed by the dependent tables. An independent table is
one that does not have any foreign keys. A dependent table is one which has
one or more foreign keys. The order of uploading tables is important in order to
take care of integrity constraints. The rule is: upload tables with the least number
of foreign keys. The tables referenced by the foreign keys must be uploaded
first before uploading the tables containing these foreign keys.

6.2.2 Surrogate Key Management

>\ Primary key conflicts arise because different data sources may use different

/ljict.uum.edu.m

http

formats such as numeric, text, or both. A uniform surrogate key is assigned to
handle this problem. This avoids having inconsistent or poor quality data. Index
tables are created to assign the surrogate key so that it stores both the primary
key that is generated automatically by the system and the actual key used to
reference the data. Each data source has a set of index tables to reference the
individual data warehouse tables. All the index tables are maintained throughout
the life of the data warehouse. For example, the data source dbHospital has a
set of index tables (e.g. dbHospital_Patient_Index, dbHospital_Physician_Index,
dbHospital_Diagnosis_Index) and the data source dbHealth has its own set of
index tables (e.g. dbHealth_Patient_Index, dbHealthl_Physician_Index,
dbHealth_Diagnosis_Index). The reason for having a separate set of index tables
for the different data sources is to avoid having the same key to refer to different
data records which can cause problems, e.g. data inconsistency, when the data
are uploaded.

The system updates the index table every time it uploads data into the
independent table (also called primary table). It searches for the actual key in
the index table in order to retrieve the corresponding surrogate key which is
then used (instead of the actual key) in the foreign key column when uploading
data into the dependent table. Fig. 8 shows how this is done.

7.0 EVALUATION

7.1 Tool Generalization

As the tool presented here is quite generic, it can be easily adapted to other
application domains such as education, finance, and e-government, Obviously,

some modifications, e.g. user interfaces, are needed to port it to other domains.

38

/fjict.uum.edu.my/

http

Journal of ICT, 5, pp: 29-44

Example of how to search for the actual key in the index tahle in order to ohiain

the corresponding surrogate ke
Rac L Data File
dbhealih Race Index Lal it L)
] dbPk | type

dwPk | dbPk

refer to T Malay -)
i
@ E—tt-"'"‘_'—" ! 5 ! Chinese E]Ele ,:hghfl i

>_ loading data from

Race (Data Warehouse) HIIL data file to
the data
i warehouse
BIE=
2 hinese
Check in the index L ~
table (dbPk = 5) 5 2
Check in the index table
ﬁfpﬁgﬁz i not found then check
" in primary table (Face,
a‘g;iaf 21\; ¥ type =Chinese) to get the
’ respective surrogate key
dwPk = 2).
Scenario 1 Scenario 2
Patient (XNML m dhHospital Patient (XML Data Filé) — from dbHealth
dbPk | coll |col2 [bal3 [rekelD w| | @Pk [eolt [eol2 [oof3 [Nace
P oy MForeizn Sz
1 a | b key /‘T’W g |k / i Chinese
2l 8| e 2 |7 [k41| [Maay]

F 3
Patient @@hﬂm)

dwPk | coll| col2]Ncol3| racelD
<

refer fo this record
a b

T
d e f
4 h i ""é
ik |1 1] -

refer to this record

.
Ia Lo b et

Fig. 8: Solution for handling primary key conflicts

7.2 Feasibility of the Tool

The tool supports mapping of heterogeneous data sources which include:

. Mapping Tables with One-to-One Relationship — Tables with one-to-
one relationship are the most common type. The attributes of a table in

the data source are directly mapped to the attributes in the corresponding
table in the data warehouse.

39

/fjict.uum.edu.my/

http

Journal of ICT, 5, pp: 29-44

Mapping Tables with One-to-Many Relationship — The schema mapping
allows mapping of tables with one-to-many relationship. For example,
for the tables Diagnosis, Patient and Medicine, one patient may have
several diagnoses and one diagnosis may require several drugs.

Mapping Tables with Integrity Constraints — The schema mapping allows
mapping tables with integrity constraints. For example, the foreign key
attribute of a table in the data source can be mapped to the corresponding
attribute of the table in the data warehouse. Specifying additional
conditions may or may not be required depending on how the tables in
the data source are structured in relation to the tables in the data warehouse.

