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In this article, we prove the existence of a simple cyclic near-resolvable ((v — 1)/2)-cycle system of 2K, for v = 9 (mod 12) by the
method of constructing its starter. Then, some new properties and results related to this construction are formulated.

1. Introduction

Throughout this paper, all graphs are considered undirected
with vertices in Z, where vis odd. As usual, K, will denote the
complete graph of order v, and AK,, will denote the complete
multigraph of order v and multiplicity A in which every two
vertices are joined by A parallel edges.

A k-cycle system of a graph G = (V, E) is a multiset € of
k-cycles of G whose edge sets partition E. € is said to be cyclic
ifV = Z,and foreach k-cycle C = (¢, ¢, . .., ¢) in € we have
that C+1= (¢ +1L,6+1,...,¢6 + 1) (modv) is also in G,
and it is said to be simple if all its cycles are distinct. A starter
of cyclic k-cycle system of G is a multiset & of k-cycles that
generates the multiset € by repeated addition of 1 modulo v.
A near-k-factor of G is a spanning k-regular subgraph of G—a
for some vertex a in G.

A k-cycle system € of 2K, is said to be near-
resolvable if its cycles can be partitioned into near-2-factors
N N5 N,_; and € is denoted by (v,k,2)-NRCS. In
general, it has been shown that there exists a near-resolvable
k-cycle system of AK, if and only if A is even and v =
1 (mod k) [1]. Such a near-resolvable k-cycle system is cyclic
if it is possible to label the vertices of 2K, with the elements
of the cyclic group Z, in such a way that #; = J#, + i for
0 <i < v -1, where # + i denotes the near-2-factor of 2K,
obtained from ./, by adding i modulo v to all its vertices. The
near-2-factor J/, is called a starter of cyclic near-resolvable
k-cycle system of 2K,

The existence problem of k-cycle systems of the complete
multigraph AK, has received much attention in recent years;
this existence problem has been completely solved by Alspach
and Gavlas [2] and by §ajna [3] for the important case when
A =1, and by Alspach et al. [4] for the case A = 2. An easier
proof of the existence of odd cycle systems of K, using the
difference method has been reproved by Buratti [5]. Then, Wu
and Buratti [6] provided an algorithm to construct an explicit
odd k-cycle system of K, whenever it exists. In particular, the
existence of cyclic k-cycle systems of K, has been solved when
v =1 or k (mod 2k) [7, 8], k = v [9], k is even with v > 2k
[10], k is a prime with the exception of (v, k) = (9,3) [7], k <
32 or k is twice a prime power [11], and k is thrice a prime [12].
Further results on cycle systems are in the surveys [13-15].

The necessary and sufficient conditions for the existence
of cyclic v-cycle system of AK,, and for the existence of simple
cyclic p-cycle system of AK ), where p is a prime, have been
proved by Buratti et al. [16]. For v > 3 odd, the necessary and
sufficient conditions for decomposing AK,, into A-cycles, and
into cycles of prime length have been established by Smith in
[17]. Shortly later, Bryant et al. [18] proved that the necessary
and sufficient conditions for the existence of a k-cycle system
of AK, for all 3 < k < v are that A(v — 1) is even and k
divides the number of edges in AK,,. More general results such
as the existence problem for decomposing AK, into cycles of
varying lengths have been presented in [19, 20].

The problem of constructing near-resolvable k-cycle
system of K, has been contributed by many authors. A
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near-resolvable k-cycle system of K, has been constructed
for k = 4 with v = 1 (mod 8) except possibly values v =
33,41,57 and except v = 9 (for which such a system does
not exist) [21], k = 10 with v = 5 (mod 20) or v = 41
[22], k > 11 with v = 4k + 1 [23]. Recently, the existence
of a near-resolvable k-cycle system of Ky,,,,, for all m > 1
and k = 2 (mod 4) except possibly for m = 2 and k > 14
has been proved by Wang and Cao [24]. Previously, it has
been proved that there exists a (rm+1,r,2)-NRCS for all odd
r > 3and all m > 1 [25]. In 2018, Matsubara and Kageyama
[26] proved that a cyclic (v,4,2)-NRCS exists if and only if
v=1 (mod 4).

In Section 2, we review some well-known definitions and
preliminary results. Some introductory results are formulated
in Section 3. Then, in Section 4, we explicitly construct a sim-
ple cyclic (v, (v — 1)/2,2)-NRCS for the case v = 9 (mod 12)
using a difference method. Moreover, we formulate some
properties which are related to this construction. Finally,
Section 5 discusses the conclusions and future work.

2. Preliminaries

In this section, we recall briefly some definitions and prelim-
inary results that we used in the sequel. We start with the
following definitions.

Definition 1 (see [27]). A path cover of a graph G is a
collection of vertex-disjoint paths of G that covers the vertex
set of G.

Definition 2 (see [5]). Let G be a graph and xy be an edge in
G. The difference of an edge xy is defined as d(x, y) = +|y—x|.

Definition 3 (see [5, 28]). Let G = (V(G), E(G)) be a graph.
The multiset

AG:{ily_xlIx,yEV(G),XyEE(G)} (1)

is called the list of differences from G. More generally, for
aset & = {G,,G,,...,G,} of graphs, the list of differences
from @ is the multiset AZ = AG, UAG, U...UAG, which is
obtained by linking together the (AG;)’s.

Definition 4 (see [6]). Let C be a k-cyclein AK,,. A cycle orbit
of C, denoted as Orb(C), is a set of distinct k-cycles in {C +1 |
i € Z,}. A cycle orbit of C is called full if its cardinality is v;
otherwise, the cycle orbit of C is short.

For convenience, we say C is a full (short) cycle.

Definition 5 (see [5, 6]). Let C be a k-cycle in AK,,. The type
of C is the cardinality of the set {z € Z, | C + z = C}.

From the above definition, it is obvious that if a cycle C is
of type1(d > 1), then C is a full (short) cycle.

Lemma 6 (see [5]). IfC is a k-cycle in AK,, then the type of C
is a common divisor of k and v.

The following lemma is a consequence of the theory
developed in [16]. It will be crucial for proving our main
results.
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Lemma 7. Let § be a multiset of k-cycles of AK,. Then, § is a
starter of cyclic k-cycle system of AK,, if and only if AS covers
Z; = Z, - {0} exactly A times.

3. Introductory Results

In this section, we introduce some definitions, notations, and
introductory results required to establish our main results in
the next section. We begin with defining relative path, relative
cycle, and alternating arithmetic path that will be the basis
for constructing the starter of simple cyclic near-resolvable
(6n + 4)-cycle system of 2K, .

Definition 8. Let G be a graph of order v, P = [x, X, ..., X;]
be a k-path of G, and C = (x, x,, ..., x;) be a k-cycle of G.

(1) Thek-pathP = [v — x,, v — X5, ..
relative path of P.

(2) The k-cycle C = (v —x,,v — X,...
the relative cycle of C.

., v—x;] is called the

, v — x;) is called

Lemma 9. Let G be a graph of order v.
(1) If P is a k-path of G and P is the relative path of P, then
AP = AP.

(2) If C is a k-cycle of G and C is the relative cycle of C,
then AC = AC.

Proof.

(1) Suppose P = [x;,Xy,..., %] and P = [y}, ¥, ..» Vi)
are k-path of G and its relative path, respectively. The
list of differences from P and P can be defined as

AP = {£|x; = x;y| 1i=2,3,...,k}, 2)

AP ={*|y, - yi| li=23,....k}. )

Since P is the relative path of P, then y, = v — x;, for
alli = 1,2,..., k. Hence, substituting y; = v — x; into
(3), we obtain

AP ={t|(v-x;) - (v=2x_y)| i=2,3,....k}
(4)
={t|x; - x| 1i=2,3,...,k} = AP.

(2) The proof is similar to part (1).
O

Lemma 10. Let G be a graph of order v. If C, is a k-cycle of G
and C, is the relative cycle of Cy; then, orb(C,) # orb(C,).

Proof. Let C; = (c;1,€15,---,¢) be a k-cycle of G and let
C, = (61563,---,6y) be the relative cycle of C,. Assume
on the contrary that orb(C,) = orb(C,); then, there exists an
integer i € Z, such that C, =i + C,. This implies that

g =itq; foralj=12,.. .k (5)
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Since C, is the relative cycle of C,, then
6;=v-¢,; foral j=12,.. k (6)

Solving (5) and (6) for € and ¢, j yields

v—i
W
V+i

and ¢ = 1 @)

forall j=1,2,...,k.

This contradicts the fact that C, and C, are actually k-cycles.
Thus, C; and C, must have different orbits, so orb(C,) #
orb(C,). O

An alternating arithmetic path is a path with two sets of
vertices satisfying certain conditions, as defined below.