The tool provides flexibility to users to perform the mapping which include:

Flexible Mapping Sequence — When users perform the mapping, they
do not have to map according to the sequence of the column specified by
the ORDINAL_POSITION of the data warehouse. That means, users
are not constrained to map all the attributes of a table before they map
other attributes from other tables. They are free to map any attribute
from any table and in any sequence. Additionally, users can delete any
attribute mapped or re-map a deleted attribute at any time. The mapping
is flexible as it allows users to easily add extra attributes to the schema
mapping metadata without needing to create an entire new schema
mapping metadata.

Concatenation of Data — Data extracted from one or more attributes can
be concatenated to a single attribute. For example, data extracted from
the attributes firstName, middleName and lastName, can be concatenated
to a single attribute, say, Name.

Easy Handling of Structures and Semantics Conflicts — Integrating data
from different data sources with different data structures and semantics
can lead to structure and semantic (e.g., homonyms and synonyms)
conflicts. Homonym conflicts occur when different data sources use the
same name for different attributes while synonyms conflicts occur when
different names are used for the same attribute. However, users need not
worry about the structure and semantic conflicts occurring among data
sources and data warehouse as these can be handled easily by specifying
conditions while mapping the attributes. The tool handles these conflicts

40

/fjict.uum.edu.my/

http

Joumal of ICT, 5, pp: 29-44

during the integration process using the schema mapping metadata which
captures the schema mapping details defined by the user.

. Allows Easy Update of Schema Mapping Metadata — The user can easily
update the schema mapping metadata to accommodate changes made to
structures in the data sources or data warehouse. Also, the users need not
convert their existing data models to other formats in order to use this
schema mapping engine unlike the one proposed by Tan and Zaslavsky
(2002), where users have to convert their data model to XML format
before they can use the schema mapping engine. Thus, this schema
mapping is more flexible.

. Allows Users to Specify Additional Conditions for Easy Mapping — The
schema mapping allows users to specify conditions for mapping attributes
of data sources to the attributes of the data warehouse. As organizations
may use different data structures, specifying conditions is important so
that different data source structures can map to the data warehouse
structure. The condition specified is a simple WHERE clause used in an
SQL query.

To illustrate, here is a simple example that extracts the patient’s family history
data from the data source and integrates it to the PatientFamilyHistory table of
a data warehouse. To do this, we need to specify additional conditions because
of structure conflicts between the tables in the data source and the data warehouse
(Fig. 10). There are also integrity constraints imposed on the tables in the data
source and data warehouse. The result of the mapping is shown in Fig. 9. In the
data source, three tables are affected for extracting the patient’s family history
data, which are tblPatient, tbINextOfKin, and tblPatientHealthHistory. This is
because the tables are constructed such that information of the patient and the
patient’s next of kin are both stored in the same table, tblPatient. The table
tbIPatientNextOfKin thus acts as the reference table where the attribute
NextOfKinID is a foreign key that refers to the primary table tblPatient for the
patient’s next of kin’s information.

8.0 FURTHER RESEARCH

Currently, the tool supports only three types of databases: Oracle, SQL Server,
and MS Access. It can be extended easily to support other databases such as

41

/fjict.uum.edu.my/

http

Journal of ICT, 5, pp: 29-44

I
||dwMappingTable [dwColName |dwKeyTypddwFkColName |[dwFKIbIDame |dbMappingTable ~ [dbCoName
||Pabm&Familk§im patFHisD |PK - - thiPatien®l extOfKin [PatientD
PabentFamilyHistory {name - - - tolPatiert Patentilame
PabeniFamilyHislory |relationship |- - - thlPatientl ex OKin relalionship
FatieniFamilyHisory [healthHistory |. A . tblPatientH #althHastory | HealthC ondition
PalientF amilyHistory |gender 2 . B thiPatient Sex
PatentFarailyHistory |dob - - - thiPalient Db
dbMappingTable |dbCelName |dhKeyTipe |dbFkColName |dbEkKThMNane
1hiP atientN ex tOfKan PatentlD PK - -
thlPatient PateniName - -
HIP atiepth e O fFin 1¢lalionship - -
WP steentHealthHistory [HealthConditon |- - -
4P alient ISex - - -
1P slient [Dob - L n
|dbMappingTable dh ColName dh Extralabiddb Crileria
thiP atient ex tO Al PatientiD:
i@aﬁem PatientName thiPatrert Patient] D = thiPatientN ex iOfKin N extO linlD
thiP atiantH ex 1O fKin 1 el ationshsp
thiP atisntHealthHistry |HeallhC ndilion thiPatientHealthHistory PatientD = thiPatentNextOfKin Nex 10 finlD
{hIP atient Sex ihiPatient P atient!D = 1b1Pati entHex 1O0fKin N ex 1O fFanlD
$bIP atient Dob tbiPatient P atient] D = 1biPstientNex IOfHin N extOfnlD