Definition 11. Let m and n be positive integers with n < m <
n + 1. An (m + n)-alternating arithmetic path, denoted by
AAP(m + n), is a path of length m + n with vertex set V' =
{x, %0, o x,, Uiy, ¥55 -5 v, ) and edge set E = {{x;, y;} |
i=12,...,nfU{{y, x4} i=1,2,...,m— 1}, such that the
following properties are satisfied:

(1) x; — x;_, is constant, for all 2 < i < m.

(2) y; — y;_, is constant, forall 2 < i < n.

Definition 12. Let AAP(m + n) be an (m + n)-alternating
arithmetic path. The list of differences from AAP(m + n) is
the multiset

A(AAP(m+n)) = {x|y;— x| |1 <i<n}
(8)

Ut -yl I1<ism-1}.

According to Definition 11, the (1 +n)-alternating arithmetic
path either has odd order (2n+ 1) whenm = n+1 or has even
order (2n) when m = n. Throughout, we use the following
notations for (1 +n)-alternating arithmetic path of odd order
and even order, respectively:

AAP 2n+1) = [x1, Y15 %30 Yoo+ o> Xppp Yo Xy ]
= [xi’ yi]2n+1 >
)
AAP (2n) = [x15 Y1, %02 V3o -2 Xy Y]
=[x ¥l -

In the following, we define a modulo scalar multiplication on
paths and cycles in a finite graph of order v, and then we prove
some lemmas that will be used later in order to investigate
some properties related to our construction.

Definition 13. Let v, k, and h be positive integers with 1
h < vand gcd(h,v) = 1. Let G be a graph of order v, P
[x1, %5, ..., %] beak-path of G, and C = (x;, x,,...,x;) bea
k-cycle of G.

I IA

(1) The modulo v multiplication of P and h is the k-path

h-P = [hx,,hx,,..., hx;] (mod v).
(2) The modulo v multiplication of C and h is the k-cycle
h-C = (hx,,hx,,...,hx;) (mod v).

Lemma 14. Let G be a graph of order v and C be a k-cycle of
G. If h is any integer such that 1 < h < v and gcd(h,v) = 1,
then

() h-C=(w-h)-C.
2 (v-h)-C=h-C.
Proof.

(1) Suppose that C = (x,x,,...
Then,

, %) is a k-cycle of G.

h-C = (hx,,hx,,...,hx;) (mod v). (10)

Since v* — (x;+h)vis divisible by v, then V- (x;+h)v =
0 (mod v). Hence,

hoC= (4~ (e + W)+ g~ (3 )

+hx2,...,v2—(xk+h)v+hxk) (mod v)

=((v-x))(v=h), (v=x,) (v=h),..., (v—x;)
-(v=h)) (modv) 11)

=(v-h-((v-x), (v=x,),..., (v=x))
(mod v)

=w-h)-C.

(2) From the definition of modulo v multiplication of C
and (v — h), we obtain

(v-h)-C=((v-h)x,, v=h)xp,..., (v—h) x;)
(mod v)

(12)

= (vx; — hx;,vx, — hxy, ..., vx, — hxy)

(mod v).

But vx; is divisible by v, and this implies that vx; =
0 (mod v). Hence,

(v—h)-C=(-hx,, —hx,,..., —hx;) (mod v)
=h-(-x;, —xp..., = %) (mod v)
=h-(Vv=x5,v= X5 ...,V —X;) (13)

(mod v)

1l
L
ol



Lemma 15. Let v and h be integers with 1 < h < v and
ged(v,h) = 1. Then, h - Z;, = {hi (mod v) | i € Z,} covers
zZ;.
Proof. Let x, y € Z, with x # y. Assume on the contrary that
hx (mod v) = hy (mod v) = z. Then, we get hx = z + m;v
and hy = z + m,v for some integers m, and m,.

Subtracting the above equations, we obtain hx — hy =
myv — m,v. This implies

x—y= v (mlh_ mz)_ (14)

Since ,y € Z;, then x — y < v and then from (14) we get
v(m, — m,)/h < v. This implies that (m, — m,)/h < 1 and
therefore (m, — m,) < h.

On the other hand, since gcd(v, h) = 1 and (m, —m,) < h,
then from (14) it follows that (x — y) is a noninteger rational
number. This contradicts the fact that (x — y) is an integer.
Thus, there are no x,y € Z"f such that hx (mod v) =
hy (mod v),soh-Z, covers Z. O

Lemma 16. Let n > 0 be an integer; then, 12n + 9 and 6n + 4
are relatively prime.

Proof. Let c be an integer such that ¢ divides both 1212+ 9 and
6n + 4. Then, there exists x, y € Z such that

cx=12n+9 (15)
cy =6n+4. (16)

From the equations above, we obtain cx = 12n + 9 = 2(6n +
4) + 1 = 2cy + 1. This implies that cx — 2cy = 1, and then

1
x=2y=-. 17
y=- 17)
Since x — 2y € Z, then either ¢ = 1 or ¢ = —1. Therefore,
1 is the only positive integer which divides both 12#1 + 9 and
6n + 4. O

Now, we define a way of writing the cycle as linked vertex-
disjoint paths. This way will be used mainly to prove the
existence results in the following section.

Definition 17. Let C be a k-cycle, r > 2 be a positive integer,
and & = {P,P,,..., P} be a path cover of C. The set of r
edges in C that links the end of P, with the start of P, ,, for all
i=1,2,...,r where P.,, = P,, is called the link set of 2.

Remark 18. Let C be a k-cycle, & = {P, P,, ..., P,} be a path
cover of C, and E' = {e},e,,...,e,} be a link set of P. The
cycle C can be expressed as linked vertex-disjoint paths as
follows:

C=(P,P,,...,P). (18)
Lemma 19. Let C be a k-cycle, & = {P,, P,, ..., P.} be a path

cover of C, and E' = {e, e,,...,e,} be a link set of P. Then, we
have AC = AP UAE'.
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Proof. Let V(&) = U;l V(P)) be the set of vertices of &
and E(2) = |J_, E(P,) the set of edges of 2. Based on
Definition 3, the list of differences from C is defined as a
multiset consisting of the difference for each edge in C as
follows:

AC ={d(a,b) | a,b eV (C),abe E(C)}. (19)
Since & is a path cover of C, then
V(C)=V(P). (20)
Also, from the definition of link set of 9, we obtain
E(C)=E(P)UE. (21)
Substituting (20) and (21) into (19) yields
AC={d(a,b)| a,b eV (P),abe E(P)UE'}
={d(a,b) | a,b € V(P),ab € E(P)} (22)
uld(e)le e E'l =APUAE'.
O

To close this section, we provide an example below to
demonstrate the concepts discussed in this section.

Example 20. LetG = 2K,,,C = (4,1,3,2,6,11,14,12,13,16)
be a 10-cycle of G. Then, the cycle C can be written as linked
vertex-disjoint paths as follows:

C = (AAP, (4),Q;, AAP, (4),Q,), (23)

where AAP,(4) = [4,1,3,2] = [5—-i,i], and AAP,(4) =
[11,14,12,13] = [10 + 4, 15 — i], are 4-alternating arithmetic
paths and Q, = [6] and Q, = [16] are trivial paths. In addi-
tion, the set of four edges E' = {{2,6},{6, 11}, {13, 16}, {16,4}}
that links the paths AAP,(4),Q;, AAP,(4) and Q,, respec-
tively, along the cycle C is considered the link set for the path
cover P = {AAP,(4),Q;, AAP,(4),Q,}.

Based on Definition 8, the relative cycle of C is C =
(17,20,18,19,15,10,7,9, 8, 5). It is easy to see that the sum of
each pair of corresponding vertices of C and its relative cycle
is equal to 21 (the order of G).

Since gcd(20,21) = 1, then

20 - C = (80, 20, 60, 40, 120, 220, 280, 240, 260, 320)
(mod 21) (24)

=(17,20,18,19,15,10,7,9,8,5) .

In other words, C = 20 - C as shown in part (2) of Lemma 14.

4. Simple Cyclic Near-Resolvable (611+4)-Cycle
System of 2K, .,

In this section, we prove, explicitly and directly, the existence
of a simple cyclic near-resolvable (6n + 4)-cycle system of
2K 5,49 by constructing its starter.
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TABLE 1: The list of differences from & = {C,, C,}.

4-cycles The list of differences
C, =(1,6,57) {5,4,1,8,2,7,6,3}
C,=(8342) {5,4,1,8,2,7,6,3}

TABLE 2: A simple cyclic near-resolvable 4-cycle system of 2K.

Focus Orb(C,) Orb(C,)
i=0 (1,6,5,7) (8,3,4,2)
i= (2,7,6,8) (0,4,5,3)
=2 (3,8,7,0) (1,5,6,4)
i=3 (4,0,8,1) (2,6,7,5)
=4 (5,1,0,2) (3,7,8,6)
i= (6,2,1,3) (4,8,0,7)
i=6 (7,3,2,4) (5,0,1,8)
i=7 (8,4,3,5) (6,1,2,0)
i=8 (0,5, 4,6) (7,2,3,1)

To construct a simple cyclic near-resolvable (61 + 4)-
cycle system of 2Kj,,,,, it is enough to exhibit a starter of
cyclic k-cycle system of 2K, which satisfies a near-2-factor
and contains no two cycles in the same orbit. Let us provide
an example to illustrate the above definition.