Fig. 9: Schema mapping metadata for tables that are mapped by
specifying additional conditions

thiatientHealthHistory toiPatient
_?;Fabem.!tn Pt 4| G | Foaterk i
Heiggt Ma-PatientIn . .
l:’zwcsm e Mapping of tables in order to
il L {Patertnizm extract patient’s next of kin
| iBloadType T 2 p % i
IHoakhCondition :ex, mforma]‘,wn and_ integrate intu
lbatetisaed T addres the ‘PatientFarmlyHistory’
e e table of data warehouse.
i L] Statell
thiRatientNextOfKin - |matensliyin
|} patertin |Racetn
MeitefvedD r“' Cird ettt
© irefatinshp i ContactdP
: Latetreated
T | {Passeveed
L ATyeld
e Prouidorl Patient
Tables from data source, dbHealth jd"72 Dloseni
= | iname
i _jgender
t fa =3
Patientf amdyhstory e
W et eI e et %'ﬁq
i - sate
e T lemeren
reEatite ihi) | —l frodTyee
Tables from data warehouse, healthcareDW ~» |_|5® T gy
trabtiislony e I

Fig. 10: Example of mapping tables by specifying additional conditions

MySQL, dbBase and Interbase. The data warehouse used is the SQL Server
and the algorithms for automating data uploading are based on the data
warehouse schema design. Any changes to this schema design, e.g. adding new

42

/fjict.uum.edu.my/

http

Journal of ICT, 5, pp: 29-44

tables or attributes, will require updating the data uploading functions as these
are implemented by calling insert stored procedures. Further work can be done
to automate the data loading process so that it supports other data warehouse
schema designs. Algorithms can also be designed so that they are independent
of the data warehouse schema design. Changes made to data structures can
automatically create new or update existing insert stored procedures. This can
reduce development time and make maintenance easier.

The tool can also be extended to include validation of schema mapping. When
mapping attributes in a data source to the corresponding attributes in the data
warehouse, most of the related metadata information such as data types, table
and column descriptions, and integrity constraints (primary key or foreign key)
are loaded automatically. Users may want to enter additional tables and
conditions. This can create problems such as schema mapping becoming more
error prone. For example, users may enter table names, conditions, or SQL
syntax that are invalid. This can affect the data extraction process since the
schema mapping metadata is used for expressing the ETL process. Validation
of schema mapping can ensure that the mapping is done correctly.

The tool provides limited data cleaning to improve the data quality such as
detecting and removing errors and inconsistencies, checking for null values,
eliminating duplicate records, and resolving structure and semantic conflicts.
This is done before loading the transformed data into the data warehouse.
Currently, the tool only deals with attribute semantic conflicts, but not with the
semantic conflicts in the actual data. The latter occurs when data are extracted
from different data sources where different formats are integrated, e.g. date
based on UK format (DD/MM/YYYY) and date based on US format (MM/
DD/YYYY). A similar situation arises when integrating currency and metric
data. To handle semantic conflicts in data, generic functions can be implemented
to convert data source data to the corresponding data warehouse data. During
the schema mapping, other information such as the unit used in the data source,
can be captured so that the system can automatically perform the conversion
function during the data transformation process.

Other enhancements include updating records of the data warehouse based on
changes made to the data source, developing an update scheduler, developing
OLAP with data mining to support the decision-making process, and developing
algorithms to auto-generate the dimensional tables to facilitate OLAP and data
mining functions. Issues such as scalability, maintainability, and security can
also be explored.

43

Journal of ICT, 5, pp: 29-44

REFERENCES

Phipps, C. (2002). Migrating an operational database schema to data warehouse
schemas. Unpublished PhD dissertation. University of Cincinnati.

Poole, J. & Mellor, D. (2001). Common warehouse metamodel: An introduction
to the standard for data warehouse integration (1* ed.). New York: John
Wiley & Sons.
~~
> Tan, J. & Zaslavsky, A. (2003). Domain-specific metamodels for heterogeneous
information systems. Proceedings of the 36" Hawaii International
Conference on System Sciences, HICSS’03.

.M

3 Zhengxin, C., (2002). Intelligent data warehousing: From data preparation to
data mining. New York: John Wiley & Sons.

//jict.uum.ed

http

44