Example21. LetG = 2Kyand § = {C,, C,} beaset of 4-cycles
of Gsuch that C, = (1,6,5,7) and C, = (8,3,4,2).

Easily, it can be observed that the 4-cycles of § are vertex-
disjoint and cover each nonzero element of Z, exactly once.
Hence, we can say that § is a 2-regular graph satisfying the
near-2-factor with focus zero.

In order to show that & = {C,, C,} is a starter of cyclic 4-
cycle system of 2K, we need to calculate the list of differences
from & as illustrated in Table 1.

As listed in Table 1, each nonzero element of Z, occurs
twice in AS = AC,; UAC,. Then, by Lemma 7, § = {C,,C,}
is a starter set of cyclic 4-cycle system of 2K,,.

Since the sum of each pair of corresponding vertices of
C, and C, is equal to 9 the order of G, then C, is the relative
cycle of Cy, and so, by Lemma 10, orb(C,) # orb(C,). From
Definition 4, we conclude that all the generated cycles by
repeated addition of 1 modulo 9 to & = {C;,C,} contain no
repetitions.

Now, & satisfies all the conditions to be a starter of simple
cyclic near-resolvable 4-cycle system of 2K,. Once the starter
set has been provided, all cycles of simple cyclic (9,4,2)-
NRCS can be generated by repeated addition of 1 modulo 9
as shown in Table 2.

In the following, we construct a simple cyclic near-
resolvable (6n + 4)-cycle system of 2K,,,o. Since the con-
struction is different depending on whether 7 is odd or even,
we classify the construction into two cases: when n is odd and
when 7 is even.

Lemma 22. For any positive odd integer n, there exists a simple
cyclic near-resolvable (6n + 4)-cycle system of 2K 5,9

Proof. Letv = 12n+9, where nis a positive odd integer. Let C,
and C, be the (61 + 4)-cycles of 2K, defined as linked vertex-
disjoint paths as follows:

C, = (AAP, (3n+3),AAP, (3n+1))

C, = (m(3n+3),m(3n+ 1)), )
where
AAP, (3n+3) = [4i — 3,12n — 4i + 1055,
AAP,(3n+1) = [6n—4i + 6,61+ 4i +5]5,,, ,
AAP, (3n+3)
=[v—(4i=3),v - (121 - 4i + 10)]3,,,5 = [12n
(26)

—4i+12,4i — 15,3
AAP,(3n+1)
=[v-(6n—-4i+6),v—(6n+4i+5)]s,., =[6n

+4i+3,6n—4i+4]5,,,;.
Since n is a positive odd integer, then any (3# + 3)-alternating
arithmetic path and (37 + 1)-alternating arithmetic path have
even order. As illustrated in Figure 1, the construction of C,
and C, can be described in terms of their vertices as C; =
(Ci1>Gigs v v Cgnya) fori =1,2.

In this way, we note that in the cycle C, the ¢, ;s with i
odd and the ¢ ;’s with i even form the following increasing
sequences, respectively:

11 < Clonss < Q3 < Cgnen <0 < Cangg < O apgp in the
interval I = [1,6n + 3] and

Cianes < Clanst < Cianes < Cap-1 <0 < G < Cepeg 1D
the complement of I in Z,,.

In contrast, in C, the ¢,;’s with i odd and the ¢, ;’s with i
even form the following decreasing sequences, respectively:

G1 > Genes > 03 > Genetl > 0 > Ganes > Gaen 1D
J=[6n+6,12n+ 8] and

Canss > Ognil > Oames > Oane1 > 0 > O > Qnyg ID
the complement of J in Z,.

Thus, for i = 1,2, the vertices in C; are pairwise distinct
and hence C,; is actually (6n + 4)-cycle.

In the rest of this proof, three parts are considered to
prove that the set of cycles & = {C,,C,} satisfies the
conditions to be a starter of simple cyclic near-resolvable
(6n + 4)-cycle system of 2K,

Part 1. In this part, we prove that § = {C,,C,} satisfies the
near-two-factor condition. This will be verified by proving
that the union of vertex sets of C; and C, covers each element
of Z; exactly once. The vertex sets of C; and C, can be
enumerated by the union of vertex sets of all linked paths in
both C, and C,, respectively.

V(C,) =V (AAP,(3n+3))UV (AAP,(3n+1)), (27)

V(C,) =V (AAP, (3n+3)) UV (AAP,(3n+1)), (28)
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I
1= | a1
1 |
Centa = | Q6n+4
ap = 12n+7 : o,
12n+6 i ’
Clent3 = | Q,6n+3
I
AAP, (3n+3) 4 !
3= | Q3
5 i
I
CLen+7 = ! Q.6n+7
Q4= 6n+ 13 ! G4
121+ 2 !
CLani6 = ©,3n+6
_ 1
AAP,(Gn+1) |72
Cl3ne5 = i 2345
Cl3ns2 = 6n+9 I Q3n+2
6n+3 L
c — 1 2,3n+4
1,3n+4 i
c _ 6n+ 2 !
13043 = c
on+ 4 |
1
AAP; (Bn+3) = [4i - 3,12n — 4i + 10]3,,,3. I oy=v—c,fori=1,2...,6n+4.
! : ,
1
AAP, (B3n+ 1) = [6n—4i+ 6,61 + 4i + 5]3,,- !
FIGURE 1: The construction of C, and C, in 2K, n is a positive odd integer.
where V(C,)UV(C,) = Z;, then the set of cycles & = {C,C,}

V (AAP, 3n+3))

(3n+3)/2 (3n+3)/2
U {4i - 3} J U {12n — 4i + 10}
={1,5,...,6n+3}

U{l2n+6,12n+2,...,6n+4},
V (AAP, (3n+1))
(3n+1)/2 (3n+1)/2

U {6n—4i + 6} | U {61 + 4i + 5}

={6n+2,6n-2,...,4} (29)

uf{n+9,6n+13,..., 2n+7},

V (AAP,(3n+3)) ={v—i|ieV(AAP, (3n+3))}
={12n+8,12n+4,...,6n + 6}

U{3,7,...,6n+5},

V(AAP,(3n+1)) ={v—i|ieV(AAP,(3n+1))}
={6n+7,6n+11,...,12n+ 5}

u{bn,6n-4,...,2}.

According to the above vertex sets, it can be easily noted
that each nonzero element of Z, occurs exactly once in
V(C,)UV(C,). Since any cycle is a 2-regular graph and

forms near-two-factor with focus zero.

Part 2. This part shows that the set of cycles § = {C,,C,}isa
starter of cyclic (6n + 4)-cycle system of 2K,,. For this part, it
is sufficient to prove that the list of differences from & covers
7, exactly twice.

Based on Definition 3, the list of differences from & is
defined as AS = A(C,)UA(C,). Then, from Lemma 19 and
Definition 12, the list of differences from C, is

A(C,) = A(AAP, 3n+3)) U{d (6n + 4,6n + 2)}
(30)
UA(AAP, Bn+1)u{d(12n+7,1)},

where

A(AAP, (3n+3))

. 3n+3
={i|yi—xi||131s }
., 3n+1
!{ilxi+1_)’i||15’5 }
3n+3
:{i|12n—8i+13||1sig 1 }

3n+1
g{¢|12n—8i+9||1sis n2 }

={12n+512n-3,...,1}U{4,12,...,12n + 8}

u{l2n+1,12n-7,...,5}

U{8,16,...,12n+4},
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A(AAP, (3n+1))

. 3n+1
={i|yi—xi||1§1£ }
2
3n—1}
2
3n+1}
2

. . 3n-1
g{i|81+3||1S1s 5 }

g{i—|xi+1—yi| [1<i<

Il
—r—

+18i-1]]1<i<

={7,15,...,12n+ 3} U{12n+2,12n—6,...,6}
u{l1,19,...,12n— 1}
u{l2n-2,12n-10,...,10},
{d6n+4,6n+2)} ={2,12n+ 7},

{d(12n+7,1)} = {12n + 6,3} .
(31)

As shown above, each nonzero element of Z,, appears exactly
once in A(C)).

From (25), we can deduce that C, is the relative cycle of
C,. Hence, by part (2) of Lemma 9, we obtain A(C,) = A(C,).
Now, we conclude that each nonzero element of Z, appears
exactly twice in AS’. Based on Lemma 7, the set of cycles & =
{C,, C,} is a starter of cyclic (6n + 4)-cycle system of 2K, for
all odd positive integer .

Part 3. We check that all the generated cycles from the starter
§ = {C,,C,} contain no repetitions by showing that all the
cycles of & have different orbit.

Since C, is the relative cycle of C;, then by Lemma 10,
orb(C,) # orb(C,). Thus, all the generated cycles by repeated
addition of 1 modulo vto & = {C;, C,} contain no repetitions.

By summing up the former three parts, we have proved
that, for any positive odd integer #, the set of cycles § =
{C,, C,} is a starter of simple cyclic near-resolvable (61 + 4)-
cycle system of 2K,,. O

Lemma 23. For any nonnegative even integer n, there exists a
simple cyclic near-resolvable (6n + 4)-cycle system of 2K,

Proof. Letv = 12n+ 9, where n is a nonnegative even integer.
Let C, and C, be the (67 + 4)-cycles of 2K, defined as linked
vertex-disjoint paths as follows:

C, = (AAP, (3n+3),AAP, (3n+1))
_ . (32)
C, = (AAP, (3n+3),AAP,(3n+1)),

where

AAP, (3n+3) = [4i - 3,12n - 4i + 10]3,,,3,

AAP, (3n+1) = [6n+4i+3,6n—4i +4]5,,1>»

AAP, (3n+3)
=[v—(4i-3),v—(12n—4i + 10)]5,,5
= [12n—4i + 12,4i — 1]5,,,5,

AAP, (3n+1)
=[v—(6n—4i+6),v—(6n+4i+5)]5,,

= [6n—4i+6,6n+4i +5]5,,;
(33)

Since n is a nonnegative even integer, then any (3n + 3)-
alternating arithmetic path and (3n + 1)-alternating arith-
metic path have odd order. As shown in Figure 2, the
construction of C; and C, can be described in terms of their
vertices as C; = (G;1,Ci5 -+ -» G gpyq) fOri =1,2.

The rest of this proof is similar to the proof of Lemma 22,
hence omitted. O

Theorem 24. For each positive v = 9 (mod 12), there exists a
simple cyclic near-resolvable ((v — 1)/2)-cycle system of 2K,,.

Proof. The proof is immediate from Lemmas 22 and 23. [

By reviewing the construction of a starter of simple cyclic
near-resolvable (6n1 + 4)-cycle system of 2K,,.,q, as shown
in Figures 1 and 2, the construction has a butterfly shape in
which each cycle represents a side of symmetrical butterfly
wings. If given one cycle C of the starter set, the other is the
relative cycle of C.

Next, some related properties of the starter of simple
cyclic near-resolvable (6n + 4)-cycle system of 2K, will
be formulated.

Lemma 25. Let n, h, and v = 12n + 9 be integers such that
1 < h<vand gcd(h,v) = 1. If § = {C,,C,} is a starter of
simple cyclic near-resolvable (6n + 4)-cycle system of 2K, then
h-V(8) = {hi (mod v) | i € (V(C,) UV(C,))} covers Z.,.

Proof. Since § = {C,,C,} is a starter of simple cyclic near-
resolvable (61 + 4)-cycle system of 2K, then & = {C,,C,}
satisfies the near-two-factor with focus zero. This implies that
V(C,) U V(C,) = Z,. Then, by Lemma 15, we obtain the
notion that i - V(&) covers Z;. O

Theorem 26. Let n, h, and v = 12n + 9 be integers with 1 <
h <vand ged(h,v) = 1. If 8 = {C,, C,} is a starter of simple
cyclic near-resolvable (6n + 4)-cycle system of 2K,, that satisfies
(25) or (32), then {h - C,, h-C,} and {(v—h)-C,, (v—h)-C,} are
the same starter of simple cyclic near-resolvable (6n + 4)-cycle
system of 2K,,.

Proof. Suppose that & = {C; = (¢;15G2-->Cenra) |1 = 1,2}
is a starter of simple cyclic near-resolvable (6n + 4)-cycle
system of 2K, that satisfies (25) or (32). Then, C, is the relative
cycle of C; and hence, by part (1) and (2) of Lemma 14, we
have

h-C,=(w-h)-C,

and h-C, = (v-h)-C,. (34)
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Q.1
Q.6n+4

Q2
©,6n+3

JRR— Q3

C6n+2 AAP, (3n+ 3)

Q4
,3n+7
©.3n+6 AAP, 3n+1)
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AAP, (3n+3) = [4i — 3,121 — 4i + 10]3,,.
AAP, 3n+ 1) = [6n + 4i + 3,6n — 4i + 4]3,,, .

g;=v-¢,;fori=12,..., 6n + 4.

FIGURE 2: The construction of C; and C, in 2K, » is a nonnegative even integer.

To prove that {h - C,, h - C,} is a starter of simple cyclic near-
resolvable (67 + 4)-cycle system of 2K, we need to prove the
following:

(1) h-V(S) covers Z,.
(2) A(h-C))UA(h - C,) covers Z, exactly twice.

The first condition is satisfied from Lemma 25. Based on the
definition of h-C}, for each edge {c, ;, ¢, ;,,} in C| we have that
{hey ;s hey iy} (mod v) = {x, ;,x,;,,} isanedgein k- C;.
Suppose d; = =*|c ;¢ ;4] is the difference of the edge
{enpcn) fori = 1,2,...,6n + 4, where ¢ 4,,5 = ¢;;. Then,
the difference of the edge {x,;, x;;,,} is #|x;; — x| =
hd; (mod v), wherei =1,2,...,6n+4and x, 4,,5 = X, .
Since & = {C;,C,} is a starter of simple cyclic near-
resolvable (6n1+4)-cycle system of 2K, then AC, U AC, covers
7, exactly twice. But C, is the relative cycle of C, ; this implies
that AC, = AC, ={d; | i =1,2,...,6n+ 4} covers Z, exactly
once. Therefore, A(h - C,) = A(h-C,) = {hd; (mod v) |i=
1,2,...,6n+4} also covers Z exactly once (from Lemma 15);
thus, A(h - C;) UA(h - C,) covers Z;, exactly twice. O

In the following example, we construct some of distinct
starters of simple cyclic (9, 4, 2)-NRCS in accordance with the
theorem above.

Example 27, Let h be an integer with 1 < h < 9 and
ged(h,9) = 1, G = 2K, with vertices in Zy and § = {C,,C,}
be a set of 4-cycles of G where C; = (1,6,5,7) and C, =
(8,3,4,2).

In Example 21, it is proved that & = {C,, C,} is a starter
of simple cyclic (9,4,2)-NRCS. The next table shows the
possible values of h that make the set of cycles {h- C,,h - C,}
be a starter of simple cyclic (9, 4, 2)-NRCS.

In Table 3, it can be remarked that each set of cycles
{h- C,,h-C,} covers Z exactly once and the list of differences
from {h-C,h - C,} covers Z; exactly twice. Therefore, we
conclude that for any 1 < h < 9 such that ged(h,9) = 1 both
sets {h-Cy,h-C,}and {(9-h) - C,, (9 — h) - C,} are the same
starter of simple cyclic (9, 4,2)-NRCS.

The simple cyclic near-resolvable (61 + 4)-cycle system of
2K 5,49 is @ vx 2 array if its starter is a set of full cycles. By the
following theorem, we can answer the question whether the
starter of simple cyclic near-resolvable (671 + 4)-cycle system
of 2K, is set of full cycles or not.

Theorem 28. If n is a nonnegative integet, then any starter of
simple cyclic near-resolvable (6n + 4)-cycle system of 2K ,,,4 is
a set of full cycles.

Proof. Let C, and C, be (61 + 4)-cycles in 2K}, 4. Suppose
that § = {C,,C,} is a starter of simple cyclic near-resolvable
(6n + 4)-cycle system of 2K, .

From Lemma 16, we have that 6n + 4 and 12n + 9 are
relatively prime, which implies that the only positive common
divisor of 6n + 4 and 12n + 9 is 1. By Lemma 6, since the
type of any (67 + 4)-cycle in 2K ,,,,4 is a common divisor of
6n + 4 and 12n + 9, it follows that any cycle in § is of type
1. Consequently, any starter of simple cyclic near-resolvable
(61 + 4)-cycle system of 2K,,,, 4 is a set of full cycles. O
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TABLE 3: A collection of distinct starters of simple cyclic (9,4,2)-NRCS.

h {h-Cy,h-C,} A(h-C))UA(h-C))

lord {(1,6,5,7),(8,3,4,2)} {£5,+1,+2, +6} U {+5, +1, +2, +6}

2o0r7 {(2,3,1,5),(7,6,8,4)} {#1,+2,+4, +3} U {£1, £2, +4, +3}

4or5 {(4,6,2,1),(5,3,7,8)} {2, +4, +1,£3} U {2, +4, +1, £3}

5. Conclusions

This article has proposed near-resolvable k-cycle system of
2K, as an edge-decomposition of the complete multigraph
2K, into v classes of k-cycles such that each class satisfies the
near-2-factor. In particular, the difference method has been
exploited to construct a simple cyclic near-resolvable ((v —
1)/2)-cycle system of 2K, for the odd case v = 9 (mod 12),
and this construction has been exemplified for the case
v = 9. Finally, we have formulated some properties of this
construction. We expect that this study can be developed and
extended to construct a simple cyclic near-resolvable k-cycle
system of 2K, for the case v odd.
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